code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : str = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : str = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Tuple = None return tokenizer.pad( lowerCamelCase_ , padding='''longest''' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) lowercase__ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCamelCase_ ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[Any] = config["""lr"""] lowercase__ : List[str] = int(config['''num_epochs'''] ) lowercase__ : Optional[Any] = int(config['''seed'''] ) lowercase__ : int = int(config['''batch_size'''] ) lowercase__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase_ ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : int = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) lowercase__ : Union[str, Any] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate scheduler lowercase__ : int = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ : List[Any] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : List[Any] = model(**lowerCamelCase_ ) lowercase__ : Dict = outputs.loss accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : str = model(**lowerCamelCase_ ) lowercase__ : int = outputs.logits.argmax(dim=-1 ) lowercase__ : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) lowercase__ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Optional[Any] = parser.parse_args() lowercase__ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
358
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowercase__ : Tuple = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" lowercase__ : int = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" lowercase__ : Optional[Any] = max(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCamelCase ) , b_binary.zfill(__lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Dict = tmp_path / "file.csv" lowercase__ : List[str] = textwrap.dedent( '''\\n header1,header2\n 1,2\n 10,20\n ''' ) with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : Union[str, Any] = tmp_path / "malformed_file.csv" lowercase__ : Union[str, Any] = textwrap.dedent( '''\\n header1,header2\n 1,2\n 10,20,\n ''' ) with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : Optional[Any] = tmp_path / "csv_with_image.csv" lowercase__ : List[Any] = textwrap.dedent( f"""\ image {image_file} """ ) with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Union[str, Any] = tmp_path / "csv_with_label.csv" lowercase__ : Any = textwrap.dedent( '''\\n label\n good\n bad\n good\n ''' ) with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Any = tmp_path / "csv_with_int_list.csv" lowercase__ : Any = textwrap.dedent( '''\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ''' ) with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : Dict = Csv() lowercase__ : List[str] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__lowerCamelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(__lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def __UpperCAmelCase ( __lowerCamelCase ) -> str: with open(__lowerCamelCase , encoding='''utf-8''' ) as f: lowercase__ : int = f.read().splitlines()[1] lowercase__ : List[str] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowercase__ : str = csv._generate_tables([[csv_file_with_image]] ) lowercase__ : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowercase__ : Tuple = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: with open(__lowerCamelCase , encoding='''utf-8''' ) as f: lowercase__ : List[str] = f.read().splitlines()[1:] lowercase__ : Optional[int] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowercase__ : Union[str, Any] = csv._generate_tables([[csv_file_with_label]] ) lowercase__ : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowercase__ : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(__lowerCamelCase ) for label in labels] def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : Optional[Any] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda __lowerCamelCase : [int(__lowerCamelCase ) for i in x.split()]} ) lowercase__ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowercase__ : int = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
360
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
0
"""simple docstring""" from collections import namedtuple lowerCAmelCase_ = namedtuple('from_to', 'from_ to') lowerCAmelCase_ = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'from_type\' value: {from_type!r} Supported values are:\n""" + ''', '''.join(lowerCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'to_type\' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(lowerCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : str = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: lowercase__ : Tuple = 10_24 lowercase__ : int = 40_96 lowercase__ : List[str] = 24 lowercase__ : Tuple = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : str = [2_56, 5_12, 10_24, 10_24] lowercase__ : str = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: lowercase__ : Tuple = 7_68 lowercase__ : Optional[int] = [1, 1, 1, 0.5] lowercase__ : List[Any] = [2_56, 5_12, 7_68, 7_68] lowercase__ : Union[str, Any] = 1_50 lowercase__ : int = 16 lowercase__ : Optional[Any] = (1, 3_84, 3_84) lowercase__ : Optional[int] = False lowercase__ : Optional[int] = 'project' if "ade" in checkpoint_url: lowercase__ : List[str] = True lowercase__ : Dict = 7_68 lowercase__ : Optional[int] = [1, 1, 1, 0.5] lowercase__ : Tuple = 1_50 lowercase__ : str = 16 lowercase__ : Dict = 'huggingface/label-files' lowercase__ : int = 'ade20k-id2label.json' lowercase__ : Dict = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : Dict = {int(lowercase__ ): v for k, v in idalabel.items()} lowercase__ : Tuple = idalabel lowercase__ : List[str] = {v: k for k, v in idalabel.items()} lowercase__ : Any = [1, 1_50, 4_80, 4_80] return config, expected_shape def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : int = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : str = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: lowercase__ : Optional[int] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: lowercase__ : str = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: lowercase__ : Any = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: lowercase__ : List[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: lowercase__ : Union[str, Any] = name.replace('''proj''' , '''projection''' ) if "blocks" in name: lowercase__ : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: lowercase__ : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: lowercase__ : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: lowercase__ : int = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: lowercase__ : Dict = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: lowercase__ : Union[str, Any] = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: lowercase__ : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: lowercase__ : Any = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: lowercase__ : Union[str, Any] = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: lowercase__ : Dict = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: lowercase__ : Union[str, Any] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : List[Any] = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowercase__ : int = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: lowercase__ : str = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: lowercase__ : Optional[int] = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: lowercase__ : List[str] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: lowercase__ : List[Any] = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : List[Any] = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Dict = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : str = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : int = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: lowercase__ : List[Any] = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: lowercase__ : Union[str, Any] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: lowercase__ : Any = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: lowercase__ : Optional[Any] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: lowercase__ : List[str] = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: lowercase__ : Any = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: lowercase__ : List[Any] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: lowercase__ : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: lowercase__ : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: lowercase__ : List[Any] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: lowercase__ : int = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: lowercase__ : str = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: lowercase__ : Dict = name.replace('''..''' , '''.''' ) if "stem.conv" in name: lowercase__ : Union[str, Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase__ : Union[str, Any] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: lowercase__ : Tuple = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: lowercase__ : List[Any] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: lowercase__ : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: lowercase__ : Optional[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: lowercase__ : Any = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Dict = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : List[Any] = in_proj_weight[: config.hidden_size, :] lowercase__ : List[str] = in_proj_bias[: config.hidden_size] lowercase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : Any = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Any = get_dpt_config(lowercase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase__ : str = torch.load(lowercase__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowercase__ ) # rename keys for key in state_dict.copy().keys(): lowercase__ : Any = state_dict.pop(lowercase__ ) lowercase__ : str = val # read in qkv matrices read_in_q_k_v(lowercase__ , lowercase__ ) # load HuggingFace model lowercase__ : List[Any] = DPTForSemanticSegmentation(lowercase__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # Check outputs on an image lowercase__ : Optional[int] = 4_80 if 'ade' in checkpoint_url else 3_84 lowercase__ : Union[str, Any] = DPTImageProcessor(size=lowercase__ ) lowercase__ : Optional[int] = prepare_img() lowercase__ : str = image_processor(lowercase__ , return_tensors='''pt''' ) # forward pass lowercase__ : Tuple = model(**lowercase__ ).logits if 'ade' in checkpoint_url else model(**lowercase__ ).predicted_depth if show_prediction: lowercase__ : Optional[int] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=lowercase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) lowerCAmelCase_ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : Tuple = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ : Optional[Any] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_snake_case ) ,torch_builtin(_snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(_snake_case ) ,gelu_new(_snake_case ) ) ) def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase__ : Optional[Any] = get_activation('''gelu''' ) lowercase__ : List[Any] = get_activation('''gelu_10''' ) lowercase__ : List[str] = torch_builtin(_snake_case ) lowercase__ : List[str] = geluaa(_snake_case ) lowercase__ : Optional[Any] = torch.where(y_gelu_aa < 10.0 ,1 ,0 ) self.assertTrue(torch.max(_snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask ,y_gelu_aa * clipped_mask ) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_snake_case ): get_activation('''bogus''' ) with self.assertRaises(_snake_case ): get_activation(_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ : Dict = get_activation('''gelu''' ) lowercase__ : Optional[Any] = 1 lowercase__ : str = get_activation('''gelu''' ) self.assertEqual(acta.a ,1 ) with self.assertRaises(_snake_case ): lowercase__ : Tuple = acta.a
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
364
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
0
"""simple docstring""" import datasets from .evaluate import evaluate lowerCAmelCase_ = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' lowerCAmelCase_ = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' lowerCAmelCase_ = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) ,codebase_urls=['''https://www.atticusprojectai.org/cuad'''] ,reference_urls=['''https://www.atticusprojectai.org/cuad'''] ,) def UpperCAmelCase ( self : Any ,_snake_case : Optional[Any] ,_snake_case : int ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowercase__ : Dict = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowercase__ : Union[str, Any] = evaluate(dataset=_a ,predictions=_a ) return score
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase : Dict = ["image_processor", "tokenizer"] lowerCAmelCase : List[str] = "FlavaImageProcessor" lowerCAmelCase : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self : str ,_snake_case : Tuple=None ,_snake_case : Dict=None ,**_snake_case : int ) -> Tuple: """simple docstring""" lowercase__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,__UpperCAmelCase ,) lowercase__ : List[Any] = kwargs.pop('''feature_extractor''' ) lowercase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase ,__UpperCAmelCase ) lowercase__ : Dict = self.image_processor def __call__( self : Optional[int] ,_snake_case : str = None ,_snake_case : List[str] = None ,_snake_case : int = True ,_snake_case : Optional[int] = False ,_snake_case : str = False ,_snake_case : List[str] = None ,_snake_case : str = 0 ,_snake_case : str = None ,_snake_case : Tuple = None ,_snake_case : Any = None ,_snake_case : Dict = None ,_snake_case : Any = None ,_snake_case : List[Any] = False ,_snake_case : Any = False ,_snake_case : List[Any] = False ,_snake_case : Tuple = False ,_snake_case : Any = True ,_snake_case : int = None ,**_snake_case : Tuple ,) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : Optional[Any] = self.tokenizer( text=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,padding=__UpperCAmelCase ,truncation=__UpperCAmelCase ,max_length=__UpperCAmelCase ,stride=__UpperCAmelCase ,pad_to_multiple_of=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,return_overflowing_tokens=__UpperCAmelCase ,return_special_tokens_mask=__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,return_length=__UpperCAmelCase ,verbose=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,**__UpperCAmelCase ,) if images is not None: lowercase__ : List[Any] = self.image_processor( __UpperCAmelCase ,return_image_mask=__UpperCAmelCase ,return_codebook_pixels=__UpperCAmelCase ,return_tensors=__UpperCAmelCase ,**__UpperCAmelCase ,) if text is not None and images is not None: encoding.update(__UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) ,tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self : str ,*_snake_case : Dict ,**_snake_case : Union[str, Any] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ,*_snake_case : int ,**_snake_case : Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase ,**__UpperCAmelCase ) @property def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = self.tokenizer.model_input_names lowercase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,__UpperCAmelCase ,) return self.image_processor_class @property def UpperCAmelCase ( self : int ) -> int: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,__UpperCAmelCase ,) return self.image_processor
366
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
0
from __future__ import annotations class __A : '''simple docstring''' def __init__( self : Tuple ,_snake_case : list[list[int]] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(lowerCAmelCase__ ) != 0: lowercase__ : List[Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ ,(int, float) ): raise error lowercase__ : int = rows else: lowercase__ : List[str] = [] def UpperCAmelCase ( self : Tuple ) -> list[list[int]]: """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.rows ) @property def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" return len(self.rows[0] ) @property def UpperCAmelCase ( self : Optional[int] ) -> tuple[int, int]: """simple docstring""" return (self.num_rows, self.num_columns) @property def UpperCAmelCase ( self : Optional[int] ) -> bool: """simple docstring""" return self.order[0] == self.order[1] def UpperCAmelCase ( self : Union[str, Any] ) -> Matrix: """simple docstring""" lowercase__ : Any = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCAmelCase ( self : Tuple ) -> bool: """simple docstring""" return bool(self.determinant() ) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : int ) -> int: """simple docstring""" lowercase__ : Dict = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : int ) -> int: """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ ,lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase ( self : Any ) -> Matrix: """simple docstring""" return Matrix( [ [self.get_minor(lowerCAmelCase__ ,lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCAmelCase ( self : Union[str, Any] ) -> Matrix: """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCAmelCase ( self : str ) -> Matrix: """simple docstring""" lowercase__ : Union[str, Any] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def UpperCAmelCase ( self : Optional[int] ) -> Matrix: """simple docstring""" lowercase__ : Union[str, Any] = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self : Tuple ) -> str: """simple docstring""" return str(self.rows ) def __str__( self : Tuple ) -> str: """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(lowerCAmelCase__ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def UpperCAmelCase ( self : List[Any] ,_snake_case : list[int] ,_snake_case : int | None = None ) -> None: """simple docstring""" lowercase__ : Dict = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ ,(int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(lowerCAmelCase__ ) else: lowercase__ : List[Any] = self.rows[0:position] + [row] + self.rows[position:] def UpperCAmelCase ( self : List[str] ,_snake_case : list[int] ,_snake_case : int | None = None ) -> None: """simple docstring""" lowercase__ : Union[str, Any] = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ ,(int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: lowercase__ : int = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowercase__ : Any = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : List[Any] ,_snake_case : object ) -> bool: """simple docstring""" if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self : List[str] ,_snake_case : object ) -> bool: """simple docstring""" return not self == other def __neg__( self : Dict ) -> Matrix: """simple docstring""" return self * -1 def __add__( self : List[Any] ,_snake_case : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Tuple ,_snake_case : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Optional[Any] ,_snake_case : Matrix | int | float ) -> Matrix: """simple docstring""" if isinstance(lowerCAmelCase__ ,(int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ ,lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self : List[Any] ,_snake_case : int ) -> Matrix: """simple docstring""" if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) lowercase__ : List[Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCAmelCase ( cls : Dict ,_snake_case : list[int] ,_snake_case : list[int] ) -> int: """simple docstring""" return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase__ ( _UpperCamelCase ): '''simple docstring''' lowerCAmelCase : int = 'realm' def __init__( self : Tuple ,_snake_case : List[str]=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : str=128 ,_snake_case : Any=12 ,_snake_case : Dict=12 ,_snake_case : Tuple=8 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu_new" ,_snake_case : List[Any]=0.1 ,_snake_case : Optional[Any]=0.1 ,_snake_case : Dict=512 ,_snake_case : str=2 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Tuple=1e-12 ,_snake_case : Any=256 ,_snake_case : List[str]=10 ,_snake_case : int=1e-3 ,_snake_case : Tuple=5 ,_snake_case : List[Any]=320 ,_snake_case : List[str]=13_353_718 ,_snake_case : Optional[Any]=5_000 ,_snake_case : int=1 ,_snake_case : int=0 ,_snake_case : Union[str, Any]=2 ,**_snake_case : Optional[Any] ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) # Common config lowercase__ : Any = vocab_size lowercase__ : Tuple = max_position_embeddings lowercase__ : Optional[int] = hidden_size lowercase__ : Dict = retriever_proj_size lowercase__ : str = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : List[str] = num_candidates lowercase__ : Optional[int] = intermediate_size lowercase__ : int = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : str = initializer_range lowercase__ : str = type_vocab_size lowercase__ : Union[str, Any] = layer_norm_eps # Reader config lowercase__ : Any = span_hidden_size lowercase__ : int = max_span_width lowercase__ : Tuple = reader_layer_norm_eps lowercase__ : Union[str, Any] = reader_beam_size lowercase__ : str = reader_seq_len # Retrieval config lowercase__ : List[Any] = num_block_records lowercase__ : Optional[Any] = searcher_beam_size
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase_ = 256_047 lowerCAmelCase_ = 256_145 @require_sentencepiece @require_tokenizers class __A ( a__ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = NllbTokenizer lowerCAmelCase : Tuple = NllbTokenizerFast lowerCAmelCase : Any = True lowerCAmelCase : Optional[int] = True lowerCAmelCase : Any = {} def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ : List[Any] = NllbTokenizer(_lowerCamelCase ,keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : int = NllbTokenizer(_lowerCamelCase ,keep_accents=_lowerCamelCase ) lowercase__ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) lowercase__ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowercase__ : Any = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowercase__ : int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Any = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) lowercase__ : List[str] = self.tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) lowercase__ : Optional[Any] = tempfile.mkdtemp() lowercase__ : Any = tokenizer_r.save_pretrained(_lowerCamelCase ) lowercase__ : List[str] = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowercase__ : int = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCamelCase ,_lowerCamelCase ) # Checks everything loads correctly in the same way lowercase__ : Tuple = tokenizer_r.from_pretrained(_lowerCamelCase ) lowercase__ : List[Any] = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase ,_lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True lowercase__ : List[Any] = tempfile.mkdtemp() lowercase__ : Optional[Any] = tokenizer_r.save_pretrained(_lowerCamelCase ,legacy_format=_lowerCamelCase ) lowercase__ : Dict = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase ,_lowerCamelCase ) # Checks everything loads correctly in the same way lowercase__ : List[Any] = tokenizer_r.from_pretrained(_lowerCamelCase ) lowercase__ : Optional[Any] = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase ,_lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False lowercase__ : Dict = tempfile.mkdtemp() lowercase__ : List[Any] = tokenizer_r.save_pretrained(_lowerCamelCase ,legacy_format=_lowerCamelCase ) lowercase__ : Dict = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase__ : Any = tokenizer_r.from_pretrained(_lowerCamelCase ) lowercase__ : int = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase ,_lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @require_torch def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" if not self.test_seqaseq: return lowercase__ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. lowercase__ : Dict = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowercase__ : Optional[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowercase__ : Optional[Any] = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCamelCase ,tgt_texts=_lowerCamelCase ,max_length=3 ,max_target_length=10 ,return_tensors='''pt''' ,src_lang='''eng_Latn''' ,tgt_lang='''ron_Latn''' ,) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,10 ) # max_target_length will default to max_length if not specified lowercase__ : List[str] = tokenizer.prepare_seqaseq_batch( _lowerCamelCase ,tgt_texts=_lowerCamelCase ,max_length=3 ,return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,3 ) lowercase__ : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCamelCase ,max_length=3 ,max_target_length=10 ,return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 ) self.assertNotIn('''decoder_input_ids''' ,_lowerCamelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" pass def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[Any] = [AddedToken('''<special>''' ,lstrip=_lowerCamelCase )] lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ) lowercase__ : int = tokenizer_r.encode('''Hey this is a <special> token''' ) lowercase__ : Tuple = tokenizer_r.encode('''<special>''' ,add_special_tokens=_lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ,) lowercase__ : int = self.tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ) lowercase__ : Union[str, Any] = tokenizer_p.encode('''Hey this is a <special> token''' ) lowercase__ : Optional[Any] = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = 'facebook/nllb-200-distilled-600M' lowerCAmelCase : List[str] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase : int = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase : Dict = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def UpperCAmelCase ( cls : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''eng_Latn''' ,tgt_lang='''ron_Latn''' ) lowercase__ : str = 1 return cls def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] ,256_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] ,256_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] ,256_057 ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,_lowerCamelCase ) def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" self.assertIn(_lowerCamelCase ,self.tokenizer.all_special_ids ) # fmt: off lowercase__ : Optional[int] = [RO_CODE, 4_254, 98_068, 112_923, 39_072, 3_909, 713, 102_767, 26, 17_314, 35_642, 14_683, 33_118, 2_022, 66_987, 2, 256_047] # fmt: on lowercase__ : List[str] = self.tokenizer.decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) lowercase__ : List[Any] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token ,_lowerCamelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ : Any = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] ,_lowerCamelCase ) lowercase__ : Tuple = 10 lowercase__ : Any = self.tokenizer(_lowerCamelCase ,max_length=_lowerCamelCase ,truncation=_lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1] ,2 ) self.assertEqual(ids[0] ,_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,_lowerCamelCase ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) ,[256_203, 3] ) def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : Optional[Any] = tempfile.mkdtemp() lowercase__ : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ : Any = NllbTokenizer.from_pretrained(_lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,_lowerCamelCase ) @require_torch def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors='''pt''' ,) lowercase__ : List[Any] = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 15) ,batch.input_ids.shape ) self.assertEqual((2, 15) ,batch.attention_mask.shape ) lowercase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.tokenizer(self.src_text ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=3 ,return_tensors='''pt''' ) lowercase__ : int = self.tokenizer( text_target=self.tgt_text ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=10 ,return_tensors='''pt''' ) lowercase__ : Union[str, Any] = targets['''input_ids'''] lowercase__ : Union[str, Any] = shift_tokens_right( _lowerCamelCase ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : int = self.tokenizer._build_translation_inputs( '''A test''' ,return_tensors='''pt''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) ,{ # A, test, EOS, en_XX '''input_ids''': [[256_047, 70, 7_356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 256_057, } ,) @require_torch def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ : Dict = True lowercase__ : List[Any] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids ,[16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2, 256_047] ) lowercase__ : Any = False lowercase__ : List[Any] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids ,[256_047, 16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2] )
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( __UpperCamelCase ): '''simple docstring''' lowerCAmelCase : Tuple = VOCAB_FILES_NAMES lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : str = ["input_ids", "attention_mask"] def __init__( self : str ,_snake_case : Tuple ,_snake_case : Optional[int]="<s>" ,_snake_case : int="</s>" ,_snake_case : Any="</s>" ,_snake_case : str="<s>" ,_snake_case : List[Any]="<unk>" ,_snake_case : Union[str, Any]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : Dict ,) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Dict = 7 lowercase__ : List[Any] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : int = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowercase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowercase__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase__ : Optional[int] = len(self.sp_model ) lowercase__ : Optional[Any] = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCAmelCase ) lowercase__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ) -> int: """simple docstring""" lowercase__ : int = self.__dict__.copy() lowercase__ : List[Any] = None lowercase__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Optional[int] = {} lowercase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> Optional[Any]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> str: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> Optional[Any]: """simple docstring""" lowercase__ : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : Tuple = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[Any]: """simple docstring""" return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Dict = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : str ,_snake_case : Tuple ) -> Dict: """simple docstring""" lowercase__ : str = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> int: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( _lowerCAmelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
370
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = "▁" lowerCAmelCase_ = {"vocab_file": "sentencepiece.bpe.model"} lowerCAmelCase_ = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } lowerCAmelCase_ = { "facebook/xglm-564M": 2_048, } class __A ( _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : List[str] = VOCAB_FILES_NAMES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self : str ,_snake_case : Optional[int] ,_snake_case : List[Any]="<s>" ,_snake_case : Tuple="</s>" ,_snake_case : List[Any]="</s>" ,_snake_case : List[Any]="<s>" ,_snake_case : Tuple="<unk>" ,_snake_case : Any="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : Union[str, Any] ,) -> Any: """simple docstring""" lowercase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : List[str] = 7 lowercase__ : Union[str, Any] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Optional[Any] = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,cls_token=lowercase_ ,pad_token=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase_ ,) lowercase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : int = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase__ : Dict = len(self.sp_model ) lowercase__ : Dict = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowercase_ ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[int] ) -> str: """simple docstring""" lowercase__ : Optional[Any] = self.__dict__.copy() lowercase__ : int = None lowercase__ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Union[str, Any] = {} lowercase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> Tuple: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Tuple ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ ,token_ids_a=lowercase_ ,already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" lowercase__ : str = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> Optional[int]: """simple docstring""" return self.sp_model.encode(lowercase_ ,out_type=lowercase_ ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : int = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = """""".join(lowercase_ ).replace(lowercase_ ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Any: """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Optional[int] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ ,'''wb''' ) as fi: lowercase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : int = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) lowercase__ : Tuple = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : str = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' lowercase__ : List[str] = corpus_without_punctuation.split('''\n''' ) lowercase__ : List[str] = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: return round(tf * idf , 3 )
350
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCAmelCase_ = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' lowerCAmelCase_ = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' lowerCAmelCase_ = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: return float((preds == labels).mean() ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Tuple = simple_accuracy(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[str] = float(fa_score(y_true=__lowerCamelCase , y_pred=__lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : int = np.array(__lowerCamelCase ) lowercase__ : List[Any] = np.array(__lowerCamelCase ) lowercase__ : Optional[Any] = en_sentvecs.shape[0] # mean centering lowercase__ : Optional[int] = en_sentvecs - np.mean(__lowerCamelCase , axis=0 ) lowercase__ : int = in_sentvecs - np.mean(__lowerCamelCase , axis=0 ) lowercase__ : List[str] = cdist(__lowerCamelCase , __lowerCamelCase , '''cosine''' ) lowercase__ : Any = np.array(range(__lowerCamelCase ) ) lowercase__ : Dict = sim.argsort(axis=1 )[:, :10] lowercase__ : Any = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", ''' '''\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", ''' '''\"wiki-ner\"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Any ,_snake_case : int ) -> Dict: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowercase_ ,lowercase_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowercase_ ,lowercase_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowercase_ ,lowercase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", ''' '''\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", ''' '''\"wiki-ner\"]''' )
351
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __UpperCAmelCase ( ) -> Dict: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase__ : int = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __UpperCAmelCase ( ) -> Optional[int]: assert _test_patching.open is open lowercase__ : str = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __UpperCAmelCase ( ) -> List[str]: lowercase__ : Tuple = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _snake_case ): pass def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : Union[str, Any] = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _snake_case ) is None with patch_submodule(_test_patching , '''len''' , _snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : Optional[Any] = '''__test_patch_submodule_start_and_stop_mock__''' lowercase__ : Optional[int] = patch_submodule(_test_patching , '''open''' , _snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __UpperCAmelCase ( ) -> Any: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase__ : Dict = '''__test_patch_submodule_successive_join__''' lowercase__ : Optional[Any] = '''__test_patch_submodule_successive_dirname__''' lowercase__ : Dict = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): with patch_submodule(_test_patching , '''os.rename''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , _snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , _snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __UpperCAmelCase ( ) -> Optional[Any]: lowercase__ : str = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _snake_case ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _snake_case ): pass
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Tuple ,_snake_case : Optional[Any]=0.0 ,_snake_case : Dict = None ,_snake_case : int = "geglu" ,_snake_case : List[Any] = None ,_snake_case : Optional[int] = False ,_snake_case : Tuple = False ,_snake_case : str = False ,_snake_case : Optional[Any] = False ,_snake_case : List[str] = True ,_snake_case : List[str] = "layer_norm" ,_snake_case : Optional[int] = False ,) -> str: """simple docstring""" super().__init__() lowercase__ : Optional[int] = only_cross_attention lowercase__ : Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' lowercase__ : List[str] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowercase__ : List[Any] = AdaLayerNorm(snake_case__ ,snake_case__ ) elif self.use_ada_layer_norm_zero: lowercase__ : List[Any] = AdaLayerNormZero(snake_case__ ,snake_case__ ) else: lowercase__ : Optional[int] = nn.LayerNorm(snake_case__ ,elementwise_affine=snake_case__ ) lowercase__ : Optional[Any] = Attention( query_dim=snake_case__ ,heads=snake_case__ ,dim_head=snake_case__ ,dropout=snake_case__ ,bias=snake_case__ ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=snake_case__ ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowercase__ : Optional[Any] = ( AdaLayerNorm(snake_case__ ,snake_case__ ) if self.use_ada_layer_norm else nn.LayerNorm(snake_case__ ,elementwise_affine=snake_case__ ) ) lowercase__ : List[Any] = Attention( query_dim=snake_case__ ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=snake_case__ ,dim_head=snake_case__ ,dropout=snake_case__ ,bias=snake_case__ ,upcast_attention=snake_case__ ,) # is self-attn if encoder_hidden_states is none else: lowercase__ : Union[str, Any] = None lowercase__ : int = None # 3. Feed-forward lowercase__ : Optional[int] = nn.LayerNorm(snake_case__ ,elementwise_affine=snake_case__ ) lowercase__ : Union[str, Any] = FeedForward(snake_case__ ,dropout=snake_case__ ,activation_fn=snake_case__ ,final_dropout=snake_case__ ) # let chunk size default to None lowercase__ : Optional[int] = None lowercase__ : Union[str, Any] = 0 def UpperCAmelCase ( self : Tuple ,_snake_case : List[str] ,_snake_case : List[str] ) -> str: """simple docstring""" lowercase__ : Optional[int] = chunk_size lowercase__ : Tuple = dim def UpperCAmelCase ( self : int ,_snake_case : Optional[Any] ,_snake_case : str = None ,_snake_case : Optional[Any] = None ,_snake_case : List[Any] = None ,_snake_case : List[str] = None ,_snake_case : List[str] = None ,_snake_case : Union[str, Any] = None ,) -> Optional[Any]: """simple docstring""" if self.use_ada_layer_norm: lowercase__ : Union[str, Any] = self.norma(snake_case__ ,snake_case__ ) elif self.use_ada_layer_norm_zero: lowercase__ : str = self.norma( snake_case__ ,snake_case__ ,snake_case__ ,hidden_dtype=hidden_states.dtype ) else: lowercase__ : Union[str, Any] = self.norma(snake_case__ ) lowercase__ : str = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowercase__ : Union[str, Any] = self.attna( snake_case__ ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=snake_case__ ,**snake_case__ ,) if self.use_ada_layer_norm_zero: lowercase__ : int = gate_msa.unsqueeze(1 ) * attn_output lowercase__ : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowercase__ : List[str] = ( self.norma(snake_case__ ,snake_case__ ) if self.use_ada_layer_norm else self.norma(snake_case__ ) ) lowercase__ : Optional[int] = self.attna( snake_case__ ,encoder_hidden_states=snake_case__ ,attention_mask=snake_case__ ,**snake_case__ ,) lowercase__ : Optional[int] = attn_output + hidden_states # 3. Feed-forward lowercase__ : Optional[Any] = self.norma(snake_case__ ) if self.use_ada_layer_norm_zero: lowercase__ : Any = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) lowercase__ : Optional[int] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowercase__ : str = torch.cat( [self.ff(snake_case__ ) for hid_slice in norm_hidden_states.chunk(snake_case__ ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: lowercase__ : Tuple = self.ff(snake_case__ ) if self.use_ada_layer_norm_zero: lowercase__ : int = gate_mlp.unsqueeze(1 ) * ff_output lowercase__ : Dict = ff_output + hidden_states return hidden_states class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : List[str] = None ,_snake_case : Optional[Any] = 4 ,_snake_case : Union[str, Any] = 0.0 ,_snake_case : Any = "geglu" ,_snake_case : Union[str, Any] = False ,) -> int: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = int(dim * mult ) lowercase__ : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowercase__ : Tuple = GELU(snake_case__ ,snake_case__ ) if activation_fn == "gelu-approximate": lowercase__ : Any = GELU(snake_case__ ,snake_case__ ,approximate='''tanh''' ) elif activation_fn == "geglu": lowercase__ : Tuple = GEGLU(snake_case__ ,snake_case__ ) elif activation_fn == "geglu-approximate": lowercase__ : Any = ApproximateGELU(snake_case__ ,snake_case__ ) lowercase__ : Union[str, Any] = nn.ModuleList([] ) # project in self.net.append(snake_case__ ) # project dropout self.net.append(nn.Dropout(snake_case__ ) ) # project out self.net.append(nn.Linear(snake_case__ ,snake_case__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(snake_case__ ) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : int ) -> Optional[Any]: """simple docstring""" for module in self.net: lowercase__ : List[Any] = module(snake_case__ ) return hidden_states class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : str ,_snake_case : Any ,_snake_case : int = "none" ) -> Tuple: """simple docstring""" super().__init__() lowercase__ : str = nn.Linear(snake_case__ ,snake_case__ ) lowercase__ : List[Any] = approximate def UpperCAmelCase ( self : List[str] ,_snake_case : int ) -> Dict: """simple docstring""" if gate.device.type != "mps": return F.gelu(snake_case__ ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[int] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = self.proj(snake_case__ ) lowercase__ : str = self.gelu(snake_case__ ) return hidden_states class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : List[str] ,_snake_case : Dict ) -> int: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Linear(snake_case__ ,dim_out * 2 ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : int ) -> Any: """simple docstring""" if gate.device.type != "mps": return F.gelu(snake_case__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase ( self : List[str] ,_snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = self.proj(snake_case__ ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(snake_case__ ) class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[str] ,_snake_case : List[str] ) -> Tuple: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Linear(snake_case__ ,snake_case__ ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ) -> int: """simple docstring""" lowercase__ : Dict = self.proj(snake_case__ ) return x * torch.sigmoid(1.702 * x ) class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Optional[int] ,_snake_case : Optional[int] ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = nn.Embedding(snake_case__ ,snake_case__ ) lowercase__ : List[Any] = nn.SiLU() lowercase__ : Optional[int] = nn.Linear(snake_case__ ,embedding_dim * 2 ) lowercase__ : Optional[int] = nn.LayerNorm(snake_case__ ,elementwise_affine=snake_case__ ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ,_snake_case : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.linear(self.silu(self.emb(snake_case__ ) ) ) lowercase__ : List[Any] = torch.chunk(snake_case__ ,2 ) lowercase__ : Optional[Any] = self.norm(snake_case__ ) * (1 + scale) + shift return x class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : Any ,_snake_case : Dict ) -> Any: """simple docstring""" super().__init__() lowercase__ : Union[str, Any] = CombinedTimestepLabelEmbeddings(snake_case__ ,snake_case__ ) lowercase__ : Dict = nn.SiLU() lowercase__ : Tuple = nn.Linear(snake_case__ ,6 * embedding_dim ,bias=snake_case__ ) lowercase__ : Optional[Any] = nn.LayerNorm(snake_case__ ,elementwise_affine=snake_case__ ,eps=1e-6 ) def UpperCAmelCase ( self : Tuple ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : Dict ,_snake_case : List[str]=None ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.linear(self.silu(self.emb(snake_case__ ,snake_case__ ,hidden_dtype=snake_case__ ) ) ) lowercase__ : Any = emb.chunk(6 ,dim=1 ) lowercase__ : Any = self.norm(snake_case__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[str] ,_snake_case : Union[str, Any] ,_snake_case : Any ,_snake_case : Any = None ,_snake_case : Dict = 1e-5 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : Dict = num_groups lowercase__ : Dict = eps if act_fn is None: lowercase__ : Union[str, Any] = None else: lowercase__ : List[Any] = get_activation(snake_case__ ) lowercase__ : int = nn.Linear(snake_case__ ,out_dim * 2 ) def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" if self.act: lowercase__ : List[Any] = self.act(snake_case__ ) lowercase__ : Optional[int] = self.linear(snake_case__ ) lowercase__ : str = emb[:, :, None, None] lowercase__ : Any = emb.chunk(2 ,dim=1 ) lowercase__ : int = F.group_norm(snake_case__ ,self.num_groups ,eps=self.eps ) lowercase__ : List[Any] = x * (1 + scale) + shift return x
353
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
0
"""simple docstring""" import torch def __UpperCAmelCase ( ) -> str: if torch.cuda.is_available(): lowercase__ : Optional[int] = torch.cuda.device_count() else: lowercase__ : Any = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
354
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Dict ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : Tuple ,_snake_case : List[Any] = None ,_snake_case : List[Any] = None ,_snake_case : Optional[Any] = None ,_snake_case : Tuple = None ,_snake_case : int = False ,_snake_case : Dict = True ,) -> int: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.nets ) ): lowercase__ : str = controlnet( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) # merge samples if i == 0: lowercase__ : List[str] = down_samples, mid_sample else: lowercase__ : int = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase ( self : int ,_snake_case : List[str] ,_snake_case : Any = True ,_snake_case : Optional[int] = None ,_snake_case : List[Any] = False ,_snake_case : Any = None ,) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = 0 lowercase__ : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE_ ,is_main_process=SCREAMING_SNAKE_CASE_ ,save_function=SCREAMING_SNAKE_CASE_ ,safe_serialization=SCREAMING_SNAKE_CASE_ ,variant=SCREAMING_SNAKE_CASE_ ,) idx += 1 lowercase__ : str = model_path_to_save + f"""_{idx}""" @classmethod def UpperCAmelCase ( cls : Optional[Any] ,_snake_case : Dict ,**_snake_case : Any ) -> Any: """simple docstring""" lowercase__ : Dict = 0 lowercase__ : Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowercase__ : Tuple = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE_ ): lowercase__ : Any = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) controlnets.append(SCREAMING_SNAKE_CASE_ ) idx += 1 lowercase__ : Tuple = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(SCREAMING_SNAKE_CASE_ )} controlnets loaded from {pretrained_model_path}.""" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE_ )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(SCREAMING_SNAKE_CASE_ )
355
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) class __A ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : int ,_snake_case : int ,_snake_case : float ,**_snake_case : int ) -> int: """simple docstring""" lowercase__ : List[Any] = feature_size lowercase__ : Dict = sampling_rate lowercase__ : str = padding_value lowercase__ : Optional[Any] = kwargs.pop('''padding_side''' ,'''right''' ) lowercase__ : Any = kwargs.pop('''return_attention_mask''' ,_snake_case ) super().__init__(**_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] ,_snake_case : Union[bool, str, PaddingStrategy] = True ,_snake_case : Optional[int] = None ,_snake_case : bool = False ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,) -> Union[str, Any]: """simple docstring""" if isinstance(_snake_case ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): lowercase__ : List[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) lowercase__ : List[Any] = processed_features[self.model_input_names[0]] lowercase__ : Union[str, Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_snake_case ) == 0: if return_attention_mask: lowercase__ : Any = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase__ : Dict = required_input[0] if isinstance(_snake_case ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase__ : str = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_snake_case ): lowercase__ : Union[str, Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(_snake_case ): lowercase__ : List[str] = """tf""" elif is_torch_tensor(_snake_case ): lowercase__ : Tuple = """pt""" elif isinstance(_snake_case ,(int, float, list, tuple, np.ndarray) ): lowercase__ : Optional[Any] = """np""" else: raise ValueError( f"""type of {first_element} unknown: {type(_snake_case )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): lowercase__ : Union[str, Any] = to_numpy(_snake_case ) else: lowercase__ : Union[str, Any] = [to_numpy(_snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase__ : str = self._get_padding_strategies(padding=_snake_case ,max_length=_snake_case ) lowercase__ : str = processed_features[self.model_input_names[0]] lowercase__ : List[Any] = len(_snake_case ) if not all(len(_snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) lowercase__ : int = [] for i in range(_snake_case ): lowercase__ : Any = {k: v[i] for k, v in processed_features.items()} # truncation lowercase__ : str = self._truncate( _snake_case ,max_length=_snake_case ,pad_to_multiple_of=_snake_case ,truncation=_snake_case ,) truncated_inputs.append(_snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase__ : Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase__ : str = PaddingStrategy.MAX_LENGTH lowercase__ : Optional[int] = {} for i in range(_snake_case ): # padding lowercase__ : List[Any] = self._pad( truncated_inputs[i] ,max_length=_snake_case ,padding_strategy=_snake_case ,pad_to_multiple_of=_snake_case ,return_attention_mask=_snake_case ,) for key, value in outputs.items(): if key not in batch_outputs: lowercase__ : List[Any] = [] if value.dtype is np.dtype(np.floataa ): lowercase__ : List[str] = value.astype(np.floataa ) batch_outputs[key].append(_snake_case ) return BatchFeature(_snake_case ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : Union[Dict[str, np.ndarray], BatchFeature] ,_snake_case : Optional[int] = None ,_snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,) -> List[Any]: """simple docstring""" lowercase__ : Any = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase__ : Optional[int] = len(_snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ : Tuple = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase__ : List[str] = np.ones(len(_snake_case ) ,dtype=np.intaa ) if needs_to_be_padded: lowercase__ : Optional[int] = max_length - len(_snake_case ) if self.padding_side == "right": if return_attention_mask: lowercase__ : List[str] = np.pad( processed_features['''attention_mask'''] ,(0, difference) ) lowercase__ : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase__ : Any = np.pad( _snake_case ,_snake_case ,'''constant''' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase__ : Dict = np.pad( processed_features['''attention_mask'''] ,(difference, 0) ) lowercase__ : Union[str, Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase__ : Dict = np.pad( _snake_case ,_snake_case ,'''constant''' ,constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[Dict[str, np.ndarray], BatchFeature] ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,) -> Any: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) lowercase__ : Any = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ : Optional[Any] = len(_snake_case ) > max_length if needs_to_be_truncated: lowercase__ : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase__ : Optional[Any] = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str=False ,_snake_case : str=None ) -> List[str]: """simple docstring""" if padding is not False: if padding is True: lowercase__ : str = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = PaddingStrategy(_snake_case ) elif isinstance(_snake_case ,_snake_case ): lowercase__ : str = padding else: lowercase__ : Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
356
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> List[Any]: with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowercase__ : str = [1, 2, 3] with pytest.raises(A__ ): with parallel_backend('''unsupported backend''' ): map_nested(A__ , A__ , num_proc=2 ) with pytest.raises(A__ ): with parallel_backend('''unsupported backend''' ): map_nested(A__ , A__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[str] = [1, 2] lowercase__ : Optional[int] = {'''a''': 1, '''b''': 2} lowercase__ : List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowercase__ : Any = {'''a''': {'''1''': 1}, '''b''': 2} lowercase__ : Union[str, Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase__ : Optional[Any] = [2, 3] lowercase__ : Any = {'''a''': 2, '''b''': 3} lowercase__ : int = {'''a''': [2, 3], '''b''': [4, 5]} lowercase__ : Dict = {'''a''': {'''1''': 2}, '''b''': 3} lowercase__ : str = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
357
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ConvNextFeatureExtractor'] lowerCAmelCase_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
358
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : List[Any] ,*_snake_case : Optional[Any] ,**_snake_case : Tuple ) -> int: """simple docstring""" warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' ,a_ ,) super().__init__(*a_ ,**a_ )
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
0
"""simple docstring""" import numpy as np from PIL import Image def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: lowercase__ : Tuple = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowercase__ : Dict = 0 lowercase__ : int = 0 lowercase__ : Any = 0 lowercase__ : str = 0 # compute the shape of the output matrix lowercase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowercase__ : List[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowercase__ : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase__ : str = 0 lowercase__ : Any = 0 return updated_arr def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: lowercase__ : int = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = 0 lowercase__ : Optional[Any] = 0 lowercase__ : int = 0 # compute the shape of the output matrix lowercase__ : List[str] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowercase__ : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowercase__ : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowercase__ : Dict = 0 lowercase__ : List[str] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase_ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ : Union[str, Any] = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ : int = FlaxStableDiffusionInpaintPipeline.from_pretrained(_snake_case ,safety_checker=_snake_case ) lowercase__ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ : Optional[int] = jax.random.PRNGKey(0 ) lowercase__ : Optional[int] = 50 lowercase__ : Optional[int] = jax.device_count() lowercase__ : int = num_samples * [prompt] lowercase__ : Dict = num_samples * [init_image] lowercase__ : Union[str, Any] = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ : List[str] = pipeline.prepare_inputs(_snake_case ,_snake_case ,_snake_case ) # shard inputs and rng lowercase__ : str = replicate(_snake_case ) lowercase__ : Union[str, Any] = jax.random.split(_snake_case ,jax.device_count() ) lowercase__ : List[Any] = shard(_snake_case ) lowercase__ : Tuple = shard(_snake_case ) lowercase__ : Optional[Any] = shard(_snake_case ) lowercase__ : Union[str, Any] = pipeline( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,jit=_snake_case ) lowercase__ : Optional[Any] = output.images.reshape(_snake_case ,512 ,512 ,3 ) lowercase__ : List[str] = images[0, 253:256, 253:256, -1] lowercase__ : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : str = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
"""simple docstring""" from __future__ import annotations class __A : '''simple docstring''' def __init__( self : List[Any] ,_snake_case : int ) -> Optional[int]: """simple docstring""" lowercase__ : str = data lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCAmelCase ( ) -> Dict: # Main function for testing. lowercase__ : Any = Node(1 ) lowercase__ : Any = Node(2 ) lowercase__ : List[Any] = Node(3 ) lowercase__ : Any = Node(4 ) lowercase__ : Optional[Any] = Node(5 ) lowercase__ : List[str] = Node(6 ) lowercase__ : Any = Node(7 ) lowercase__ : Union[str, Any] = Node(8 ) lowercase__ : Union[str, Any] = Node(9 ) print(is_full_binary_tree(UpperCamelCase__ ) ) print(depth_of_tree(UpperCamelCase__ ) ) print('''Tree is: ''' ) display(UpperCamelCase__ ) if __name__ == "__main__": main()
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class __A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = 'mgp-str' def __init__( self : List[str] ,_snake_case : Dict=[32, 128] ,_snake_case : List[str]=4 ,_snake_case : Union[str, Any]=3 ,_snake_case : Optional[int]=27 ,_snake_case : Union[str, Any]=38 ,_snake_case : int=50_257 ,_snake_case : int=30_522 ,_snake_case : Dict=768 ,_snake_case : Tuple=12 ,_snake_case : List[str]=12 ,_snake_case : Dict=4.0 ,_snake_case : int=True ,_snake_case : Optional[int]=False ,_snake_case : int=1e-5 ,_snake_case : List[str]=0.0 ,_snake_case : str=0.0 ,_snake_case : Dict=0.0 ,_snake_case : List[str]=False ,_snake_case : Dict=0.02 ,**_snake_case : Optional[int] ,) -> int: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = image_size lowercase__ : str = patch_size lowercase__ : List[Any] = num_channels lowercase__ : str = max_token_length lowercase__ : str = num_character_labels lowercase__ : Optional[int] = num_bpe_labels lowercase__ : Union[str, Any] = num_wordpiece_labels lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : str = mlp_ratio lowercase__ : List[Any] = distilled lowercase__ : int = layer_norm_eps lowercase__ : str = drop_rate lowercase__ : Dict = qkv_bias lowercase__ : int = attn_drop_rate lowercase__ : Union[str, Any] = drop_path_rate lowercase__ : Union[str, Any] = output_aa_attentions lowercase__ : Tuple = initializer_range
364
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __A : '''simple docstring''' lowerCAmelCase : Tuple = 4_2 lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = None lowerCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: if root is None: return 0 # Validation def count_nodes(__lowerCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__lowerCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ : Any = get_distrib(node.left ) lowercase__ : str = get_distrib(node.right ) lowercase__ : List[str] = 1 - left_distrib_excess lowercase__ : Optional[int] = 1 - right_distrib_excess lowercase__ : Union[str, Any] = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) lowercase__ : List[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase , _UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase__ : Tuple = '''''' lowercase__ : int = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase__ , lowercase__ : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase__ : str = [1 for i in range(len(SCREAMING_SNAKE_CASE_ ) )] # for each character in new_string find corresponding palindromic string lowercase__ : Any = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : List[str] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase__ : Tuple = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase__ : Union[str, Any] = j - k + 1 # noqa: E741 lowercase__ : List[str] = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase__ : int = length[j] lowercase__ : Any = j # create that string lowercase__ : int = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
0
def __UpperCAmelCase ( __lowerCamelCase ) -> bool: lowercase__ : List[str] = [int(UpperCamelCase__ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(UpperCamelCase__ ) == 4 and all(0 <= int(UpperCamelCase__ ) <= 2_54 for octet in octets ) if __name__ == "__main__": lowerCAmelCase_ = input().strip() lowerCAmelCase_ = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
367
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase_ = 'sshleifer/bart-tiny-random' lowerCAmelCase_ = 'patrickvonplaten/t5-tiny-random' @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" return AutoConfig.from_pretrained(_lowerCamelCase ) def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ , *lowercase__ : str = create_student_by_copying_alternating_layers(_lowerCamelCase ,tempfile.mkdtemp() ,e=1 ,d=1 ) self.assertEqual(student.config.num_hidden_layers ,1 ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ , *lowercase__ : Union[str, Any] = create_student_by_copying_alternating_layers(_lowerCamelCase ,tempfile.mkdtemp() ,e=1 ,d=_lowerCamelCase ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ , *lowercase__ : str = create_student_by_copying_alternating_layers(_lowerCamelCase ,tempfile.mkdtemp() ,e=1 ,d=_lowerCamelCase ) self.assertEqual(student.config.encoder_layers ,1 ) self.assertEqual(student.config.decoder_layers ,self.teacher_config.encoder_layers ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ , *lowercase__ : Tuple = create_student_by_copying_alternating_layers(_lowerCamelCase ,tempfile.mkdtemp() ,e=1 ,d=1 ) self.assertEqual(student.config.encoder_layers ,1 ) self.assertEqual(student.config.decoder_layers ,1 ) def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" with self.assertRaises(_lowerCamelCase ): create_student_by_copying_alternating_layers(_lowerCamelCase ,tempfile.mkdtemp() ,e=_lowerCamelCase ,d=_lowerCamelCase )
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
"""simple docstring""" lowerCAmelCase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __UpperCAmelCase ( __lowerCamelCase ) -> bytes: if not isinstance(_snake_case , _snake_case ): lowercase__ : Any = f"""a bytes-like object is required, not \'{data.__class__.__name__}\'""" raise TypeError(_snake_case ) lowercase__ : List[str] = "".join(bin(_snake_case )[2:].zfill(8 ) for byte in data ) lowercase__ : Any = len(_snake_case ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ : str = B"=" * ((6 - len(_snake_case ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_snake_case ) % 6) else: lowercase__ : Any = B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_snake_case ) , 6 ) ).encode() + padding ) def __UpperCAmelCase ( __lowerCamelCase ) -> bytes: if not isinstance(_snake_case , _snake_case ) and not isinstance(_snake_case , _snake_case ): lowercase__ : str = ( "argument should be a bytes-like object or ASCII string, " f"""not \'{encoded_data.__class__.__name__}\'""" ) raise TypeError(_snake_case ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_snake_case , _snake_case ): try: lowercase__ : List[str] = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) lowercase__ : Dict = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_snake_case ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ : Tuple = encoded_data[:-padding] lowercase__ : Dict = "".join( bin(B64_CHARSET.index(_snake_case ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ : int = "".join( bin(B64_CHARSET.index(_snake_case ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ : int = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_snake_case ) , 8 ) ] return bytes(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> List[str]: with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowercase__ : int = [1, 2, 3] with pytest.raises(__lowerCamelCase ): with parallel_backend('''unsupported backend''' ): map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=2 ) with pytest.raises(__lowerCamelCase ): with parallel_backend('''unsupported backend''' ): map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : List[str] = [1, 2] lowercase__ : str = {"a": 1, "b": 2} lowercase__ : int = {"a": [1, 2], "b": [3, 4]} lowercase__ : Optional[int] = {"a": {"1": 1}, "b": 2} lowercase__ : Optional[int] = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ : List[str] = [2, 3] lowercase__ : Union[str, Any] = {"a": 2, "b": 3} lowercase__ : Tuple = {"a": [2, 3], "b": [4, 5]} lowercase__ : Union[str, Any] = {"a": {"1": 2}, "b": 3} lowercase__ : Optional[int] = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend('''spark''' ): assert map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) == expected_map_nested_sa assert map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) == expected_map_nested_sa assert map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) == expected_map_nested_sa assert map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) == expected_map_nested_sa assert map_nested(__lowerCamelCase , __lowerCamelCase , num_proc=__lowerCamelCase ) == expected_map_nested_sa
370
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
0
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = 50 # max width of layer names lowerCAmelCase_ = 70 # max width of quantizer names def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : str = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=_lowerCAmelCase , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=_lowerCAmelCase , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=_lowerCAmelCase , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=_lowerCAmelCase , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=_lowerCAmelCase , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_lowerCAmelCase , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: if args.calibrator == "max": lowercase__ : int = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) lowercase__ : Union[str, Any] = """histogram""" elif args.calibrator == "mse": lowercase__ : Any = """histogram""" else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) lowercase__ : List[str] = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCAmelCase ) lowercase__ : int = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCAmelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False ) -> Any: logger.info('''Configuring Model for Quantization''' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCAmelCase , ['''embeddings'''] , which='''weight''' , _disabled=_lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCAmelCase , [''''''] , _disabled=_lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCAmelCase , args.quant_disable_keyword , _disabled=_lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [r'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [r'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(_lowerCAmelCase , _lowerCAmelCase ) if args.clip_gelu: clip_gelu(_lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCAmelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> int: logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCAmelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: def fusea(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(_lowerCAmelCase , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return lowercase__ : Dict = qq._amax.detach().item() lowercase__ : Optional[int] = qk._amax.detach().item() lowercase__ : Any = qv._amax.detach().item() lowercase__ : Dict = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) qq._amax.fill_(_lowerCAmelCase ) qk._amax.fill_(_lowerCAmelCase ) qv._amax.fill_(_lowerCAmelCase ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): lowercase__ : Dict = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCAmelCase ) lowercase__ : Optional[int] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: lowercase__ : Any = mod.weight.shape[0] lowercase__ : Optional[int] = mod._weight_quantizer._amax.detach() lowercase__ : Optional[int] = torch.ones(_lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowercase__ : List[Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowercase__ : Optional[int] = set(range(len(mod.weight.size() ) ) ) - axis_set lowercase__ : List[Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCAmelCase , keepdims=_lowerCAmelCase ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) lowercase__ : Any = amax def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=25 , __lowerCamelCase=1_80 , __lowerCamelCase=None ) -> List[Any]: if ignore is None: lowercase__ : Dict = [] elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Optional[Any] = [ignore] lowercase__ : Optional[Any] = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCAmelCase , '''weight''' ): continue lowercase__ : Union[str, Any] = max(_lowerCAmelCase , len(_lowerCAmelCase ) ) for name, mod in model.named_modules(): lowercase__ : str = getattr(_lowerCAmelCase , '''_input_quantizer''' , _lowerCAmelCase ) lowercase__ : List[str] = getattr(_lowerCAmelCase , '''_weight_quantizer''' , _lowerCAmelCase ) if not hasattr(_lowerCAmelCase , '''weight''' ): continue if type(_lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(_lowerCAmelCase ) is str and s in name]: continue lowercase__ : Optional[Any] = f"""Act:{input_q.extra_repr()}""" lowercase__ : str = f"""Wgt:{weight_q.extra_repr()}""" lowercase__ : Tuple = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(_lowerCAmelCase ) <= line_width: logger.info(_lowerCAmelCase ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(_lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(_lowerCAmelCase , _lowerCAmelCase ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: logger.warning(f"""{name} has no {quantizer}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="both" , **__lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[int] = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , '''_input_quantizer''' , _lowerCAmelCase , _lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , '''_weight_quantizer''' , _lowerCAmelCase , _lowerCAmelCase ) logger.info(_lowerCAmelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> Dict: for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , '''_input_quantizer''' ) or hasattr(_lowerCAmelCase , '''_weight_quantizer''' ): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase ): set_quantizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Union[str, Any] = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) logger.info(_lowerCAmelCase )
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[int]: return field(default_factory=lambda: default , metadata=__lowerCAmelCase ) @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] = list_field( default=[] ,metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } ,) lowerCAmelCase : List[int] = list_field( default=[8] ,metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) lowerCAmelCase : List[int] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] ,metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} ,) lowerCAmelCase : bool = field( default=__lowerCamelCase ,metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} ,) lowerCAmelCase : bool = field( default=__lowerCamelCase ,metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} ,) lowerCAmelCase : bool = field( default=__lowerCamelCase ,metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) lowerCAmelCase : bool = field(default=__lowerCamelCase ,metadata={"help": "Use FP16 to accelerate inference."} ) lowerCAmelCase : bool = field(default=__lowerCamelCase ,metadata={"help": "Benchmark training of model"} ) lowerCAmelCase : bool = field(default=__lowerCamelCase ,metadata={"help": "Verbose memory tracing"} ) lowerCAmelCase : bool = field( default=__lowerCamelCase ,metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} ,) lowerCAmelCase : bool = field( default=__lowerCamelCase ,metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } ,) lowerCAmelCase : bool = field(default=__lowerCamelCase ,metadata={"help": "Trace memory line by line"} ) lowerCAmelCase : bool = field(default=__lowerCamelCase ,metadata={"help": "Save result to a CSV file"} ) lowerCAmelCase : bool = field(default=__lowerCamelCase ,metadata={"help": "Save all print statements in a log file"} ) lowerCAmelCase : bool = field(default=__lowerCamelCase ,metadata={"help": "Whether to print environment information"} ) lowerCAmelCase : bool = field( default=__lowerCamelCase ,metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } ,) lowerCAmelCase : str = field( default=F"inference_time_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving time results to csv."} ,) lowerCAmelCase : str = field( default=F"inference_memory_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving memory results to csv."} ,) lowerCAmelCase : str = field( default=F"train_time_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving time results to csv for training."} ,) lowerCAmelCase : str = field( default=F"train_memory_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving memory results to csv for training."} ,) lowerCAmelCase : str = field( default=F"env_info_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving environment information."} ,) lowerCAmelCase : str = field( default=F"log_{round(time() )}.csv" ,metadata={"help": "Log filename used if print statements are saved in log."} ,) lowerCAmelCase : int = field(default=3 ,metadata={"help": "Times an experiment will be run."} ) lowerCAmelCase : bool = field( default=__lowerCamelCase ,metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } ,) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' ,__lowercase ,) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
350
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
0
"""simple docstring""" from manim import * class __A ( __UpperCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : str = Rectangle(height=0.5 ,width=0.5 ) lowercase__ : List[Any] = Rectangle(height=0.25 ,width=0.25 ) lowercase__ : str = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowercase__ : Union[str, Any] = [mem.copy() for i in range(6 )] lowercase__ : List[str] = [mem.copy() for i in range(6 )] lowercase__ : int = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : List[str] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Optional[Any] = VGroup(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : int = Text('''CPU''' ,font_size=24 ) lowercase__ : int = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) lowercase__ : str = [mem.copy() for i in range(4 )] lowercase__ : int = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Any = Text('''GPU''' ,font_size=24 ) lowercase__ : List[str] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) gpu.move_to([-1, -1, 0] ) self.add(_snake_case ) lowercase__ : List[str] = [mem.copy() for i in range(6 )] lowercase__ : Tuple = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : str = Text('''Model''' ,font_size=24 ) lowercase__ : List[Any] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.add(_snake_case ) lowercase__ : List[Any] = [] lowercase__ : Tuple = [] lowercase__ : Dict = [] for i, rect in enumerate(_snake_case ): rect.set_stroke(_snake_case ) lowercase__ : Union[str, Any] = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] ,direction=_snake_case ,buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] ,direction=_snake_case ,buff=0.0 ) self.add(_snake_case ) model_cpu_arr.append(_snake_case ) self.add(*_snake_case ,*_snake_case ,*_snake_case ) lowercase__ : str = [mem.copy() for i in range(6 )] lowercase__ : str = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Dict = Text('''Loaded Checkpoint''' ,font_size=24 ) lowercase__ : str = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(_snake_case ) lowercase__ : List[Any] = [] lowercase__ : List[str] = [] for i, rect in enumerate(_snake_case ): lowercase__ : Union[str, Any] = fill.copy().set_fill(_snake_case ,opacity=0.7 ) target.move_to(_snake_case ) ckpt_arr.append(_snake_case ) lowercase__ : Optional[int] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_snake_case ) self.add(*_snake_case ,*_snake_case ) lowercase__ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : Any = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(_snake_case ,_snake_case ) lowercase__ : Tuple = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,) blue_text.next_to(_snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(_snake_case ) lowercase__ : Tuple = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" ,font_size=24 ,) step_a.move_to([2, 2, 0] ) lowercase__ : str = [meta_mem.copy() for i in range(6 )] lowercase__ : Tuple = [meta_mem.copy() for i in range(6 )] lowercase__ : Tuple = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : int = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Optional[Any] = VGroup(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Tuple = Text('''Disk''' ,font_size=24 ) lowercase__ : Tuple = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_snake_case ,run_time=3 ) ,Write(_snake_case ,run_time=1 ) ,Create(_snake_case ,run_time=1 ) ) lowercase__ : List[Any] = [] for i, rect in enumerate(_snake_case ): lowercase__ : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_snake_case ,run_time=1.5 ) ) self.play(*_snake_case ) self.play(FadeOut(_snake_case ) ) lowercase__ : Dict = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case ,run_time=3 ) ) self.play( FadeOut(_snake_case ,_snake_case ,*_snake_case ,*_snake_case ) ,) self.wait()
351
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( lowerCAmelCase_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = LEDTokenizer lowerCAmelCase : Dict = LEDTokenizerFast lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" super().setUp() lowercase__ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase__ : Any = dict(zip(__SCREAMING_SNAKE_CASE ,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase__ : Tuple = {'''unk_token''': '''<unk>'''} lowercase__ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self : List[Any] ,**_snake_case : Tuple ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : int ,**_snake_case : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ) -> Optional[int]: """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCAmelCase ( self : int ) -> str: """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__ : List[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[Any] = tokenizer(__SCREAMING_SNAKE_CASE ,max_length=len(__SCREAMING_SNAKE_CASE ) ,padding=__SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) lowercase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) @require_torch def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" lowercase__ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : str = tokenizer(__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertIn('''input_ids''' ,__SCREAMING_SNAKE_CASE ) self.assertIn('''attention_mask''' ,__SCREAMING_SNAKE_CASE ) self.assertNotIn('''labels''' ,__SCREAMING_SNAKE_CASE ) self.assertNotIn('''decoder_attention_mask''' ,__SCREAMING_SNAKE_CASE ) @require_torch def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : Any = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[Any] = tokenizer(text_target=__SCREAMING_SNAKE_CASE ,max_length=32 ,padding='''max_length''' ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) @require_torch def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[Any] = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] ,padding=__SCREAMING_SNAKE_CASE ,truncation=__SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape ,(2, 5_122) ) @require_torch def UpperCAmelCase ( self : str ) -> int: """simple docstring""" lowercase__ : Tuple = ['''A long paragraph for summarization.'''] lowercase__ : Tuple = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[str] = tokenizer(__SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) lowercase__ : int = tokenizer(text_target=__SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) lowercase__ : Union[str, Any] = inputs['''input_ids'''] lowercase__ : Tuple = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[str] = ['''Summary of the text.''', '''Another summary.'''] lowercase__ : Tuple = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ : Optional[int] = tokenizer(__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = [[0] * len(__SCREAMING_SNAKE_CASE ) for x in encoded_output['''input_ids''']] lowercase__ : Union[str, Any] = tokenizer.pad(__SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs['''global_attention_mask'''] ,__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = '''A, <mask> AllenNLP sentence.''' lowercase__ : Dict = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,return_token_type_ids=__SCREAMING_SNAKE_CASE ) lowercase__ : Any = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,return_token_type_ids=__SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) ,sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) ,sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) ,) lowercase__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __UpperCAmelCase ( __lowerCamelCase ): lowercase__ : str = model.config lowercase__ : List[str] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) lowercase__ : List[str] = MBartConfig( is_decoder=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , add_cross_attention=lowerCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowerCamelCase__ , add_final_layer_norm=lowerCamelCase__ , ) return encoder_config, decoder_config def __UpperCAmelCase ( __lowerCamelCase ): if "encoder.model" in name: lowercase__ : List[Any] = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: lowercase__ : List[str] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: lowercase__ : int = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: lowercase__ : Union[str, Any] = '''encoder.''' + name if "attn.proj" in name: lowercase__ : int = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: lowercase__ : Union[str, Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ : Dict = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ : Optional[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase__ : Dict = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": lowercase__ : Union[str, Any] = '''encoder.layernorm.bias''' return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowercase__ : List[Any] = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowercase__ : List[str] = key.split('''.''' ) lowercase__ : Any = int(key_split[3] ) lowercase__ : Any = int(key_split[5] ) lowercase__ : List[str] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : Any = val[:dim, :] lowercase__ : Tuple = val[dim : dim * 2, :] lowercase__ : str = val[-dim:, :] else: lowercase__ : Any = val[:dim] lowercase__ : Dict = val[dim : dim * 2] lowercase__ : Union[str, Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ : Any = val return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=False ): # load original model lowercase__ : Union[str, Any] = DonutModel.from_pretrained(lowerCamelCase__ ).eval() # load HuggingFace model lowercase__ , lowercase__ : Tuple = get_configs(lowerCamelCase__ ) lowercase__ : Union[str, Any] = DonutSwinModel(lowerCamelCase__ ) lowercase__ : Any = MBartForCausalLM(lowerCamelCase__ ) lowercase__ : Optional[Any] = VisionEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) model.eval() lowercase__ : Dict = original_model.state_dict() lowercase__ : Union[str, Any] = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify results on scanned document lowercase__ : Optional[Any] = load_dataset('''hf-internal-testing/example-documents''' ) lowercase__ : List[Any] = dataset['''test'''][0]['''image'''].convert('''RGB''' ) lowercase__ : int = XLMRobertaTokenizerFast.from_pretrained(lowerCamelCase__ , from_slow=lowerCamelCase__ ) lowercase__ : Union[str, Any] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ : str = DonutProcessor(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Tuple = processor(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ : List[Any] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowercase__ : List[Any] = '''When is the coffee break?''' lowercase__ : List[Any] = task_prompt.replace('''{user_input}''' , lowerCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ : Any = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ : str = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ : Dict = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ : List[Any] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ : List[str] = '''hello world''' else: raise ValueError('''Model name not supported''' ) lowercase__ : Dict = original_model.decoder.tokenizer(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors='''pt''' )[ '''input_ids''' ] lowercase__ : List[str] = original_model.encoder.model.patch_embed(lowerCamelCase__ ) lowercase__ , lowercase__ : Optional[Any] = model.encoder.embeddings(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) # verify encoder hidden states lowercase__ : Union[str, Any] = original_model.encoder(lowerCamelCase__ ) lowercase__ : Tuple = model.encoder(lowerCamelCase__ ).last_hidden_state assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 ) # verify decoder hidden states lowercase__ : str = original_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).logits lowercase__ : List[Any] = model(lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowerCAmelCase_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
353
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
0
"""simple docstring""" import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __UpperCAmelCase ( ) -> int: lowercase__ : Optional[Any] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase__ : Any = get_sagemaker_input() else: lowercase__ : Union[str, Any] = get_cluster_input() return config def __UpperCAmelCase ( __lowerCamelCase=None ) -> Dict: if subparsers is not None: lowercase__ : Dict = subparsers.add_parser('''config''' , description=_lowerCAmelCase ) else: lowercase__ : List[str] = argparse.ArgumentParser('''Accelerate config command''' , description=_lowerCAmelCase ) parser.add_argument( '''--config_file''' , default=_lowerCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : int = get_user_input() if args.config_file is not None: lowercase__ : List[str] = args.config_file else: if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) lowercase__ : Union[str, Any] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_lowerCAmelCase ) else: config.to_yaml_file(_lowerCAmelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = config_command_parser() lowercase__ : int = parser.parse_args() config_command(_lowerCAmelCase ) if __name__ == "__main__": main()
354
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class __A ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase : List[str] = "conditional_detr" lowerCAmelCase : Union[str, Any] = ["past_key_values"] lowerCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : str ,_snake_case : Dict=True ,_snake_case : Union[str, Any]=None ,_snake_case : Tuple=3 ,_snake_case : str=300 ,_snake_case : Union[str, Any]=6 ,_snake_case : Optional[int]=2_048 ,_snake_case : str=8 ,_snake_case : Optional[int]=6 ,_snake_case : Any=2_048 ,_snake_case : str=8 ,_snake_case : str=0.0 ,_snake_case : List[str]=0.0 ,_snake_case : List[Any]=True ,_snake_case : Tuple="relu" ,_snake_case : Optional[Any]=256 ,_snake_case : Dict=0.1 ,_snake_case : Optional[int]=0.0 ,_snake_case : Dict=0.0 ,_snake_case : int=0.02 ,_snake_case : List[str]=1.0 ,_snake_case : str=False ,_snake_case : Optional[int]="sine" ,_snake_case : Union[str, Any]="resnet50" ,_snake_case : Union[str, Any]=True ,_snake_case : List[Any]=False ,_snake_case : int=2 ,_snake_case : Tuple=5 ,_snake_case : int=2 ,_snake_case : Any=1 ,_snake_case : Optional[Any]=1 ,_snake_case : List[Any]=2 ,_snake_case : List[str]=5 ,_snake_case : Optional[Any]=2 ,_snake_case : Tuple=0.25 ,**_snake_case : Optional[Any] ,) -> Any: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase__ : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): lowercase__ : List[Any] = backbone_config.get('''model_type''' ) lowercase__ : Tuple = CONFIG_MAPPING[backbone_model_type] lowercase__ : Dict = config_class.from_dict(_SCREAMING_SNAKE_CASE ) lowercase__ : str = use_timm_backbone lowercase__ : Optional[int] = backbone_config lowercase__ : Dict = num_channels lowercase__ : Optional[int] = num_queries lowercase__ : Dict = d_model lowercase__ : Optional[int] = encoder_ffn_dim lowercase__ : Tuple = encoder_layers lowercase__ : int = encoder_attention_heads lowercase__ : Any = decoder_ffn_dim lowercase__ : Optional[int] = decoder_layers lowercase__ : Any = decoder_attention_heads lowercase__ : Optional[int] = dropout lowercase__ : Optional[Any] = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Dict = activation_function lowercase__ : int = init_std lowercase__ : Optional[int] = init_xavier_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : List[Any] = decoder_layerdrop lowercase__ : List[str] = encoder_layers lowercase__ : Optional[Any] = auxiliary_loss lowercase__ : int = position_embedding_type lowercase__ : Dict = backbone lowercase__ : Union[str, Any] = use_pretrained_backbone lowercase__ : List[Any] = dilation # Hungarian matcher lowercase__ : Union[str, Any] = class_cost lowercase__ : Optional[int] = bbox_cost lowercase__ : Any = giou_cost # Loss coefficients lowercase__ : List[str] = mask_loss_coefficient lowercase__ : List[Any] = dice_loss_coefficient lowercase__ : Dict = cls_loss_coefficient lowercase__ : Any = bbox_loss_coefficient lowercase__ : Union[str, Any] = giou_loss_coefficient lowercase__ : List[str] = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self : str ) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCAmelCase ( self : int ) -> int: """simple docstring""" return self.d_model def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase__ : Optional[int] = self.backbone_config.to_dict() lowercase__ : List[Any] = self.__class__.model_type return output class __A ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCAmelCase ( self : List[Any] ) -> float: """simple docstring""" return 1e-5 @property def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" return 12
355
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Optional[int]: if isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Union[str, Any] = len(set_a.intersection(__lowerCamelCase ) ) if alternative_union: lowercase__ : str = len(__lowerCamelCase ) + len(__lowerCamelCase ) else: lowercase__ : str = len(set_a.union(__lowerCamelCase ) ) return intersection / union if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(__lowerCamelCase , (list, tuple) ): lowercase__ : Tuple = [element for element in set_a if element in set_b] if alternative_union: lowercase__ : List[Any] = len(__lowerCamelCase ) + len(__lowerCamelCase ) return len(__lowerCamelCase ) / union else: lowercase__ : Optional[Any] = set_a + [element for element in set_b if element not in set_a] return len(__lowerCamelCase ) / len(__lowerCamelCase ) return len(__lowerCamelCase ) / len(__lowerCamelCase ) return None if __name__ == "__main__": lowerCAmelCase_ : List[Any] = {'a', 'b', 'c', 'd', 'e'} lowerCAmelCase_ : Any = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
356
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def __UpperCAmelCase ( __lowerCamelCase ) -> int: @wraps(__lowerCamelCase ) def _inner_fn(*__lowerCamelCase , **__lowerCamelCase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , __lowerCamelCase , ) return fn(*__lowerCamelCase , **__lowerCamelCase ) return _inner_fn
357
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase_ = logging.getLogger(__name__) class __A ( lowerCamelCase__ ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ,_snake_case : Tuple ,_snake_case : List[Any] ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = self.layer[current_layer](lowercase__ ,lowercase__ ,head_mask[current_layer] ) lowercase__ : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." ,lowerCamelCase__ ,) class __A ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple ) -> List[str]: """simple docstring""" super().__init__(lowercase__ ) lowercase__ : str = BertEncoderWithPabee(lowercase__ ) self.init_weights() lowercase__ : Optional[int] = 0 lowercase__ : int = 0 lowercase__ : Union[str, Any] = 0 lowercase__ : List[str] = 0 def UpperCAmelCase ( self : List[str] ,_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = threshold def UpperCAmelCase ( self : Tuple ,_snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = patience def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : str = 0 lowercase__ : Dict = 0 def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.inference_layers_num / self.inference_instances_num lowercase__ : Tuple = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(lowercase__ ) @add_start_docstrings_to_model_forward(lowercase__ ) def UpperCAmelCase ( self : Dict ,_snake_case : int=None ,_snake_case : int=None ,_snake_case : Optional[Any]=None ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,_snake_case : List[str]=None ,_snake_case : Union[str, Any]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Union[str, Any]=None ,_snake_case : Optional[int]=False ,) -> Tuple: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: lowercase__ : str = input_ids.size() elif inputs_embeds is not None: lowercase__ : Tuple = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) lowercase__ : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase__ : Union[str, Any] = torch.ones(lowercase__ ,device=lowercase__ ) if token_type_ids is None: lowercase__ : Optional[int] = torch.zeros(lowercase__ ,dtype=torch.long ,device=lowercase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase__ : List[Any] = self.get_extended_attention_mask(lowercase__ ,lowercase__ ,lowercase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase__ , lowercase__ , lowercase__ : Any = encoder_hidden_states.size() lowercase__ : Optional[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase__ : Optional[Any] = torch.ones(lowercase__ ,device=lowercase__ ) lowercase__ : Any = self.invert_attention_mask(lowercase__ ) else: lowercase__ : Dict = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase__ : Tuple = self.get_head_mask(lowercase__ ,self.config.num_hidden_layers ) lowercase__ : List[str] = self.embeddings( input_ids=lowercase__ ,position_ids=lowercase__ ,token_type_ids=lowercase__ ,inputs_embeds=lowercase__ ) lowercase__ : int = embedding_output if self.training: lowercase__ : str = [] for i in range(self.config.num_hidden_layers ): lowercase__ : str = self.encoder.adaptive_forward( lowercase__ ,current_layer=lowercase__ ,attention_mask=lowercase__ ,head_mask=lowercase__ ) lowercase__ : Tuple = self.pooler(lowercase__ ) lowercase__ : Dict = output_layers[i](output_dropout(lowercase__ ) ) res.append(lowercase__ ) elif self.patience == 0: # Use all layers for inference lowercase__ : List[str] = self.encoder( lowercase__ ,attention_mask=lowercase__ ,head_mask=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) lowercase__ : List[str] = self.pooler(encoder_outputs[0] ) lowercase__ : Union[str, Any] = [output_layers[self.config.num_hidden_layers - 1](lowercase__ )] else: lowercase__ : Optional[Any] = 0 lowercase__ : Tuple = None lowercase__ : List[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowercase__ : List[str] = self.encoder.adaptive_forward( lowercase__ ,current_layer=lowercase__ ,attention_mask=lowercase__ ,head_mask=lowercase__ ) lowercase__ : List[Any] = self.pooler(lowercase__ ) lowercase__ : Dict = output_layers[i](lowercase__ ) if regression: lowercase__ : Any = logits.detach() if patient_result is not None: lowercase__ : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowercase__ : Tuple = 0 else: lowercase__ : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowercase__ : List[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowercase__ ) ): patient_counter += 1 else: lowercase__ : Union[str, Any] = 0 lowercase__ : Any = logits if patient_counter == self.patience: break lowercase__ : Union[str, Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " ,lowerCamelCase__ ,) class __A ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : Optional[int] ) -> int: """simple docstring""" super().__init__(lowercase__ ) lowercase__ : str = config.num_labels lowercase__ : Optional[Any] = BertModelWithPabee(lowercase__ ) lowercase__ : Tuple = nn.Dropout(config.hidden_dropout_prob ) lowercase__ : Optional[Any] = nn.ModuleList( [nn.Linear(config.hidden_size ,self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase__ ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : str=None ,_snake_case : Any=None ,_snake_case : str=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=None ,_snake_case : int=None ,) -> Any: """simple docstring""" lowercase__ : Tuple = self.bert( input_ids=lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,position_ids=lowercase__ ,head_mask=lowercase__ ,inputs_embeds=lowercase__ ,output_dropout=self.dropout ,output_layers=self.classifiers ,regression=self.num_labels == 1 ,) lowercase__ : Union[str, Any] = (logits[-1],) if labels is not None: lowercase__ : Union[str, Any] = None lowercase__ : int = 0 for ix, logits_item in enumerate(lowercase__ ): if self.num_labels == 1: # We are doing regression lowercase__ : int = MSELoss() lowercase__ : List[str] = loss_fct(logits_item.view(-1 ) ,labels.view(-1 ) ) else: lowercase__ : int = CrossEntropyLoss() lowercase__ : Union[str, Any] = loss_fct(logits_item.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) if total_loss is None: lowercase__ : str = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase__ : str = (total_loss / total_weights,) + outputs return outputs
358
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
0
"""simple docstring""" import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class __A : '''simple docstring''' def __init__( self : Dict ,_snake_case : Any=False ,_snake_case : Optional[Any]=False ,_snake_case : int=6.0 ,_snake_case : Any=None ,_snake_case : List[Any]=False ,_snake_case : Any=False ,_snake_case : Dict=None ,_snake_case : Dict="fp4" ,_snake_case : Dict=False ,**_snake_case : int ,) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = load_in_abit lowercase__ : List[str] = load_in_abit lowercase__ : Optional[Any] = llm_inta_threshold lowercase__ : int = llm_inta_skip_modules lowercase__ : List[Any] = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Union[str, Any] = bnb_abit_quant_type lowercase__ : Tuple = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Union[str, Any] = torch.floataa elif isinstance(_snake_case ,_snake_case ): lowercase__ : Union[str, Any] = getattr(_snake_case ,_snake_case ) elif isinstance(_snake_case ,torch.dtype ): lowercase__ : Dict = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" if not isinstance(self.llm_inta_threshold ,_snake_case ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules ,_snake_case ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload ,_snake_case ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight ,_snake_case ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype ,torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type ,_snake_case ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant ,_snake_case ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" return self.load_in_abit or self.load_in_abit def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase ( cls : str ,_snake_case : int ,_snake_case : Tuple ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Any = cls(**_snake_case ) lowercase__ : Any = [] for key, value in kwargs.items(): if hasattr(_snake_case ,_snake_case ): setattr(_snake_case ,_snake_case ,_snake_case ) to_remove.append(_snake_case ) for key in to_remove: kwargs.pop(_snake_case ,_snake_case ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Union[str, os.PathLike] ) -> Any: """simple docstring""" with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as writer: lowercase__ : str = self.to_dict() lowercase__ : List[str] = json.dumps(_snake_case ,indent=2 ,sort_keys=_snake_case ) + '\n' writer.write(_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase__ : int = copy.deepcopy(self.__dict__ ) lowercase__ : Tuple = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : Any ) -> Tuple: """simple docstring""" return f"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCAmelCase ( self : Dict ,_snake_case : bool = True ) -> str: """simple docstring""" if use_diff is True: lowercase__ : int = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(_snake_case ,indent=2 ,sort_keys=_snake_case ) + "\n" def UpperCAmelCase ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase__ : str = self.to_dict() # get the default config dict lowercase__ : Tuple = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Any = value return serializable_config_dict
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> int: if attention_mask is None: lowercase__ : List[str] = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __A : '''simple docstring''' lowerCAmelCase : Optional[Any] = OPTConfig lowerCAmelCase : Tuple = {} lowerCAmelCase : Any = "gelu" def __init__( self : int ,_snake_case : Optional[int] ,_snake_case : str=13 ,_snake_case : Optional[Any]=7 ,_snake_case : Union[str, Any]=True ,_snake_case : str=False ,_snake_case : str=99 ,_snake_case : Union[str, Any]=16 ,_snake_case : List[Any]=2 ,_snake_case : Optional[Any]=4 ,_snake_case : Any=4 ,_snake_case : Tuple="gelu" ,_snake_case : Dict=0.1 ,_snake_case : List[Any]=0.1 ,_snake_case : Dict=20 ,_snake_case : Optional[Any]=2 ,_snake_case : Optional[int]=1 ,_snake_case : Dict=0 ,_snake_case : Optional[int]=16 ,_snake_case : List[str]=16 ,) -> str: """simple docstring""" lowercase__ : List[str] = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Any = seq_length lowercase__ : List[str] = is_training lowercase__ : Union[str, Any] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : Union[str, Any] = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : str = eos_token_id lowercase__ : Optional[int] = pad_token_id lowercase__ : int = bos_token_id lowercase__ : Dict = embed_dim lowercase__ : List[str] = word_embed_proj_dim lowercase__ : Dict = False def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowercase__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowercase__ : Optional[int] = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowercase__ : str = self.config_cls( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,embed_dim=self.embed_dim ,word_embed_proj_dim=self.word_embed_proj_dim ,is_encoder_decoder=__UpperCamelCase ,**self.config_updates ,) lowercase__ : Optional[Any] = prepare_opt_inputs_dict(__UpperCamelCase ,__UpperCamelCase ) return config, inputs_dict def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : Tuple ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = TFOPTModel(config=__UpperCamelCase ) lowercase__ : str = inputs_dict['''input_ids'''] lowercase__ : Any = input_ids[:1, :] lowercase__ : Dict = inputs_dict['''attention_mask'''][:1, :] lowercase__ : List[Any] = 1 # first forward pass lowercase__ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ) lowercase__ , lowercase__ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__ : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase__ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and lowercase__ : List[str] = tf.concat([input_ids, next_tokens] ,axis=-1 ) lowercase__ : Tuple = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) lowercase__ : Any = model(__UpperCamelCase ,attention_mask=__UpperCamelCase )[0] lowercase__ : Union[str, Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice lowercase__ : Union[str, Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) lowercase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx] lowercase__ : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase ,__UpperCamelCase ,rtol=1e-3 ) @require_tf class __A ( _lowercase ,_lowercase ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCAmelCase : int = (TFOPTForCausalLM,) if is_tf_available() else () lowerCAmelCase : Optional[int] = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCAmelCase : int = False lowerCAmelCase : Dict = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : Union[str, Any] = 1_0 def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : Any = TFOPTModelTester(self ) lowercase__ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_snake_case : int ,_snake_case : Any ): if hasattr(__UpperCamelCase ,'''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__UpperCamelCase ,'''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowercase__ : Any = model_class(config=__UpperCamelCase ) lowercase__ : List[str] = _get_word_embedding_weight(__UpperCamelCase ,model.get_input_embeddings() ) lowercase__ : List[str] = _get_word_embedding_weight(__UpperCamelCase ,model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__UpperCamelCase ) lowercase__ : List[str] = _get_word_embedding_weight(__UpperCamelCase ,model.get_input_embeddings() ) lowercase__ : List[Any] = _get_word_embedding_weight(__UpperCamelCase ,model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowercase__ : List[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] ,__UpperCamelCase ) # check that weights remain the same after resizing lowercase__ : Union[str, Any] = True for pa, pa in zip(old_input_embeddings.value() ,new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ : Dict = False self.assertTrue(__UpperCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] ,__UpperCamelCase ) lowercase__ : List[Any] = True for pa, pa in zip(old_output_embeddings.value() ,new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ : Dict = False self.assertTrue(__UpperCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: return tf.constant(a__ , dtype=tf.intaa ) @require_tf class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = 9_9 def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = tf.ones((4, 1) ,dtype=tf.intaa ) * 2 lowercase__ : str = tf.concat([ids_tensor((4, 6) ,self.vocab_size - 3 ) + 3, eos_column_vector] ,axis=1 ) lowercase__ : int = input_ids.shape[0] lowercase__ : Optional[int] = OPTConfig( vocab_size=self.vocab_size ,hidden_size=24 ,num_hidden_layers=2 ,num_attention_heads=2 ,ffn_dim=32 ,max_position_embeddings=48 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size @require_sentencepiece @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowercase__ : List[str] = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) lowercase__ : Union[str, Any] = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowercase__ : Dict = tf.not_equal(__UpperCamelCase ,model.config.pad_token_id ) with tf.GradientTape(): lowercase__ : str = model(input_ids=__UpperCamelCase ,attention_mask=__UpperCamelCase ).last_hidden_state lowercase__ : int = (1, 11, 512) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase__ : int = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=4e-3 ) ) lowercase__ : str = tf.function(__UpperCamelCase ,jit_compile=__UpperCamelCase ) lowercase__ : Dict = xla_generate(__UpperCamelCase ,__UpperCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=4e-2 ) ) @require_tf @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" super().setUp() lowercase__ : Union[str, Any] = '''facebook/opt-350m''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowercase__ : List[str] = TFOPTForCausalLM.from_pretrained(self.path_model ) lowercase__ : Optional[int] = GPTaTokenizer.from_pretrained(self.path_model ) lowercase__ : List[str] = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowercase__ : str = tokenizer(__UpperCamelCase ,return_tensors='''tf''' ,padding=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) lowercase__ : List[str] = tf.math.reduce_mean(model(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) lowercase__ : Optional[Any] = tf.constant( [ [1.3851, -13.8_923, -10.5_229, -10.7_533, -0.2309, -10.2_384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6_276, -3.9415, -21.5_242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1_650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7_926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-4 ) ) lowercase__ : int = tf.function(__UpperCamelCase ,jit_compile=__UpperCamelCase ) lowercase__ : Optional[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-4 ) ) @require_tf @slow class __A ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = '''facebook/opt-125m''' lowercase__ : Dict = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowercase__ : str = [] lowercase__ : Optional[int] = GPTaTokenizer.from_pretrained(__UpperCamelCase ) lowercase__ : List[str] = TFOPTForCausalLM.from_pretrained(__UpperCamelCase ) for prompt in self.prompts: lowercase__ : Optional[int] = tokenizer(__UpperCamelCase ,return_tensors='''tf''' ).input_ids lowercase__ : Optional[int] = model.generate(__UpperCamelCase ,max_length=10 ) lowercase__ : str = tokenizer.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Any = '''facebook/opt-350m''' lowercase__ : Any = GPTaTokenizer.from_pretrained(__UpperCamelCase ) lowercase__ : List[str] = TFOPTForCausalLM.from_pretrained(__UpperCamelCase ) lowercase__ : Union[str, Any] = '''left''' # use different length sentences to test batching lowercase__ : Optional[int] = [ '''Hello, my dog is a little''', '''Today, I''', ] lowercase__ : Dict = tokenizer(__UpperCamelCase ,return_tensors='''tf''' ,padding=__UpperCamelCase ) lowercase__ : List[Any] = inputs['''input_ids'''] lowercase__ : List[str] = model.generate(input_ids=__UpperCamelCase ,attention_mask=inputs['''attention_mask'''] ) lowercase__ : Optional[Any] = tokenizer(sentences[0] ,return_tensors='''tf''' ).input_ids lowercase__ : List[str] = model.generate(input_ids=__UpperCamelCase ) lowercase__ : List[str] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] ,tf.intaa ) ) lowercase__ : int = tokenizer(sentences[1] ,return_tensors='''tf''' ).input_ids lowercase__ : Optional[Any] = model.generate(input_ids=__UpperCamelCase ,max_length=model.config.max_length - num_paddings ) lowercase__ : Tuple = tokenizer.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase ) lowercase__ : Optional[Any] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__UpperCamelCase ) lowercase__ : int = tokenizer.decode(output_padded[0] ,skip_special_tokens=__UpperCamelCase ) lowercase__ : Any = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,[non_padded_sentence, padded_sentence] ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ : List[Any] = '''facebook/opt-350m''' lowercase__ : Optional[Any] = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowercase__ : Dict = [] lowercase__ : List[str] = GPTaTokenizer.from_pretrained(__UpperCamelCase ) lowercase__ : Any = TFOPTForCausalLM.from_pretrained(__UpperCamelCase ) for prompt in self.prompts: lowercase__ : Dict = tokenizer(__UpperCamelCase ,return_tensors='''tf''' ).input_ids lowercase__ : Optional[Any] = model.generate(__UpperCamelCase ,max_length=10 ) lowercase__ : int = tokenizer.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
360
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) set_seed(770) lowerCAmelCase_ = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } lowerCAmelCase_ = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } lowerCAmelCase_ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase_ = os.path.join(os.path.expanduser('~'), '.cache') lowerCAmelCase_ = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=False ) -> Dict: lowercase__ : Optional[int] = model_type if use_small: key += "_small" return os.path.join(__lowerCamelCase , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) hf_hub_download(repo_id=__lowerCamelCase , filename=__lowerCamelCase , local_dir=__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase="text" ) -> Any: if model_type == "text": lowercase__ : str = BarkSemanticModel lowercase__ : Optional[Any] = BarkSemanticConfig lowercase__ : Optional[int] = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase__ : Union[str, Any] = BarkCoarseModel lowercase__ : str = BarkCoarseConfig lowercase__ : Tuple = BarkCoarseGenerationConfig elif model_type == "fine": lowercase__ : str = BarkFineModel lowercase__ : int = BarkFineConfig lowercase__ : str = BarkFineGenerationConfig else: raise NotImplementedError() lowercase__ : Any = f"""{model_type}_small""" if use_small else model_type lowercase__ : Dict = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCamelCase ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) lowercase__ : str = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) # this is a hack lowercase__ : Union[str, Any] = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: lowercase__ : Optional[Any] = model_args['''vocab_size'''] lowercase__ : Tuple = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase__ : Optional[int] = model_args.pop('''n_head''' ) lowercase__ : Optional[Any] = model_args.pop('''n_embd''' ) lowercase__ : int = model_args.pop('''n_layer''' ) lowercase__ : Optional[int] = ConfigClass(**checkpoint['''model_args'''] ) lowercase__ : List[Any] = ModelClass(config=__lowerCamelCase ) lowercase__ : List[Any] = GenerationConfigClass() lowercase__ : List[Any] = model_generation_config lowercase__ : str = checkpoint['''model'''] # fixup checkpoint lowercase__ : List[str] = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(__lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation lowercase__ : int = k[len(__lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: lowercase__ : Dict = new_k.replace(__lowerCamelCase , new_layer_name_dict[old_layer_name] ) lowercase__ : str = state_dict.pop(__lowerCamelCase ) lowercase__ : Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase__ : Tuple = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} lowercase__ : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase__ : Dict = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(__lowerCamelCase ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(__lowerCamelCase ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) lowercase__ : Optional[Any] = model.num_parameters(exclude_embeddings=__lowerCamelCase ) lowercase__ : int = checkpoint['''best_val_loss'''].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(__lowerCamelCase , 3 )} loss""" ) model.eval() model.to(__lowerCamelCase ) del checkpoint, state_dict return model def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase="text" ) -> Optional[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase__ : List[str] = '''cpu''' # do conversion on cpu lowercase__ : List[Any] = _get_ckpt_path(__lowerCamelCase , use_small=__lowerCamelCase ) lowercase__ : Optional[int] = _load_model(__lowerCamelCase , __lowerCamelCase , model_type=__lowerCamelCase , use_small=__lowerCamelCase ) # load bark initial model lowercase__ : int = _bark_load_model(__lowerCamelCase , '''cpu''' , model_type=__lowerCamelCase , use_small=__lowerCamelCase ) if model_type == "text": lowercase__ : List[str] = bark_model['''model'''] if model.num_parameters(exclude_embeddings=__lowerCamelCase ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model lowercase__ : int = 5 lowercase__ : Optional[Any] = 10 if model_type in ["text", "coarse"]: lowercase__ : List[Any] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) lowercase__ : Optional[Any] = bark_model(__lowerCamelCase )[0] lowercase__ : List[str] = model(__lowerCamelCase ) # take last logits lowercase__ : Optional[int] = output_new_model_total.logits[:, [-1], :] else: lowercase__ : Dict = 3 lowercase__ : List[Any] = 8 lowercase__ : Any = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase__ : Dict = model(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = bark_model(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> int: lowercase__ : List[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCamelCase , '''config.json''' ) ) lowercase__ : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCamelCase , '''config.json''' ) ) lowercase__ : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(__lowerCamelCase , '''config.json''' ) ) lowercase__ : Union[str, Any] = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) lowercase__ : int = BarkSemanticModel.from_pretrained(__lowerCamelCase ) lowercase__ : int = BarkCoarseModel.from_pretrained(__lowerCamelCase ) lowercase__ : List[str] = BarkFineModel.from_pretrained(__lowerCamelCase ) lowercase__ : List[Any] = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) lowercase__ : Any = BarkConfig.from_sub_model_configs( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase__ : Optional[int] = BarkModel(__lowerCamelCase ) lowercase__ : Optional[int] = semantic lowercase__ : Dict = coarseAcoustic lowercase__ : Union[str, Any] = fineAcoustic lowercase__ : Any = codec lowercase__ : str = bark_generation_config Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) bark.save_pretrained(__lowerCamelCase , repo_id=__lowerCamelCase , push_to_hub=__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') lowerCAmelCase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" class __A : '''simple docstring''' def __init__( self : List[Any] ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = arr.split(''',''' ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = [int(self.array[0] )] * len(self.array ) lowercase__ : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 ,len(self.array ) ): lowercase__ : Dict = max( int(self.array[i] ) + sum_value[i - 1] ,int(self.array[i] ) ) lowercase__ : List[Any] = max(sum_value[i] ,rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase_ = input('please input some numbers:') lowerCAmelCase_ = SubArray(whole_array) lowerCAmelCase_ = array.solve_sub_array() print(('the results is:', re))
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
"""simple docstring""" from math import ceil def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Optional[int] = list(range(0 , lowercase__ ) ) lowercase__ : Union[str, Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase__ : Any = [] for i in device_map_blocks: if device_map_blocks.count(lowercase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase__ ) # Missing blocks lowercase__ : int = [i for i in blocks if i not in device_map_blocks] lowercase__ : int = [i for i in device_map_blocks if i not in blocks] if len(lowercase__ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(lowercase__ ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = list(range(lowercase__ ) ) lowercase__ : str = int(ceil(n_layers / len(lowercase__ ) ) ) lowercase__ : Optional[Any] = [layers[i : i + n_blocks] for i in range(0 , lowercase__ , lowercase__ )] return dict(zip(lowercase__ , lowercase__ ) )
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __UpperCAmelCase ( __lowerCamelCase ) -> bool: lowercase__ : Any = 0 lowercase__ : Optional[int] = number while duplicate > 0: lowercase__ : Any = divmod(__snake_case , 10 ) fact_sum += factorial(__snake_case ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') lowerCAmelCase_ = int(input('Enter number: ').strip()) print( F'''{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.''' )
364
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
0
"""simple docstring""" import random from typing import Any def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: for _ in range(len(_a ) ): lowercase__ : List[str] = random.randint(0 , len(_a ) - 1 ) lowercase__ : Any = random.randint(0 , len(_a ) - 1 ) lowercase__ : Dict = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
import os import string import sys lowerCAmelCase_ = 1 << 8 lowerCAmelCase_ = { """tab""": ord('\t'), """newline""": ord('\r'), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCAmelCase_ = KEYMAP["""up"""] lowerCAmelCase_ = KEYMAP["""left"""] if sys.platform == "win32": lowerCAmelCase_ = [] lowerCAmelCase_ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase_ = ord(str(i)) def __UpperCAmelCase ( ) -> Optional[Any]: if os.name == "nt": import msvcrt lowercase__ : str = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowercase__ : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowercase__ : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowercase__ : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) lowercase__ : List[str] = chr(KEYMAP['''esc'''] ) except KeyError: lowercase__ : List[str] = cha[1] else: lowercase__ : int = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowercase__ : int = sys.stdin.fileno() lowercase__ : List[Any] = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : List[str] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowercase__ : List[Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowercase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
366
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Optional[int] = VideoMAEConfig() set_architecture_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "finetuned" not in model_name: lowercase__ : str = False if "finetuned" in model_name: lowercase__ : Optional[Any] = '''huggingface/label-files''' if "kinetics" in model_name: lowercase__ : Union[str, Any] = 4_00 lowercase__ : List[Any] = '''kinetics400-id2label.json''' elif "ssv2" in model_name: lowercase__ : int = 1_74 lowercase__ : Optional[Any] = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) lowercase__ : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : int = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : Tuple = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: if "small" in model_name: lowercase__ : Optional[int] = 3_84 lowercase__ : Optional[int] = 15_36 lowercase__ : Optional[Any] = 12 lowercase__ : Any = 16 lowercase__ : List[Any] = 12 lowercase__ : Tuple = 3 lowercase__ : List[Any] = 1_92 lowercase__ : List[str] = 7_68 elif "large" in model_name: lowercase__ : Optional[int] = 10_24 lowercase__ : Dict = 40_96 lowercase__ : Dict = 24 lowercase__ : List[Any] = 16 lowercase__ : Optional[Any] = 12 lowercase__ : List[str] = 8 lowercase__ : Optional[int] = 5_12 lowercase__ : str = 20_48 elif "huge" in model_name: lowercase__ : Union[str, Any] = 12_80 lowercase__ : int = 51_20 lowercase__ : Tuple = 32 lowercase__ : Union[str, Any] = 16 lowercase__ : Tuple = 12 lowercase__ : Optional[int] = 8 lowercase__ : List[str] = 6_40 lowercase__ : Tuple = 25_60 elif "base" not in model_name: raise ValueError('''Model name should include either \"small\", \"base\", \"large\", or \"huge\"''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: if "encoder." in name: lowercase__ : str = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: lowercase__ : List[str] = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: lowercase__ : List[Any] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowercase__ : List[str] = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase__ : List[str] = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: lowercase__ : List[str] = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowercase__ : Tuple = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: lowercase__ : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: lowercase__ : Tuple = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: lowercase__ : List[Any] = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: lowercase__ : Union[str, Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ : int = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : List[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowercase__ : Tuple = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowercase__ : Union[str, Any] = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowercase__ : Tuple = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowercase__ : Any = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowercase__ : Optional[Any] = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: lowercase__ : Any = name.replace('''head''' , '''classifier''' ) return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: for key in orig_state_dict.copy().keys(): lowercase__ : Any = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if key.startswith('''encoder.''' ): lowercase__ : Union[str, Any] = key.replace('''encoder.''' , '''''' ) if "qkv" in key: lowercase__ : str = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): lowercase__ : Optional[Any] = config.decoder_hidden_size lowercase__ : List[Any] = int(key_split[2] ) lowercase__ : Any = '''decoder.decoder_layers.''' if "weight" in key: lowercase__ : Optional[Any] = val[:dim, :] lowercase__ : int = val[dim : dim * 2, :] lowercase__ : Dict = val[-dim:, :] else: lowercase__ : Any = config.hidden_size lowercase__ : Dict = int(key_split[1] ) lowercase__ : int = '''videomae.encoder.layer.''' if "weight" in key: lowercase__ : List[Any] = val[:dim, :] lowercase__ : Any = val[dim : dim * 2, :] lowercase__ : Any = val[-dim:, :] else: lowercase__ : Tuple = val return orig_state_dict def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : List[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase__ : List[Any] = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = get_videomae_config(SCREAMING_SNAKE_CASE__ ) if "finetuned" in model_name: lowercase__ : Union[str, Any] = VideoMAEForVideoClassification(SCREAMING_SNAKE_CASE__ ) else: lowercase__ : Dict = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) # download original checkpoint, hosted on Google Drive lowercase__ : List[str] = '''pytorch_model.bin''' gdown.cached_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , quiet=SCREAMING_SNAKE_CASE__ ) lowercase__ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) if "model" in files: lowercase__ : str = files['''model'''] else: lowercase__ : List[Any] = files['''module'''] lowercase__ : str = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify model on basic input lowercase__ : Optional[Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowercase__ : Any = prepare_video() lowercase__ : int = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) if "finetuned" not in model_name: lowercase__ : Any = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowercase__ : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ ) lowercase__ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) lowercase__ : int = outputs.logits lowercase__ : int = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowercase__ : List[str] = torch.Size([1, 4_00] ) lowercase__ : Dict = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": lowercase__ : Optional[Any] = torch.Size([1, 1_74] ) lowercase__ : List[str] = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": lowercase__ : str = torch.Size([1, 14_08, 15_36] ) lowercase__ : Dict = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": lowercase__ : Union[str, Any] = torch.Size([1, 14_08, 15_36] ) lowercase__ : Union[str, Any] = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one lowercase__ : Tuple = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": lowercase__ : Optional[Any] = torch.Size([1, 14_08, 15_36] ) lowercase__ : Union[str, Any] = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": lowercase__ : Dict = torch.Size([1, 4_00] ) lowercase__ : List[str] = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": lowercase__ : Any = torch.Size([1, 4_00] ) lowercase__ : str = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowercase__ : str = torch.Size([1, 4_00] ) lowercase__ : Optional[Any] = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": lowercase__ : str = torch.Size([1, 4_00] ) lowercase__ : List[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": lowercase__ : str = torch.Size([1, 14_08, 15_36] ) lowercase__ : int = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowercase__ : Optional[int] = torch.Size([1, 1_74] ) lowercase__ : Optional[Any] = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": lowercase__ : int = torch.Size([1, 14_08, 15_36] ) lowercase__ : List[Any] = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": lowercase__ : str = torch.Size([1, 1_74] ) lowercase__ : Any = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": lowercase__ : Optional[int] = outputs.loss assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='''nielsr''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
367
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class lowerCAmelCase__ ( _a ): '''simple docstring''' lowerCAmelCase : List[Any] = """mvp""" lowerCAmelCase : Any = ["""past_key_values"""] lowerCAmelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] ,_snake_case : Dict=50_267 ,_snake_case : Union[str, Any]=1_024 ,_snake_case : List[Any]=12 ,_snake_case : Any=4_096 ,_snake_case : List[Any]=16 ,_snake_case : str=12 ,_snake_case : Dict=4_096 ,_snake_case : Union[str, Any]=16 ,_snake_case : Optional[int]=0.0 ,_snake_case : List[Any]=0.0 ,_snake_case : str="gelu" ,_snake_case : Any=1_024 ,_snake_case : Tuple=0.1 ,_snake_case : Any=0.0 ,_snake_case : List[str]=0.0 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : List[str]=0.0 ,_snake_case : str=False ,_snake_case : Optional[int]=True ,_snake_case : str=1 ,_snake_case : Tuple=0 ,_snake_case : str=2 ,_snake_case : List[str]=True ,_snake_case : Union[str, Any]=2 ,_snake_case : str=2 ,_snake_case : Union[str, Any]=False ,_snake_case : Optional[int]=100 ,_snake_case : List[Any]=800 ,**_snake_case : List[str] ,) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = vocab_size lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Dict = d_model lowercase__ : List[str] = encoder_ffn_dim lowercase__ : Optional[int] = encoder_layers lowercase__ : List[str] = encoder_attention_heads lowercase__ : Any = decoder_ffn_dim lowercase__ : str = decoder_layers lowercase__ : Tuple = decoder_attention_heads lowercase__ : Tuple = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : List[Any] = activation_dropout lowercase__ : int = activation_function lowercase__ : Optional[Any] = init_std lowercase__ : Union[str, Any] = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : Any = classifier_dropout lowercase__ : List[Any] = use_cache lowercase__ : Optional[int] = encoder_layers lowercase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : Dict = use_prompt lowercase__ : Optional[Any] = prompt_length lowercase__ : Any = prompt_mid_dim super().__init__( pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,is_encoder_decoder=__lowerCamelCase ,decoder_start_token_id=__lowerCamelCase ,forced_eos_token_id=__lowerCamelCase ,**__lowerCamelCase ,) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' ,__lowerCamelCase ): lowercase__ : Any = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' )
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase_ = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: if attention_mask is None: lowercase__ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase__ : Tuple = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase__ : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __A : '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple ,_snake_case : List[str]=13 ,_snake_case : int=7 ,_snake_case : Any=True ,_snake_case : Tuple=False ,_snake_case : Tuple=99 ,_snake_case : Optional[int]=16 ,_snake_case : Any=2 ,_snake_case : Optional[Any]=4 ,_snake_case : List[Any]=4 ,_snake_case : Tuple="gelu" ,_snake_case : str=0.1 ,_snake_case : List[str]=0.1 ,_snake_case : List[Any]=32 ,_snake_case : str=2 ,_snake_case : str=1 ,_snake_case : Union[str, Any]=0 ,_snake_case : Tuple=0.02 ,) -> Dict: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Tuple = use_labels lowercase__ : Optional[Any] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Any = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : int = max_position_embeddings lowercase__ : str = eos_token_id lowercase__ : List[Any] = pad_token_id lowercase__ : List[Any] = bos_token_id lowercase__ : Union[str, Any] = initializer_range def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : int = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) ,3 ,self.vocab_size ) lowercase__ : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) ,dtype=np.intaa )) ,-1 ) lowercase__ : Optional[int] = shift_tokens_right(lowercase_ ,1 ,2 ) lowercase__ : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,initializer_range=self.initializer_range ,use_cache=lowercase_ ,) lowercase__ : List[str] = prepare_blenderbot_inputs_dict(lowercase_ ,lowercase_ ,lowercase_ ) return config, inputs_dict def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : int = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : List[Any] = 20 lowercase__ : Dict = model_class_name(lowercase_ ) lowercase__ : Any = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] ,lowercase_ ,lowercase_ ) lowercase__ : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype='''i4''' ) lowercase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) lowercase__ : int = model.decode( decoder_input_ids[:, :-1] ,lowercase_ ,decoder_attention_mask=lowercase_ ,past_key_values=lowercase_ ,decoder_position_ids=lowercase_ ,) lowercase__ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype='''i4''' ) lowercase__ : str = model.decode( decoder_input_ids[:, -1:] ,lowercase_ ,decoder_attention_mask=lowercase_ ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=lowercase_ ,) lowercase__ : str = model.decode(lowercase_ ,lowercase_ ) lowercase__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"""Max diff is {diff}""" ) def UpperCAmelCase ( self : Dict ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = 20 lowercase__ : List[Any] = model_class_name(lowercase_ ) lowercase__ : List[Any] = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ : int = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) lowercase__ : int = model.init_cache(decoder_input_ids.shape[0] ,lowercase_ ,lowercase_ ) lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) lowercase__ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] ,lowercase_ ,decoder_attention_mask=lowercase_ ,past_key_values=lowercase_ ,decoder_position_ids=lowercase_ ,) lowercase__ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype='''i4''' ) lowercase__ : List[Any] = model.decode( decoder_input_ids[:, -1:] ,lowercase_ ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=lowercase_ ,decoder_position_ids=lowercase_ ,) lowercase__ : Tuple = model.decode(lowercase_ ,lowercase_ ,decoder_attention_mask=lowercase_ ) lowercase__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"""Max diff is {diff}""" ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = 9_9 def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] ,dtype=np.intaa ,) lowercase__ : int = input_ids.shape[0] lowercase__ : int = BlenderbotConfig( vocab_size=self.vocab_size ,d_model=24 ,encoder_layers=2 ,decoder_layers=2 ,encoder_attention_heads=2 ,decoder_attention_heads=2 ,encoder_ffn_dim=32 ,decoder_ffn_dim=32 ,max_position_embeddings=48 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ , lowercase__ : str = self._get_config_and_data() lowercase__ : List[Any] = FlaxBlenderbotForConditionalGeneration(lowercase_ ) lowercase__ : List[str] = lm_model(input_ids=lowercase_ ) lowercase__ : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape ,lowercase_ ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : str = BlenderbotConfig( vocab_size=self.vocab_size ,d_model=14 ,encoder_layers=2 ,decoder_layers=2 ,encoder_attention_heads=2 ,decoder_attention_heads=2 ,encoder_ffn_dim=8 ,decoder_ffn_dim=8 ,max_position_embeddings=48 ,) lowercase__ : List[str] = FlaxBlenderbotForConditionalGeneration(lowercase_ ) lowercase__ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] ,dtype=np.intaa ) lowercase__ : List[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] ,dtype=np.intaa ) lowercase__ : Tuple = lm_model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ) lowercase__ : Optional[int] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape ,lowercase_ ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] ,dtype=np.intaa ) lowercase__ : Optional[int] = shift_tokens_right(lowercase_ ,1 ,2 ) lowercase__ : int = np.equal(lowercase_ ,1 ).astype(np.floataa ).sum() lowercase__ : Union[str, Any] = np.equal(lowercase_ ,1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape ,input_ids.shape ) self.assertEqual(lowercase_ ,n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] ,2 ).all() ) @require_flax class __A ( A_ ,unittest.TestCase ,A_ ): '''simple docstring''' lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase : str = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = FlaxBlenderbotModelTester(self ) def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ ,lowercase_ ,lowercase_ ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ ,lowercase_ ,lowercase_ ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Optional[Any] = self._prepare_for_class(lowercase_ ,lowercase_ ) lowercase__ : int = model_class(lowercase_ ) @jax.jit def encode_jitted(_snake_case : int ,_snake_case : Any=None ,**_snake_case : str ): return model.encode(input_ids=lowercase_ ,attention_mask=lowercase_ ) with self.subTest('''JIT Enabled''' ): lowercase__ : List[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ : Union[str, Any] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Dict = model_class(lowercase_ ) lowercase__ : List[Any] = model.encode(inputs_dict['''input_ids'''] ,inputs_dict['''attention_mask'''] ) lowercase__ : Any = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_snake_case : int ,_snake_case : Tuple ,_snake_case : Any ): return model.decode( decoder_input_ids=lowercase_ ,decoder_attention_mask=lowercase_ ,encoder_outputs=lowercase_ ,) with self.subTest('''JIT Enabled''' ): lowercase__ : Optional[int] = decode_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ : Optional[int] = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ : Dict = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase__ : Dict = np.ones((1, 1) ) * model.config.eos_token_id lowercase__ : Optional[Any] = model(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skipUnless(jax_device != '''cpu''' ,'''3B test too slow on CPU.''' ) @slow def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : str = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowercase__ : List[Any] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowercase__ : str = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' ,from_pt=lowercase_ ) lowercase__ : Any = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowercase__ : Any = ['''Sam'''] lowercase__ : Union[str, Any] = tokenizer(lowercase_ ,return_tensors='''jax''' ) lowercase__ : Optional[int] = model.generate(**lowercase_ ,**lowercase_ ) lowercase__ : str = '''Sam is a great name. It means \"sun\" in Gaelic.''' lowercase__ : Optional[int] = tokenizer.batch_decode(lowercase_ ,**lowercase_ ) assert generated_txt[0].strip() == tgt_text
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __lowerCamelCase ) -> float: lowercase__ : List[str] = 0.0_0 lowercase__ : Dict = 0 for resistor in resistors: if resistor <= 0: lowercase__ : str = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(_lowerCamelCase ) first_sum += 1 / float(_lowerCamelCase ) index += 1 return 1 / first_sum def __UpperCAmelCase ( __lowerCamelCase ) -> float: lowercase__ : int = 0.0_0 lowercase__ : List[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase__ : Tuple = f"""Resistor at index {index} has a negative value!""" raise ValueError(_lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __A : '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : str ,_snake_case : List[str]=13 ,_snake_case : Union[str, Any]=7 ,_snake_case : List[str]=True ,_snake_case : Any=True ,_snake_case : List[str]=True ,_snake_case : Union[str, Any]=True ,_snake_case : List[str]=99 ,_snake_case : Tuple=32 ,_snake_case : List[Any]=2 ,_snake_case : List[str]=4 ,_snake_case : Any=37 ,_snake_case : Dict="gelu" ,_snake_case : str=0.1 ,_snake_case : Optional[Any]=0.1 ,_snake_case : Dict=512 ,_snake_case : List[str]=16 ,_snake_case : Optional[Any]=2 ,_snake_case : int=0.02 ,_snake_case : str=3 ,_snake_case : List[Any]=4 ,_snake_case : Tuple=None ,) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = parent lowercase__ : int = 13 lowercase__ : Optional[Any] = 7 lowercase__ : int = True lowercase__ : str = True lowercase__ : int = True lowercase__ : Optional[Any] = True lowercase__ : Optional[Any] = 99 lowercase__ : int = 384 lowercase__ : Union[str, Any] = 2 lowercase__ : Dict = 4 lowercase__ : str = 37 lowercase__ : str = '''gelu''' lowercase__ : Optional[int] = 0.1 lowercase__ : Union[str, Any] = 0.1 lowercase__ : str = 512 lowercase__ : Tuple = 16 lowercase__ : Any = 2 lowercase__ : Union[str, Any] = 0.02 lowercase__ : Optional[int] = 3 lowercase__ : str = 4 lowercase__ : List[Any] = 128 lowercase__ : Optional[int] = 2 lowercase__ : List[Any] = 9 lowercase__ : str = 1 lowercase__ : List[str] = None def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Any = None if self.use_token_type_ids: lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase__ : Union[str, Any] = None lowercase__ : Dict = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : List[Any] = ConvBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=_SCREAMING_SNAKE_CASE ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[Any] ,_snake_case : Tuple ,_snake_case : Dict ,_snake_case : Optional[int] ,_snake_case : Any ,_snake_case : List[Any] ,_snake_case : Any ) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : Optional[Any] = [input_ids, input_mask] lowercase__ : Tuple = model(_SCREAMING_SNAKE_CASE ) lowercase__ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : List[str] ,_snake_case : Any ,_snake_case : str ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : str ,_snake_case : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : Dict ) -> int: """simple docstring""" lowercase__ : List[str] = self.num_labels lowercase__ : Dict = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : Tuple ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> int: """simple docstring""" lowercase__ : List[Any] = self.num_choices lowercase__ : Union[str, Any] = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) lowercase__ : Optional[int] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) lowercase__ : int = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) lowercase__ : Optional[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase__ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ,_snake_case : Union[str, Any] ,_snake_case : Any ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = self.num_labels lowercase__ : Optional[int] = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) lowercase__ : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : Tuple ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Tuple ,_snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : int = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() ( lowercase__ ) : Dict = config_and_inputs lowercase__ : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase : Union[str, Any] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Optional[Any] = False def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : int = TFConvBertModelTester(self ) lowercase__ : Tuple = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = True lowercase__ : Optional[int] = True if hasattr(_SCREAMING_SNAKE_CASE ,'''use_cache''' ): lowercase__ : List[str] = True lowercase__ : Optional[int] = getattr(self.model_tester ,'''encoder_seq_length''' ,self.model_tester.seq_length ) lowercase__ : Any = getattr(self.model_tester ,'''key_length''' ,_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowercase__ : List[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) lowercase__ : str = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ,saved_model=_SCREAMING_SNAKE_CASE ) lowercase__ : str = os.path.join(_SCREAMING_SNAKE_CASE ,'''saved_model''' ,'''1''' ) lowercase__ : Union[str, Any] = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) lowercase__ : Dict = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: lowercase__ : int = outputs['''encoder_hidden_states'''] lowercase__ : List[str] = outputs['''encoder_attentions'''] else: lowercase__ : Optional[int] = outputs['''hidden_states'''] lowercase__ : int = outputs['''attentions'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) lowercase__ : int = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) ,[self.model_tester.seq_length, self.model_tester.hidden_size] ,) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) @slow def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : Optional[int] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = True lowercase__ : Optional[Any] = getattr(self.model_tester ,'''decoder_seq_length''' ,self.model_tester.seq_length ) lowercase__ : str = getattr(self.model_tester ,'''encoder_seq_length''' ,self.model_tester.seq_length ) lowercase__ : List[str] = getattr(self.model_tester ,'''key_length''' ,_SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = getattr(self.model_tester ,'''key_length''' ,_SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_snake_case : str ): lowercase__ : List[str] = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 ,0 ) lowercase__ : int = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] ,) def check_encoder_attentions_output(_snake_case : List[Any] ): lowercase__ : List[str] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) for model_class in self.all_model_classes: lowercase__ : Optional[Any] = True lowercase__ : List[Any] = False lowercase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowercase__ : Any = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) lowercase__ : int = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: lowercase__ : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Any = True lowercase__ : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : int = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowercase__ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ : str = model(_SCREAMING_SNAKE_CASE )[0] lowercase__ : Tuple = [1, 6, 768] self.assertEqual(output.shape ,_SCREAMING_SNAKE_CASE ) lowercase__ : Any = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 )
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
350
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Tuple = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] lowercase__ : List[str] = True if "large" in model_name or "huge" in model_name else False lowercase__ : List[Any] = True if "large" in model_name or "huge" in model_name else False lowercase__ : Union[str, Any] = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Optional[int] = [3, 3, 3, 3] lowercase__ : Dict = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : Tuple = [4, 4, 4, 4] lowercase__ : Optional[int] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : int = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : Tuple = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Any = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Optional[Any] = 1_28 elif "large" in model_name: lowercase__ : List[str] = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Dict = 3_52 # set label information lowercase__ : List[Any] = "huggingface/label-files" if "large" in model_name or "huge" in model_name: lowercase__ : Dict = "imagenet-22k-id2label.json" else: lowercase__ : str = "imagenet-1k-id2label.json" lowercase__ : str = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ : Tuple = {v: k for k, v in idalabel.items()} lowercase__ : str = FocalNetConfig( embed_dim=_SCREAMING_SNAKE_CASE , depths=_SCREAMING_SNAKE_CASE , focal_levels=_SCREAMING_SNAKE_CASE , focal_windows=_SCREAMING_SNAKE_CASE , use_conv_embed=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE , use_post_layernorm=_SCREAMING_SNAKE_CASE , use_layerscale=_SCREAMING_SNAKE_CASE , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Union[str, Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : List[Any] = "encoder." + name if "encoder.layers" in name: lowercase__ : Any = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : List[str] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : str = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : int = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Union[str, Any] = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Dict = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Tuple = "layernorm.weight" if name == "norm.bias": lowercase__ : str = "layernorm.bias" if "head" in name: lowercase__ : List[Any] = name.replace('''head''' , '''classifier''' ) else: lowercase__ : Tuple = "focalnet." + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: lowercase__ : str = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on lowercase__ : List[Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _SCREAMING_SNAKE_CASE ) lowercase__ : str = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )["model"] # rename keys for key in state_dict.copy().keys(): lowercase__ : Union[str, Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = val lowercase__ : Any = get_focalnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify conversion lowercase__ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : int = BitImageProcessor( do_resize=_SCREAMING_SNAKE_CASE , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size=2_24 , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE , ) lowercase__ : Any = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) lowercase__ : List[str] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowercase__ : Any = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : List[Any] = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _SCREAMING_SNAKE_CASE , atol=1E-4 ) lowercase__ : int = model(**_SCREAMING_SNAKE_CASE ) lowercase__ : Dict = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Tuple = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : int = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : Any = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : str = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
351
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_ = 'pt' elif is_tf_available(): lowerCAmelCase_ = 'tf' else: lowerCAmelCase_ = 'jax' class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = PerceiverTokenizer lowerCAmelCase : Any = False def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() lowercase__ : Optional[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def UpperCAmelCase ( self : Dict ,**_snake_case : Any ) -> PerceiverTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ,_snake_case : int=False ,_snake_case : Optional[int]=20 ,_snake_case : Optional[int]=5 ) -> Tuple[str, list]: """simple docstring""" lowercase__ : List[str] = [] for i in range(len(_snake_case ) ): try: lowercase__ : Union[str, Any] = tokenizer.decode([i] ,clean_up_tokenization_spaces=_snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ : Optional[int] = list(filter(lambda _snake_case : re.match(r'''^[ a-zA-Z]+$''' ,t[1] ) ,_snake_case ) ) lowercase__ : Union[str, Any] = list(filter(lambda _snake_case : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=_snake_case ) ,_snake_case ) ) if max_length is not None and len(_snake_case ) > max_length: lowercase__ : Dict = toks[:max_length] if min_length is not None and len(_snake_case ) < min_length and len(_snake_case ) > 0: while len(_snake_case ) < min_length: lowercase__ : str = toks + toks # toks_str = [t[1] for t in toks] lowercase__ : Optional[Any] = [t[0] for t in toks] # Ensure consistency lowercase__ : Any = tokenizer.decode(_snake_case ,clean_up_tokenization_spaces=_snake_case ) if " " not in output_txt and len(_snake_case ) > 1: lowercase__ : Any = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=_snake_case ) + ''' ''' + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=_snake_case ) ) if with_prefix_space: lowercase__ : Dict = ''' ''' + output_txt lowercase__ : str = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) return output_txt, output_ids def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = self.perceiver_tokenizer lowercase__ : int = '''Unicode €.''' lowercase__ : List[Any] = tokenizer(_snake_case ) lowercase__ : Any = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] ,_snake_case ) # decoding lowercase__ : Optional[Any] = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case ,'''[CLS]Unicode €.[SEP]''' ) lowercase__ : Union[str, Any] = tokenizer('''e è é ê ë''' ) lowercase__ : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] ,_snake_case ) # decoding lowercase__ : int = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case ,'''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) ,'''[CLS]e è é ê ë[SEP]''' ) def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.perceiver_tokenizer lowercase__ : List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowercase__ : int = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase__ : List[str] = tokenizer(_snake_case ,padding=_snake_case ,return_tensors=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) if FRAMEWORK != "jax": lowercase__ : Any = list(batch.input_ids.numpy()[0] ) else: lowercase__ : Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_snake_case ,_snake_case ) self.assertEqual((2, 38) ,batch.input_ids.shape ) self.assertEqual((2, 38) ,batch.attention_mask.shape ) def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = self.perceiver_tokenizer lowercase__ : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__ : int = tokenizer(_snake_case ,padding=_snake_case ,return_tensors=_snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' ,_snake_case ) self.assertIn('''attention_mask''' ,_snake_case ) self.assertNotIn('''decoder_input_ids''' ,_snake_case ) self.assertNotIn('''decoder_attention_mask''' ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" lowercase__ : Optional[int] = self.perceiver_tokenizer lowercase__ : List[Any] = [ '''Summary of the text.''', '''Another summary.''', ] lowercase__ : Any = tokenizer( text_target=_snake_case ,max_length=32 ,padding='''max_length''' ,truncation=_snake_case ,return_tensors=_snake_case ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test lowercase__ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : Any = tempfile.mkdtemp() lowercase__ : Optional[int] = ''' He is very happy, UNwant\u00E9d,running''' lowercase__ : Dict = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) lowercase__ : Optional[Any] = tokenizer.__class__.from_pretrained(_snake_case ) lowercase__ : Optional[Any] = after_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) shutil.rmtree(_snake_case ) lowercase__ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : Union[str, Any] = tempfile.mkdtemp() lowercase__ : List[str] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowercase__ : str = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowercase__ : Optional[Any] = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) lowercase__ : int = tokenizer.__class__.from_pretrained(_snake_case ) lowercase__ : List[Any] = after_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) self.assertIn('''new_additional_special_token''' ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) lowercase__ : Optional[Any] = tokenizer.__class__.from_pretrained(_snake_case ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_snake_case ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) with open(os.path.join(_snake_case ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: lowercase__ : int = json.load(_snake_case ) with open(os.path.join(_snake_case ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: lowercase__ : List[str] = json.load(_snake_case ) lowercase__ : Any = [f"""<extra_id_{i}>""" for i in range(125 )] lowercase__ : List[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowercase__ : Union[str, Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_snake_case ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_snake_case ,_snake_case ) with open(os.path.join(_snake_case ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_snake_case ,_snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ : Dict = tokenizer_class.from_pretrained( _snake_case ,) self.assertIn( '''an_additional_special_token''' ,tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ : Dict = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' ,lstrip=_snake_case )] lowercase__ : Optional[int] = tokenizer_class.from_pretrained( _snake_case ,additional_special_tokens=_snake_case ,) self.assertIn('''a_new_additional_special_token''' ,tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) ,) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) ,'''�''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" pass def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : int = self.get_tokenizers(fast=_snake_case ,do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase__ : str = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_string(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case )
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ): while a != 0: lowercase__ , lowercase__ : Union[str, Any] = b % a, a return b def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: lowercase__ : Tuple = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCAmelCase_ ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : str = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
353
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase_ = False, False, False @dataclass class __A : '''simple docstring''' lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = None # Automatically constructed lowerCAmelCase : Union[str, Any] = "dict" lowerCAmelCase : Optional[int] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase : Optional[Any] = field(default="Audio" ,init=lowerCamelCase__ ,repr=lowerCamelCase__ ) def __call__( self : str ) -> Optional[Any]: """simple docstring""" return self.pa_type def UpperCAmelCase ( self : Any ,_snake_case : Union[str, bytes, dict] ) -> List[str]: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(_snake_case ,_snake_case ): return {"bytes": None, "path": value} elif isinstance(_snake_case ,_snake_case ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase__ : List[Any] = BytesIO() sf.write(_snake_case ,value['''array'''] ,value['''sampling_rate'''] ,format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase__ : int = np.frombuffer(value['''bytes'''] ,dtype=np.intaa ).astype(np.floataa ) / 32_767 else: lowercase__ : Tuple = np.memmap(value['''path'''] ,dtype='''h''' ,mode='''r''' ).astype(np.floataa ) / 32_767 lowercase__ : Dict = BytesIO(bytes() ) sf.write(_snake_case ,_snake_case ,value['''sampling_rate'''] ,format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : dict ,_snake_case : Optional[Dict[str, Union[str, bool, None]]] = None ) -> Union[str, Any]: """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) lowercase__ : Any = (value["path"], BytesIO(value['''bytes'''] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err lowercase__ : Dict = xsplitext(_snake_case )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) if file is None: lowercase__ : Optional[int] = token_per_repo_id or {} lowercase__ : Optional[Any] = path.split('''::''' )[-1] try: lowercase__ : int = string_to_dict(_snake_case ,config.HUB_DATASETS_URL )["repo_id"] lowercase__ : List[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase__ : Dict = None with xopen(_snake_case ,'''rb''' ,use_auth_token=_snake_case ) as f: lowercase__ : Optional[int] = sf.read(_snake_case ) else: lowercase__ : Union[str, Any] = sf.read(_snake_case ) lowercase__ : Any = array.T if self.mono: lowercase__ : Optional[int] = librosa.to_mono(_snake_case ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase__ : Union[str, Any] = librosa.resample(_snake_case ,orig_sr=_snake_case ,target_sr=self.sampling_rate ) lowercase__ : Union[str, Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[pa.StringArray, pa.StructArray] ) -> Tuple: """simple docstring""" if pa.types.is_string(storage.type ): lowercase__ : Union[str, Any] = pa.array([None] * len(_snake_case ) ,type=pa.binary() ) lowercase__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ : Any = pa.array([None] * len(_snake_case ) ,type=pa.string() ) lowercase__ : Dict = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): lowercase__ : Union[str, Any] = pa.array([Audio().encode_example(_snake_case ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowercase__ : Optional[Any] = storage.field('''bytes''' ) else: lowercase__ : Any = pa.array([None] * len(_snake_case ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowercase__ : Dict = storage.field('''path''' ) else: lowercase__ : Any = pa.array([None] * len(_snake_case ) ,type=pa.string() ) lowercase__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) return array_cast(_snake_case ,self.pa_type ) def UpperCAmelCase ( self : str ,_snake_case : pa.StructArray ) -> Dict: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_snake_case : List[Any] ): with xopen(_snake_case ,'''rb''' ) as f: lowercase__ : str = f.read() return bytes_ lowercase__ : str = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) lowercase__ : List[str] = pa.array( [os.path.basename(_snake_case ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) lowercase__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_snake_case ,self.pa_type )
354
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
0
def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Any = len(__lowerCamelCase ) lowercase__ : Tuple = sum(__lowerCamelCase ) lowercase__ : Any = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowercase__ : Optional[int] = True for i in range(1 , s + 1 ): lowercase__ : List[str] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowercase__ : Any = dp[i][j - 1] if arr[i - 1] <= j: lowercase__ : Optional[Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowercase__ : int = s - 2 * j break return diff
355
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
0
"""simple docstring""" import argparse from collections import defaultdict import yaml lowerCAmelCase_ : Optional[Any] = 'docs/source/en/_toctree.yml' def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Tuple = defaultdict(__UpperCAmelCase ) lowercase__ : Dict = [] lowercase__ : Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(__UpperCAmelCase ) lowercase__ : Any = new_doc_list lowercase__ : List[Any] = [key for key, value in counts.items() if value > 1] lowercase__ : List[Any] = [] for duplicate_key in duplicates: lowercase__ : Optional[int] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(__UpperCAmelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) lowercase__ : str = sorted(__UpperCAmelCase , key=lambda __lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__UpperCAmelCase ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(__UpperCAmelCase ) # Sort return overview_doc def __UpperCAmelCase ( __lowerCamelCase=False ) -> str: with open(__UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__ : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ : Any = content[api_idx]['''sections'''] # Then to the model doc lowercase__ : Union[str, Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase__ : str = api_doc[scheduler_idx]['''sections'''] lowercase__ : List[str] = clean_doc_toc(__UpperCAmelCase ) lowercase__ : Optional[Any] = False if new_scheduler_doc != scheduler_doc: lowercase__ : Any = True if overwrite: lowercase__ : Tuple = new_scheduler_doc if diff: if overwrite: lowercase__ : List[str] = api_doc with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase , allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def __UpperCAmelCase ( __lowerCamelCase=False ) -> Optional[Any]: with open(__UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__ : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc lowercase__ : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__ : List[Any] = content[api_idx]['''sections'''] # Then to the model doc lowercase__ : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase__ : Dict = False lowercase__ : str = api_doc[pipeline_idx]['''sections'''] lowercase__ : int = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase__ : str = pipeline_doc['''section'''] lowercase__ : Optional[Any] = clean_doc_toc(__UpperCAmelCase ) if overwrite: lowercase__ : Union[str, Any] = new_sub_pipeline_doc new_pipeline_docs.append(__UpperCAmelCase ) # sort overall pipeline doc lowercase__ : Union[str, Any] = clean_doc_toc(__UpperCAmelCase ) if new_pipeline_docs != pipeline_docs: lowercase__ : Optional[int] = True if overwrite: lowercase__ : int = new_pipeline_docs if diff: if overwrite: lowercase__ : Optional[int] = api_doc with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase , allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase_ : Dict = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
356
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase_ = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ,_snake_case : Optional[int] ,_snake_case : int = None ,_snake_case : Optional[Any] = None ,_snake_case : Optional[Any] = None ,_snake_case : str = True ,) -> Dict: """simple docstring""" lowercase__ : List[Any] = [file for file in os.listdir(lowerCamelCase__ ) if os.path.isfile(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) )] if identifier is not None: lowercase__ : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): for n_ in n_identifier: lowercase__ : List[str] = [file for file in files if n_ not in file] else: lowercase__ : Optional[int] = [file for file in files if n_identifier not in file] lowercase__ : List[str] = ignore_files or [] ignore_files.append('''__init__.py''' ) lowercase__ : Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' ,lowerCamelCase__ ) if only_modules: lowercase__ : int = file.split('''.''' )[0] try: lowercase__ : Union[str, Any] = getattr(lowerCamelCase__ ,lowerCamelCase__ ) lowercase__ : List[Any] = doctest.DocTestSuite(lowerCamelCase__ ) lowercase__ : Tuple = unittest.TextTestRunner().run(lowerCamelCase__ ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: lowercase__ : Optional[int] = doctest.testfile(str('''..''' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : int = Path('''src/transformers''' ) lowercase__ : List[str] = '''modeling''' lowercase__ : Any = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(lowerCamelCase__ ,identifier=lowerCamelCase__ ,ignore_files=lowerCamelCase__ ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : List[Any] = Path('''src/transformers''' ) lowercase__ : List[Any] = '''tokenization''' self.analyze_directory(lowerCamelCase__ ,identifier=lowerCamelCase__ ) def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ : Tuple = Path('''src/transformers''' ) lowercase__ : List[str] = '''configuration''' self.analyze_directory(lowerCamelCase__ ,identifier=lowerCamelCase__ ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Any = Path('''src/transformers''' ) lowercase__ : Optional[Any] = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(lowerCamelCase__ ,n_identifier=lowerCamelCase__ ) def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = Path('''docs/source''' ) lowercase__ : str = ['''favicon.ico'''] self.analyze_directory(lowerCamelCase__ ,ignore_files=lowerCamelCase__ ,only_modules=lowerCamelCase__ )
357
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : Optional[Any] = [] for i in range(A_ ): lowercase__ : str = i / num_diffusion_timesteps lowercase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A_ ) / alpha_bar_fn(A_ ) , A_ ) ) return torch.tensor(A_ , dtype=torch.floataa ) class __A ( a_ ,a_ ): '''simple docstring''' lowerCAmelCase : Dict = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase : Optional[Any] = 2 @register_to_config def __init__( self : Optional[int] ,_snake_case : int = 1_000 ,_snake_case : float = 0.0_0085 ,_snake_case : float = 0.012 ,_snake_case : str = "linear" ,_snake_case : Optional[Union[np.ndarray, List[float]]] = None ,_snake_case : str = "epsilon" ,_snake_case : Optional[bool] = False ,_snake_case : Optional[bool] = False ,_snake_case : float = 1.0 ,_snake_case : str = "linspace" ,_snake_case : int = 0 ,) -> Dict: """simple docstring""" if trained_betas is not None: lowercase__ : Any = torch.tensor(lowercase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase__ : Any = torch.linspace(lowercase_ ,lowercase_ ,lowercase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ : Optional[Any] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,lowercase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ : List[str] = betas_for_alpha_bar(lowercase_ ,alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": lowercase__ : Optional[int] = betas_for_alpha_bar(lowercase_ ,alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase__ : List[str] = 1.0 - self.betas lowercase__ : Any = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(lowercase_ ,lowercase_ ,lowercase_ ) lowercase__ : Optional[Any] = use_karras_sigmas def UpperCAmelCase ( self : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : Dict=None ) -> Tuple: """simple docstring""" if schedule_timesteps is None: lowercase__ : Union[str, Any] = self.timesteps lowercase__ : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase__ : Union[str, Any] = 1 if len(lowercase_ ) > 1 else 0 else: lowercase__ : Dict = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep lowercase__ : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase ( self : str ,_snake_case : torch.FloatTensor ,_snake_case : Union[float, torch.FloatTensor] ,) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.index_for_timestep(lowercase_ ) lowercase__ : Dict = self.sigmas[step_index] lowercase__ : int = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase ( self : int ,_snake_case : int ,_snake_case : Union[str, torch.device] = None ,_snake_case : Optional[int] = None ,) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = num_inference_steps lowercase__ : int = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase__ : Any = np.linspace(0 ,num_train_timesteps - 1 ,lowercase_ ,dtype=lowercase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase__ : Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ : Tuple = (np.arange(0 ,lowercase_ ) * step_ratio).round()[::-1].copy().astype(lowercase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase__ : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ : str = (np.arange(lowercase_ ,0 ,-step_ratio )).round().copy().astype(lowercase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.""" ) lowercase__ : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase__ : str = np.log(lowercase_ ) lowercase__ : int = np.interp(lowercase_ ,np.arange(0 ,len(lowercase_ ) ) ,lowercase_ ) if self.config.use_karras_sigmas: lowercase__ : Any = self._convert_to_karras(in_sigmas=lowercase_ ,num_inference_steps=self.num_inference_steps ) lowercase__ : Optional[int] = np.array([self._sigma_to_t(lowercase_ ,lowercase_ ) for sigma in sigmas] ) lowercase__ : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase__ : Union[str, Any] = torch.from_numpy(lowercase_ ).to(device=lowercase_ ) lowercase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase__ : List[str] = torch.from_numpy(lowercase_ ) lowercase__ : Tuple = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowercase_ ).startswith('''mps''' ): # mps does not support float64 lowercase__ : List[str] = timesteps.to(lowercase_ ,dtype=torch.floataa ) else: lowercase__ : Any = timesteps.to(device=lowercase_ ) # empty dt and derivative lowercase__ : Dict = None lowercase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase__ : Dict = defaultdict(lowercase_ ) def UpperCAmelCase ( self : Any ,_snake_case : Dict ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : List[Any] = np.log(lowercase_ ) # get distribution lowercase__ : List[Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase__ : str = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase__ : Any = low_idx + 1 lowercase__ : Tuple = log_sigmas[low_idx] lowercase__ : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase__ : List[Any] = (low - log_sigma) / (low - high) lowercase__ : int = np.clip(lowercase_ ,0 ,1 ) # transform interpolation to time range lowercase__ : Any = (1 - w) * low_idx + w * high_idx lowercase__ : List[str] = t.reshape(sigma.shape ) return t def UpperCAmelCase ( self : Optional[int] ,_snake_case : torch.FloatTensor ,_snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ : float = in_sigmas[-1].item() lowercase__ : float = in_sigmas[0].item() lowercase__ : str = 7.0 # 7.0 is the value used in the paper lowercase__ : Optional[int] = np.linspace(0 ,1 ,lowercase_ ) lowercase__ : List[Any] = sigma_min ** (1 / rho) lowercase__ : List[Any] = sigma_max ** (1 / rho) lowercase__ : List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return self.dt is None def UpperCAmelCase ( self : str ,_snake_case : Union[torch.FloatTensor, np.ndarray] ,_snake_case : Union[float, torch.FloatTensor] ,_snake_case : Union[torch.FloatTensor, np.ndarray] ,_snake_case : bool = True ,) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = self.index_for_timestep(lowercase_ ) # advance index counter by 1 lowercase__ : Dict = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase__ : int = self.sigmas[step_index] lowercase__ : Dict = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase__ : Union[str, Any] = self.sigmas[step_index - 1] lowercase__ : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase__ : Union[str, Any] = 0 lowercase__ : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase__ : List[Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowercase__ : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase__ : int = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: lowercase__ : Union[str, Any] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase__ : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase__ : str = sigma_next - sigma_hat # store for 2nd order step lowercase__ : Optional[int] = derivative lowercase__ : Dict = dt lowercase__ : Optional[Any] = sample else: # 2. 2nd order / Heun's method lowercase__ : List[str] = (sample - pred_original_sample) / sigma_next lowercase__ : int = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase__ : str = self.dt lowercase__ : List[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase__ : List[Any] = None lowercase__ : str = None lowercase__ : Optional[Any] = None lowercase__ : Union[str, Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_ ) def UpperCAmelCase ( self : List[Any] ,_snake_case : torch.FloatTensor ,_snake_case : torch.FloatTensor ,_snake_case : torch.FloatTensor ,) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowercase_ ): # mps does not support float64 lowercase__ : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase__ : str = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase__ : int = self.timesteps.to(original_samples.device ) lowercase__ : Union[str, Any] = timesteps.to(original_samples.device ) lowercase__ : int = [self.index_for_timestep(lowercase_ ,lowercase_ ) for t in timesteps] lowercase__ : Dict = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase__ : Optional[Any] = sigma.unsqueeze(-1 ) lowercase__ : List[Any] = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ) -> List[str]: """simple docstring""" return self.config.num_train_timesteps
358
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : List[Any] = sorted(zip(_lowercase , _lowercase ) , key=lambda __lowerCamelCase : x[0] / x[1] , reverse=_lowercase ) lowercase__ , lowercase__ : List[Any] = [i[0] for i in r], [i[1] for i in r] lowercase__ : List[str] = list(accumulate(_lowercase ) ) lowercase__ : List[str] = bisect(_lowercase , _lowercase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowercase__ : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowercase__ : Dict = [[0.0, 0.0], [0.0, 0.0]] lowercase__ : Dict = matrix[1][1], matrix[0][0] lowercase__ : Optional[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowercase__ : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowercase__ : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowercase__ : Dict = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowercase__ : List[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowercase__ : int = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowercase__ : Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowercase__ : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowercase__ : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowercase__ : Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowercase__ : str = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowercase__ : Optional[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowercase__ : Any = array(__lowerCamelCase ) for i in range(3 ): for j in range(3 ): lowercase__ : Optional[int] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowercase__ : int = array(__lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(__lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
360
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
0
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: for attribute in key.split('''.''' ): lowercase__ : List[str] = getattr(_a , _a ) if weight_type is not None: lowercase__ : Union[str, Any] = getattr(_a , _a ).shape else: lowercase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : List[Any] = value elif weight_type == "weight_g": lowercase__ : Optional[int] = value elif weight_type == "weight_v": lowercase__ : int = value elif weight_type == "bias": lowercase__ : Optional[int] = value else: lowercase__ : Optional[Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : Optional[Any] = [] lowercase__ : List[Any] = fairseq_model.state_dict() lowercase__ : Optional[Any] = hf_model.feature_extractor lowercase__ : str = hf_model.adapter for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ : Dict = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(_a , _a , _a , _a ) lowercase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ : Optional[Any] = True if "*" in mapped_key: lowercase__ : Any = name.split(_a )[0].split('''.''' )[-2] lowercase__ : List[str] = mapped_key.replace('''*''' , _a ) if "weight_g" in name: lowercase__ : Any = '''weight_g''' elif "weight_v" in name: lowercase__ : Dict = '''weight_v''' elif "bias" in name: lowercase__ : Optional[int] = '''bias''' elif "weight" in name: lowercase__ : str = '''weight''' else: lowercase__ : int = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] lowercase__ : Optional[Any] = name.split('''.''' ) lowercase__ : Any = int(items[0] ) lowercase__ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__ : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_a ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : int = full_name.split('''adaptor.''' )[-1] lowercase__ : List[Any] = name.split('''.''' ) if items[1].isdigit(): lowercase__ : List[str] = int(items[1] ) else: lowercase__ : Optional[Any] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowercase__ : Any = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowercase__ : Union[str, Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowercase__ : Tuple = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowercase__ : Any = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(_a , _a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowercase__ : Union[str, Any] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowercase__ : Tuple = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(_a ) def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ , lowercase__ : Union[str, Any] = emb.weight.shape lowercase__ : List[str] = nn.Linear(_a , _a , bias=_a ) lowercase__ : Tuple = emb.weight.data return lin_layer @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[Any]: lowercase__ : int = WavaVecaConfig.from_pretrained( _a , add_adapter=_a , adapter_stride=_a , adapter_kernel_size=_a , use_auth_token=_a , output_hidden_size=_a , ) lowercase__ : str = MBartConfig.from_pretrained(_a ) # load model lowercase__ , lowercase__ , lowercase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowercase__ : str = model[0].eval() # load feature extractor lowercase__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(_a , use_auth_token=_a ) # set weights for wav2vec2 encoder lowercase__ : str = WavaVecaModel(_a ) recursively_load_weights_wavaveca(model.encoder , _a ) # load decoder weights lowercase__ : Any = MBartForCausalLM(_a ) lowercase__ , lowercase__ : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_a ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowercase__ : str = SpeechEncoderDecoderModel(encoder=_a , decoder=_a ) lowercase__ : Tuple = False lowercase__ : Dict = MBartaaTokenizer(_a ) tokenizer.save_pretrained(_a ) lowercase__ : str = hf_wavavec.config.to_dict() lowercase__ : str = tokenizer.pad_token_id lowercase__ : Optional[Any] = tokenizer.bos_token_id lowercase__ : Dict = tokenizer.eos_token_id lowercase__ : str = '''mbart50''' lowercase__ : List[str] = '''wav2vec2''' lowercase__ : Tuple = tokenizer.eos_token_id lowercase__ : Optional[Any] = 25_00_04 lowercase__ : Any = tokenizer.eos_token_id lowercase__ : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(_a ) hf_wavavec.save_pretrained(_a ) feature_extractor.save_pretrained(_a ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250_004, type=int, help='`decoder_start_token_id` of model config') lowerCAmelCase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def __UpperCAmelCase ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( a__ ): '''simple docstring''' lowerCAmelCase : int = ["""image_processor""", """tokenizer"""] lowerCAmelCase : List[Any] = """CLIPImageProcessor""" lowerCAmelCase : Any = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Dict ,_snake_case : Optional[Any]=None ,_snake_case : Dict=None ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowerCAmelCase__ ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ ,lowerCAmelCase__ ) def __call__( self : Optional[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : int = self.tokenizer(lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ,**lowerCAmelCase__ ) if images is not None: lowercase__ : List[str] = self.image_processor(lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ,**lowerCAmelCase__ ) if text is not None and images is not None: lowercase__ : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) ,tensor_type=lowerCAmelCase__ ) def UpperCAmelCase ( self : Optional[Any] ,*_snake_case : Tuple ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase ( self : int ,*_snake_case : Optional[int] ,**_snake_case : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) @property def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = self.tokenizer.model_input_names lowercase__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCAmelCase_ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', """emoji""": True, }, } ] lowerCAmelCase_ = 0 for log in Path().glob('*.log'): lowerCAmelCase_ = 0 with open(log, 'r') as f: for line in f: lowerCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": lowerCAmelCase_ = line["""nodeid"""] if line.get('duration', None) is not None: lowerCAmelCase_ = F'''{line["duration"]:.4f}''' if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase_ = [] log.unlink() lowerCAmelCase_ = """""" lowerCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase_ = [] lowerCAmelCase_ = {} for test in failed_tests: lowerCAmelCase_ = test[0].split('::') lowerCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: lowerCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase_ = [test[0] for test in failed_table] lowerCAmelCase_ = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: lowerCAmelCase_ = """Too many failed tests, please see the full report in the Action results.""" lowerCAmelCase_ = len(err) + 10 lowerCAmelCase_ = message[: 3_000 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: lowerCAmelCase_ = """No failed tests! 🤗""" print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowerCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) lowerCAmelCase_ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) lowerCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowerCAmelCase_ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase_ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase_ = row[0] else: lowerCAmelCase_ = """""" lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
364
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
0
"""simple docstring""" import random class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( _snake_case : int ) -> tuple[list[int], list[int]]: """simple docstring""" lowercase__ : Dict = [ord(lowerCAmelCase_ ) for i in text] lowercase__ : Dict = [] lowercase__ : Optional[int] = [] for i in plain: lowercase__ : str = random.randint(1 ,300 ) lowercase__ : Dict = (i + k) * k cipher.append(lowerCAmelCase_ ) key.append(lowerCAmelCase_ ) return cipher, key @staticmethod def UpperCAmelCase ( _snake_case : Dict ,_snake_case : Any ) -> str: """simple docstring""" lowercase__ : Optional[int] = [] for i in range(len(lowerCAmelCase_ ) ): lowercase__ : Optional[int] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCAmelCase_ ) ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ ,lowerCAmelCase_ = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __A ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) ,supervised_keys=SCREAMING_SNAKE_CASE_ ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Any ,_snake_case : List[Any] ) -> Any: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'''examples''': get_test_dummy_examples()} )] def UpperCAmelCase ( self : Any ,_snake_case : int ,_snake_case : Any ) -> Optional[int]: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE_ ) class __A ( datasets.BeamBasedBuilder ): '''simple docstring''' def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ,supervised_keys=SCREAMING_SNAKE_CASE_ ,) def UpperCAmelCase ( self : Dict ,_snake_case : List[str] ,_snake_case : List[str] ) -> Optional[int]: """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ,_snake_case : List[str] ) -> Dict: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( ) -> Optional[int]: return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def __UpperCAmelCase ( ) -> Union[str, Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class __A ( _lowerCAmelCase ): '''simple docstring''' @require_beam def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ : Optional[int] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ ,beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE_ ,builder.name ,'''default''' ,'''0.0.0''' ,f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features ,datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase__ : Any = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows ,SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples ,SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(dset['''train'''][0] ,get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] ,get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ ,builder.name ,'''default''' ,'''0.0.0''' ,'''dataset_info.json''' ) ) ) del dset @require_beam def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" import apache_beam as beam lowercase__ : List[str] = beam.io.parquetio.WriteToParquet lowercase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ : Dict = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ ,beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: lowercase__ : List[Any] = partial(SCREAMING_SNAKE_CASE_ ,num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE_ ,builder.name ,'''default''' ,'''0.0.0''' ,f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE_ ,builder.name ,'''default''' ,'''0.0.0''' ,f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features ,datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase__ : Any = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows ,SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples ,SCREAMING_SNAKE_CASE_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) ,sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ ,builder.name ,'''default''' ,'''0.0.0''' ,'''dataset_info.json''' ) ) ) del dset @require_beam def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ : int = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ ) self.assertRaises(datasets.builder.MissingBeamOptions ,builder.download_and_prepare ) @require_beam def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ : int = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ ,beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE_ ,builder.name ,'''default''' ,'''0.0.0''' ,f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features ,datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) lowercase__ : Any = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows ,SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples ,SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(dset['''train'''][0] ,get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] ,get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ ,builder.name ,'''default''' ,'''0.0.0''' ,'''dataset_info.json''' ) ) ) del dset
366
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int=13 ,_snake_case : Optional[int]=7 ,_snake_case : Tuple=True ,_snake_case : Any=True ,_snake_case : List[str]=True ,_snake_case : Tuple=True ,_snake_case : str=99 ,_snake_case : str=16 ,_snake_case : Dict=36 ,_snake_case : List[str]=6 ,_snake_case : Any=6 ,_snake_case : Any=6 ,_snake_case : Union[str, Any]=37 ,_snake_case : str="gelu" ,_snake_case : List[Any]=0.1 ,_snake_case : Optional[int]=0.1 ,_snake_case : Optional[int]=512 ,_snake_case : List[str]=16 ,_snake_case : Tuple=2 ,_snake_case : Dict=0.02 ,_snake_case : Tuple=3 ,_snake_case : Union[str, Any]=4 ,_snake_case : Optional[int]=None ,) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = parent lowercase__ : str = batch_size lowercase__ : Optional[Any] = seq_length lowercase__ : Optional[int] = is_training lowercase__ : Optional[int] = use_input_mask lowercase__ : List[Any] = use_token_type_ids lowercase__ : Tuple = use_labels lowercase__ : Optional[Any] = vocab_size lowercase__ : List[Any] = embedding_size lowercase__ : Any = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Union[str, Any] = num_hidden_groups lowercase__ : List[str] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Optional[Any] = num_choices lowercase__ : Optional[int] = scope def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : List[str] = None if self.use_input_mask: lowercase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase__ : Union[str, Any] = None lowercase__ : List[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : str ,_snake_case : Optional[int] ,_snake_case : Tuple ,_snake_case : int ,_snake_case : str ,_snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = AlbertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase__ : List[str] = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ) lowercase__ : str = model(UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ) lowercase__ : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ,_snake_case : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : str ,_snake_case : Optional[int] ,_snake_case : Dict ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = AlbertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase__ : List[Any] = model( UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ,sentence_order_label=UpperCamelCase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Optional[int] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : str = AlbertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase__ : Dict = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : Optional[int] ,_snake_case : Any ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Dict ) -> Any: """simple docstring""" lowercase__ : int = AlbertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase__ : str = model( UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,start_positions=UpperCamelCase__ ,end_positions=UpperCamelCase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : Tuple ,_snake_case : List[str] ,_snake_case : List[str] ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : Tuple ,_snake_case : Union[str, Any] ,_snake_case : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = AlbertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase__ : Dict = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : List[str] ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : List[str] ,_snake_case : str ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : int = AlbertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase__ : str = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : Any ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ,_snake_case : Dict ,_snake_case : int ,_snake_case : str ) -> Tuple: """simple docstring""" lowercase__ : int = self.num_choices lowercase__ : List[Any] = AlbertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase__ : Tuple = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase__ : Union[str, Any] = model( UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() ( lowercase__ ) : List[str] = config_and_inputs lowercase__ : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : List[Any] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Dict = True def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : int=False ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = super()._prepare_for_class(UpperCamelCase__ ,UpperCamelCase__ ,return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): lowercase__ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=UpperCamelCase__ ) lowercase__ : List[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=UpperCamelCase__ ) return inputs_dict def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Any = AlbertModelTester(self ) lowercase__ : Any = ConfigTester(self ,config_class=UpperCamelCase__ ,hidden_size=37 ) def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : int = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = AlbertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = AlbertModel.from_pretrained('''albert-base-v2''' ) lowercase__ : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Any = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ )[0] lowercase__ : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,UpperCamelCase__ ) lowercase__ : Any = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,UpperCamelCase__ ,atol=1e-4 ) )
367
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: assert column_title.isupper() lowercase__ : Tuple = 0 lowercase__ : int = len(lowerCamelCase_ ) - 1 lowercase__ : Any = 0 while index >= 0: lowercase__ : Dict = (ord(column_title[index] ) - 64) * pow(26 , lowerCamelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
"""simple docstring""" import string def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Any = '''''' for i in sequence: lowercase__ : List[Any] = ord(__UpperCamelCase ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : List[str] = string.ascii_letters lowercase__ : Union[str, Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__UpperCamelCase )] if c in letters else c for c in sequence ) def __UpperCAmelCase ( ) -> Optional[Any]: from timeit import timeit print('''Running performance benchmarks...''' ) lowercase__ : Union[str, Any] = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=__UpperCamelCase )} seconds""" ) print(f"""> atbash(): {timeit("atbash(printable)" , setup=__UpperCamelCase )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') lowerCAmelCase_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[str] = field( default="cifar10" ,metadata={"help": "Name of a dataset from the datasets package"} ) lowerCAmelCase : Optional[str] = field( default=_lowerCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field( default=_lowerCAmelCase ,metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} ,) lowerCAmelCase : Optional[str] = field(default=_lowerCAmelCase ,metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=_lowerCAmelCase ,metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 ,metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : int = field(default=3_2 ,metadata={"help": "The size of the square patches to use for masking."} ) lowerCAmelCase : float = field( default=0.6 ,metadata={"help": "Percentage of patches to mask."} ,) lowerCAmelCase : Optional[int] = field( default=_lowerCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) lowerCAmelCase : Optional[int] = field( default=_lowerCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = {} if self.train_dir is not None: lowercase__ : Optional[int] = self.train_dir if self.validation_dir is not None: lowercase__ : int = self.validation_dir lowercase__ : str = data_files if data_files else None @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( default=_lowerCAmelCase ,metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } ,) lowerCAmelCase : Optional[str] = field( default=_lowerCAmelCase ,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_lowerCAmelCase )} ,) lowerCAmelCase : Optional[str] = field( default=_lowerCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=_lowerCAmelCase ,metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } ,) lowerCAmelCase : Optional[str] = field( default=_lowerCAmelCase ,metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} ,) lowerCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) lowerCAmelCase : str = field(default=_lowerCAmelCase ,metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=_lowerCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) lowerCAmelCase : Optional[int] = field( default=_lowerCAmelCase ,metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } ,) lowerCAmelCase : Optional[int] = field( default=_lowerCAmelCase ,metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } ,) lowerCAmelCase : Optional[int] = field( default=_lowerCAmelCase ,metadata={"help": "Stride to use for the encoder."} ,) class __A : '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Union[str, Any]=192 ,_snake_case : Optional[int]=32 ,_snake_case : List[Any]=4 ,_snake_case : str=0.6 ) -> str: """simple docstring""" lowercase__ : List[str] = input_size lowercase__ : Optional[int] = mask_patch_size lowercase__ : str = model_patch_size lowercase__ : List[Any] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) lowercase__ : Dict = self.input_size // self.mask_patch_size lowercase__ : Tuple = self.mask_patch_size // self.model_patch_size lowercase__ : List[Any] = self.rand_size**2 lowercase__ : Optional[Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = np.random.permutation(self.token_count )[: self.mask_count] lowercase__ : List[str] = np.zeros(self.token_count ,dtype=_lowercase ) lowercase__ : Dict = 1 lowercase__ : Dict = mask.reshape((self.rand_size, self.rand_size) ) lowercase__ : Any = mask.repeat(self.scale ,axis=0 ).repeat(self.scale ,axis=1 ) return torch.tensor(mask.flatten() ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Optional[int] = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ : Tuple = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __UpperCAmelCase ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ : str = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ : Tuple = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: lowercase__ : List[str] = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase__ : Any = split['''train'''] lowercase__ : Dict = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase__ : int = AutoConfig.from_pretrained(model_args.config_name_or_path , **snake_case_ ) elif model_args.model_name_or_path: lowercase__ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: lowercase__ : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(snake_case_ , '''decoder_type''' ): lowercase__ : Tuple = '''simmim''' # adapt config lowercase__ : List[Any] = model_args.image_size if model_args.image_size is not None else config.image_size lowercase__ : Optional[Any] = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase__ : Dict = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase__ : List[str] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ ) elif model_args.model_name_or_path: lowercase__ : Dict = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: lowercase__ : Any = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase__ : int = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase__ : Optional[int] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ : Any = AutoModelForMaskedImageModeling.from_config(snake_case_ ) if training_args.do_train: lowercase__ : Any = ds['''train'''].column_names else: lowercase__ : Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase__ : List[Any] = data_args.image_column_name elif "image" in column_names: lowercase__ : Optional[int] = '''image''' elif "img" in column_names: lowercase__ : Any = '''img''' else: lowercase__ : str = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase__ : int = Compose( [ Lambda(lambda __lowerCamelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase__ : Optional[int] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__lowerCamelCase ): lowercase__ : int = [transforms(snake_case_ ) for image in examples[image_column_name]] lowercase__ : Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ : Dict = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ : Optional[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case_ ) # Initialize our trainer lowercase__ : int = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: lowercase__ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowercase__ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : Optional[Any] = last_checkpoint lowercase__ : Tuple = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ : Optional[int] = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case_ ) trainer.save_metrics('''eval''' , snake_case_ ) # Write model card and (optionally) push to hub lowercase__ : Any = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) if __name__ == "__main__": main()
370
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=snake_case_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : str = self.task_name.lower() class __A ( snake_case_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "train" lowerCAmelCase : Optional[int] = "dev" lowerCAmelCase : int = "test" class __A ( snake_case_ ): '''simple docstring''' lowerCAmelCase : GlueDataTrainingArguments lowerCAmelCase : str lowerCAmelCase : List[InputFeatures] def __init__( self : Tuple ,_snake_case : GlueDataTrainingArguments ,_snake_case : PreTrainedTokenizerBase ,_snake_case : Optional[int] = None ,_snake_case : Union[str, Split] = Split.train ,_snake_case : Optional[str] = None ,) -> Any: """simple docstring""" warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ,_A ,) lowercase__ : Optional[Any] = args lowercase__ : int = glue_processors[args.task_name]() lowercase__ : Dict = glue_output_modes[args.task_name] if isinstance(_A ,_A ): try: lowercase__ : int = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file lowercase__ : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" ,) lowercase__ : Optional[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ : Union[str, Any] = label_list[2], label_list[1] lowercase__ : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ : List[Any] = cached_features_file + '.lock' with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: lowercase__ : int = time.time() lowercase__ : Tuple = torch.load(_A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" ,time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: lowercase__ : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowercase__ : Any = self.processor.get_test_examples(args.data_dir ) else: lowercase__ : Optional[Any] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowercase__ : List[Any] = examples[:limit_length] lowercase__ : List[Any] = glue_convert_examples_to_features( _A ,_A ,max_length=args.max_seq_length ,label_list=_A ,output_mode=self.output_mode ,) lowercase__ : int = time.time() torch.save(self.features ,_A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] ,_snake_case : int ) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" return self.label_list
350
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = "The quick brown fox jumps over the lazy dog" , ) -> Any: lowercase__ : List[Any] = set() # Replace all the whitespace in our sentence lowercase__ : int = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(A__ ) == 26 def __UpperCAmelCase ( __lowerCamelCase = "The quick brown fox jumps over the lazy dog" , ) -> Tuple: lowercase__ : Dict = [False] * 26 for char in input_str: if char.islower(): lowercase__ : Optional[int] = True elif char.isupper(): lowercase__ : Optional[Any] = True return all(A__ ) def __UpperCAmelCase ( __lowerCamelCase = "The quick brown fox jumps over the lazy dog" , ) -> List[Any]: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __UpperCAmelCase ( ) -> List[Any]: from timeit import timeit lowercase__ : Tuple = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit('''is_pangram()''' , setup=A__ ) ) print(timeit('''is_pangram_faster()''' , setup=A__ ) ) print(timeit('''is_pangram_fastest()''' , setup=A__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
351
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __A : '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : List[Any] ,_snake_case : Union[str, Any]=sys.maxsize ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = '''bilinear''' lowercase__ : List[str] = max_size lowercase__ : List[Any] = short_edge_length def __call__( self : List[str] ,_snake_case : List[str] ) -> List[str]: """simple docstring""" lowercase__ : int = [] for img in imgs: lowercase__ : Dict = img.shape[:2] # later: provide list and randomly choose index for resize lowercase__ : str = np.random.randint(self.short_edge_length[0] ,self.short_edge_length[1] + 1 ) if size == 0: return img lowercase__ : List[Any] = size * 1.0 / min(snake_case_ ,snake_case_ ) if h < w: lowercase__ : Dict = size, scale * w else: lowercase__ : Optional[Any] = scale * h, size if max(snake_case_ ,snake_case_ ) > self.max_size: lowercase__ : Tuple = self.max_size * 1.0 / max(snake_case_ ,snake_case_ ) lowercase__ : List[Any] = newh * scale lowercase__ : int = neww * scale lowercase__ : Dict = int(neww + 0.5 ) lowercase__ : Dict = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase__ : Optional[Any] = Image.fromarray(snake_case_ ) lowercase__ : str = pil_image.resize((neww, newh) ,PILImageResampling.BILINEAR ) lowercase__ : Optional[Any] = np.asarray(snake_case_ ) else: lowercase__ : Tuple = img.permute(2 ,0 ,1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase__ : Any = nn.functional.interpolate( snake_case_ ,(newh, neww) ,mode=self.interp_method ,align_corners=snake_case_ ).squeeze(0 ) img_augs.append(snake_case_ ) return img_augs class __A : '''simple docstring''' def __init__( self : int ,_snake_case : List[Any] ) -> int: """simple docstring""" lowercase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] ,cfg.INPUT.MAX_SIZE_TEST ) lowercase__ : Union[str, Any] = cfg.INPUT.FORMAT lowercase__ : Dict = cfg.SIZE_DIVISIBILITY lowercase__ : List[Any] = cfg.PAD_VALUE lowercase__ : Dict = cfg.INPUT.MAX_SIZE_TEST lowercase__ : List[Any] = cfg.MODEL.DEVICE lowercase__ : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) lowercase__ : int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) lowercase__ : Union[str, Any] = lambda _snake_case : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Any: """simple docstring""" lowercase__ : List[str] = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) ) lowercase__ : List[Any] = [im.shape[-2:] for im in images] lowercase__ : Optional[int] = [ nn.functional.pad( snake_case_ ,[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] ,value=self.pad_value ,) for size, im in zip(snake_case_ ,snake_case_ ) ] return torch.stack(snake_case_ ), torch.tensor(snake_case_ ) def __call__( self : List[str] ,_snake_case : int ,_snake_case : Dict=False ) -> List[str]: """simple docstring""" with torch.no_grad(): if not isinstance(snake_case_ ,snake_case_ ): lowercase__ : str = [images] if single_image: assert len(snake_case_ ) == 1 for i in range(len(snake_case_ ) ): if isinstance(images[i] ,torch.Tensor ): images.insert(snake_case_ ,images.pop(snake_case_ ).to(self.device ).float() ) elif not isinstance(images[i] ,torch.Tensor ): images.insert( snake_case_ ,torch.as_tensor(img_tensorize(images.pop(snake_case_ ) ,input_format=self.input_format ) ) .to(self.device ) .float() ,) # resize smallest edge lowercase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) lowercase__ : int = self.aug(snake_case_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase__ : str = [self.normalizer(snake_case_ ) for x in images] # now pad them to do the following operations lowercase__ : List[Any] = self.pad(snake_case_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase__ : str = torch.true_divide(snake_case_ ,snake_case_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" lowercase__ : Optional[Any] = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """spiece.model"""} lowerCAmelCase_ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase_ = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } lowerCAmelCase_ = """▁""" class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : Tuple ,_snake_case : Any ,_snake_case : Optional[int]="</s>" ,_snake_case : Tuple="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Dict=100 ,_snake_case : Dict=None ,_snake_case : Optional[Dict[str, Any]] = None ,_snake_case : List[Any]=True ,**_snake_case : int ,) -> None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Any = [f"""<extra_id_{i}>""" for i in range(_snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase__ : Any = len(set(filter(lambda _snake_case : bool('''extra_id''' in str(_snake_case ) ) ,_snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) lowercase__ : Optional[int] = legacy lowercase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case ,unk_token=_snake_case ,pad_token=_snake_case ,extra_ids=_snake_case ,additional_special_tokens=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,legacy=_snake_case ,**_snake_case ,) lowercase__ : Any = vocab_file lowercase__ : Optional[int] = extra_ids lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @staticmethod def UpperCAmelCase ( _snake_case : int ,_snake_case : Optional[Any] ,_snake_case : Any ) -> Union[str, Any]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowercase__ : List[str] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' ,_snake_case ,) return max_model_length @property def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Dict = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : int ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_snake_case )) + [1] return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" return list( set(filter(lambda _snake_case : bool(re.search(r'''<extra_id_\d+>''' ,_snake_case ) ) is not None ,self.additional_special_tokens ) ) ) def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" return [self._convert_token_to_id(_snake_case ) for token in self.get_sentinel_tokens()] def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[int] ) -> List[int]: """simple docstring""" if len(_snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : int = self._add_eos_if_not_present(_snake_case ) if token_ids_a is None: return token_ids_a else: lowercase__ : int = self._add_eos_if_not_present(_snake_case ) return token_ids_a + token_ids_a def __getstate__( self : str ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = self.__dict__.copy() lowercase__ : List[str] = None return state def __setstate__( self : Any ,_snake_case : Dict ) -> Any: """simple docstring""" lowercase__ : List[str] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Optional[Any] = {} lowercase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : Tuple ,_snake_case : "TextInput" ,**_snake_case : Optional[int] ) -> List[str]: """simple docstring""" if not self.legacy: lowercase__ : Union[str, Any] = SPIECE_UNDERLINE + text.replace(_snake_case ,''' ''' ) return super().tokenize(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ,**_snake_case : Tuple ) -> Tuple: """simple docstring""" if not self.legacy: lowercase__ : Union[str, Any] = text.startswith(_snake_case ) if is_first: lowercase__ : List[str] = text[1:] lowercase__ : int = self.sp_model.encode(_snake_case ,out_type=_snake_case ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_snake_case ): lowercase__ : List[Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCAmelCase ( self : str ,_snake_case : Optional[int] ) -> Dict: """simple docstring""" if token.startswith('''<extra_id_''' ): lowercase__ : Optional[Any] = re.match(r'''<extra_id_(\d+)>''' ,_snake_case ) lowercase__ : Optional[int] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> Optional[int]: """simple docstring""" if index < self.sp_model.get_piece_size(): lowercase__ : Any = self.sp_model.IdToPiece(_snake_case ) else: lowercase__ : Dict = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def UpperCAmelCase ( self : Optional[int] ,_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = [] lowercase__ : Dict = '''''' lowercase__ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token lowercase__ : Any = True lowercase__ : List[Any] = [] else: current_sub_tokens.append(_snake_case ) lowercase__ : Optional[int] = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Any = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
353
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Union[str, Any]: lowercase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Optional[int] = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Any = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Any = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : str = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Union[str, Any] = 2 # New Code # lowercase__ : Dict = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ : str = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[str] = config['''lr'''] lowercase__ : int = int(config['''num_epochs'''] ) lowercase__ : Dict = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__lowerCamelCase ) lowercase__ , lowercase__ : str = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Dict = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[Any] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler lowercase__ : List[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCamelCase ): lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[Any] = output.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Optional[int] = model(**__lowerCamelCase ) lowercase__ : List[str] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) def __UpperCAmelCase ( ) -> Union[str, Any]: lowercase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__lowerCamelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Optional[Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
354
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
0
from math import ceil def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : Union[str, Any] = list(range(0 , __lowerCamelCase ) ) lowercase__ : Dict = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase__ : Union[str, Any] = [] for i in device_map_blocks: if device_map_blocks.count(__lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__lowerCamelCase ) # Missing blocks lowercase__ : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] lowercase__ : Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(__lowerCamelCase ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(__lowerCamelCase ) ) if len(__lowerCamelCase ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(__lowerCamelCase ) ) if len(__lowerCamelCase ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = list(range(__lowerCamelCase ) ) lowercase__ : Dict = int(ceil(n_layers / len(__lowerCamelCase ) ) ) lowercase__ : Dict = [layers[i : i + n_blocks] for i in range(0 , __lowerCamelCase , __lowerCamelCase )] return dict(zip(__lowerCamelCase , __lowerCamelCase ) )
355
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowercase__ : Tuple = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products lowercase__ : Any = numbers[i] if number < 0: lowercase__ : str = min_till_now, max_till_now lowercase__ : Any = max(lowerCamelCase_ , max_till_now * number ) lowercase__ : Any = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now lowercase__ : Optional[int] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
356
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : int ,*_snake_case : str ,**_snake_case : List[str] ) -> None: """simple docstring""" warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' ,_A ,) super().__init__(*_A ,**_A )
357
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
0
lowerCAmelCase_ = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) lowerCAmelCase_ = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : Optional[int] = from_type.lower().strip('''s''' ) lowercase__ : Optional[Any] = to_type.lower().strip('''s''' ) lowercase__ : Dict = UNIT_SYMBOL.get(_A , _A ) lowercase__ : Optional[Any] = UNIT_SYMBOL.get(_A , _A ) if from_sanitized not in METRIC_CONVERSION: lowercase__ : Optional[Any] = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) if to_sanitized not in METRIC_CONVERSION: lowercase__ : Union[str, Any] = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) lowercase__ : List[Any] = METRIC_CONVERSION[from_sanitized] lowercase__ : int = METRIC_CONVERSION[to_sanitized] lowercase__ : Tuple = 1 if from_exponent > to_exponent: lowercase__ : Optional[int] = from_exponent - to_exponent else: lowercase__ : Optional[Any] = -(to_exponent - from_exponent) return value * pow(10 , _A ) if __name__ == "__main__": from doctest import testmod testmod()
358
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Optional[Any] = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Tuple = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Dict = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[str] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase__ ) == "1": lowercase__ : Optional[int] = 2 # New Code # lowercase__ : List[str] = int(args.gradient_accumulation_steps ) lowercase__ : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator lowercase__ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Union[str, Any] = config['''lr'''] lowercase__ : Optional[int] = int(config['''num_epochs'''] ) lowercase__ : Any = int(config['''seed'''] ) lowercase__ : List[str] = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowerCAmelCase__ ) lowercase__ , lowercase__ : str = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Dict = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowercase__ : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() with LocalSGD( accelerator=lowerCAmelCase__ , model=lowerCAmelCase__ , local_sgd_steps=lowerCAmelCase__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase__ ): lowercase__ : str = model(**lowerCAmelCase__ ) lowercase__ : int = output.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Optional[Any] = model(**lowerCAmelCase__ ) lowercase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowercase__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase__ ) def __UpperCAmelCase ( ) -> str: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCAmelCase__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=lowerCAmelCase__ , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False ) -> Union[str, Any]: lowercase__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: for i in range(config.num_hidden_layers ): lowercase__ : Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : str = in_proj_weight[ : config.hidden_size, : ] lowercase__ : Optional[Any] = in_proj_bias[: config.hidden_size] lowercase__ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : int = dct.pop(__lowerCamelCase ) lowercase__ : Optional[int] = val @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : Tuple = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=__lowerCamelCase ) lowercase__ : Optional[int] = False lowercase__ : List[Any] = False lowercase__ : Optional[int] = False lowercase__ : Union[str, Any] = False if "vqa" in checkpoint_url: lowercase__ : int = True lowercase__ : Optional[Any] = 31_29 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : List[Any] = '''vqa2-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : List[str] = {v: k for k, v in idalabel.items()} lowercase__ : int = ViltForQuestionAnswering(__lowerCamelCase ) elif "nlvr" in checkpoint_url: lowercase__ : int = True lowercase__ : Optional[Any] = 2 lowercase__ : str = {0: '''False''', 1: '''True'''} lowercase__ : Union[str, Any] = {v: k for k, v in config.idalabel.items()} lowercase__ : Optional[Any] = 3 lowercase__ : List[Any] = ViltForImagesAndTextClassification(__lowerCamelCase ) elif "irtr" in checkpoint_url: lowercase__ : int = True lowercase__ : Any = ViltForImageAndTextRetrieval(__lowerCamelCase ) elif "mlm_itm" in checkpoint_url: lowercase__ : Optional[Any] = True lowercase__ : str = ViltForMaskedLM(__lowerCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys lowercase__ : int = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''state_dict'''] lowercase__ : Union[str, Any] = create_rename_keys(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) if mlm_model or irtr_model: lowercase__ : Tuple = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase__ , lowercase__ : List[str] = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowerCamelCase ) # Define processor lowercase__ : List[Any] = ViltImageProcessor(size=3_84 ) lowercase__ : int = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ : str = ViltProcessor(__lowerCamelCase , __lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase__ : List[Any] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowerCamelCase ).raw ) lowercase__ : Any = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowerCamelCase ).raw ) lowercase__ : Tuple = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) lowercase__ : List[Any] = processor(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) lowercase__ : str = processor(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) lowercase__ : Optional[int] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase__ : Union[str, Any] = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowerCamelCase ).raw ) if mlm_model: lowercase__ : int = '''a bunch of [MASK] laying on a [MASK].''' else: lowercase__ : Optional[int] = '''How many cats are there?''' lowercase__ : str = processor(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) # Verify outputs if mlm_model: lowercase__ : List[Any] = torch.Size([1, 11, 3_05_22] ) lowercase__ : Any = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCamelCase , atol=1E-4 ) # verify masked token prediction equals "cats" lowercase__ : Any = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase__ : Any = torch.Size([1, 31_29] ) lowercase__ : Tuple = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCamelCase , atol=1E-4 ) # verify vqa prediction equals "2" lowercase__ : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase__ : Optional[Any] = torch.Size([1, 2] ) lowercase__ : Dict = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
360
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
0
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[str] ,_snake_case : int=13 ,_snake_case : Optional[int]=30 ,_snake_case : Any=2 ,_snake_case : Any=3 ,_snake_case : str=True ,_snake_case : int=True ,_snake_case : Optional[Any]=32 ,_snake_case : str=5 ,_snake_case : Union[str, Any]=4 ,_snake_case : Optional[int]=37 ,_snake_case : Dict="gelu" ,_snake_case : Tuple=0.1 ,_snake_case : List[str]=0.1 ,_snake_case : Union[str, Any]=10 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Any=None ,) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : List[str] = patch_size lowercase__ : Any = num_channels lowercase__ : Tuple = is_training lowercase__ : Dict = use_labels lowercase__ : Union[str, Any] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : int = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Dict = (image_size // patch_size) ** 2 lowercase__ : Tuple = num_patches + 1 def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCAmelCase ( self : List[str] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ,_snake_case : str ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = ViTMSNModel(config=__A ) model.to(__A ) model.eval() lowercase__ : Any = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Any ,_snake_case : Any ,_snake_case : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = self.type_sequence_label_size lowercase__ : List[str] = ViTMSNForImageClassification(__A ) model.to(__A ) model.eval() lowercase__ : Optional[Any] = model(__A ,labels=__A ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : Union[str, Any] = 1 lowercase__ : List[str] = ViTMSNForImageClassification(__A ) model.to(__A ) model.eval() lowercase__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Tuple = model(__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ : List[str] = config_and_inputs lowercase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCAmelCase : Optional[int] = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : int = False lowerCAmelCase : Any = False lowerCAmelCase : str = False def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Optional[int] = ViTMSNModelTester(self ) lowercase__ : Union[str, Any] = ConfigTester(self ,config_class=__A ,has_text_modality=__A ,hidden_size=37 ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def UpperCAmelCase ( self : int ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A ,nn.Linear ) ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__A ) lowercase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Dict = [*signature.parameters.keys()] lowercase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__A ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[str] = ViTMSNModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __UpperCAmelCase ( ) -> Any: lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" torch.manual_seed(2 ) lowercase__ : Optional[int] = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(__A ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(images=__A ,return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): lowercase__ : Any = model(**__A ) # verify the logits lowercase__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,__A ) lowercase__ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__A ,atol=1e-4 ) )
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings( A_ ,r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " ,) class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Any ,_snake_case : Union[str, Any] ) -> np.ndarray: """simple docstring""" if self.framework == "tf": lowercase__ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def UpperCAmelCase ( self : str ,_snake_case : str ) -> np.ndarray: """simple docstring""" lowercase__ : List[Any] = self.get_masked_index(__a ) lowercase__ : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Union[str, Any] ) -> int: """simple docstring""" if isinstance(__a ,__a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,**_snake_case : Optional[int] ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: lowercase__ : Dict = self.framework lowercase__ : List[Any] = self.tokenizer(__a ,return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def UpperCAmelCase ( self : List[Any] ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : int = self.model(**__a ) lowercase__ : Any = model_inputs['''input_ids'''] return model_outputs def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ,_snake_case : str=5 ,_snake_case : int=None ) -> Optional[int]: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: lowercase__ : int = target_ids.shape[0] lowercase__ : Tuple = model_outputs['''input_ids'''][0] lowercase__ : str = model_outputs['''logits'''] if self.framework == "tf": lowercase__ : Optional[int] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__ : List[Any] = outputs.numpy() lowercase__ : Optional[int] = outputs[0, masked_index, :] lowercase__ : str = stable_softmax(__a ,axis=-1 ) if target_ids is not None: lowercase__ : int = tf.gather_nd(tf.squeeze(__a ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase__ : Dict = tf.expand_dims(__a ,0 ) lowercase__ : Dict = tf.math.top_k(__a ,k=__a ) lowercase__ , lowercase__ : str = topk.values.numpy(), topk.indices.numpy() else: lowercase__ : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__ : Dict = outputs[0, masked_index, :] lowercase__ : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__ : Dict = probs[..., target_ids] lowercase__ , lowercase__ : str = probs.topk(__a ) lowercase__ : int = [] lowercase__ : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase__ : List[Any] = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase__ : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase__ : Optional[Any] = target_ids[p].tolist() lowercase__ : str = p # Filter padding out: lowercase__ : Union[str, Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__ : Any = self.tokenizer.decode(__a ,skip_special_tokens=__a ) lowercase__ : Tuple = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def UpperCAmelCase ( self : Dict ,_snake_case : Any ,_snake_case : Dict=None ) -> Any: """simple docstring""" if isinstance(__a ,__a ): lowercase__ : Optional[Any] = [targets] try: lowercase__ : Optional[int] = self.tokenizer.get_vocab() except Exception: lowercase__ : Tuple = {} lowercase__ : Dict = [] for target in targets: lowercase__ : int = vocab.get(__a ,__a ) if id_ is None: lowercase__ : Union[str, Any] = self.tokenizer( __a ,add_special_tokens=__a ,return_attention_mask=__a ,return_token_type_ids=__a ,max_length=1 ,truncation=__a ,)['''input_ids'''] if len(__a ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase__ : Dict = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) lowercase__ : Dict = list(set(__a ) ) if len(__a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase__ : List[str] = np.array(__a ) return target_ids def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any]=None ,_snake_case : Dict=None ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = {} if targets is not None: lowercase__ : Tuple = self.get_target_ids(__a ,__a ) lowercase__ : Optional[int] = target_ids if top_k is not None: lowercase__ : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,'''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Optional[Any] ,_snake_case : str ,*_snake_case : Optional[Any] ,**_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : str = super().__call__(__a ,**__a ) if isinstance(__a ,__a ) and len(__a ) == 1: return outputs[0] return outputs
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) lowerCAmelCase_ = ['names', 'prefix'] lowerCAmelCase_ = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCAmelCase_ = ['encoding_errors', 'on_bad_lines'] lowerCAmelCase_ = ['date_format'] @dataclass class __A ( datasets.BuilderConfig ): '''simple docstring''' lowerCAmelCase : Tuple = "," lowerCAmelCase : List[str] = None lowerCAmelCase : List[str] = "infer" lowerCAmelCase : str = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None lowerCAmelCase : Dict = None lowerCAmelCase : Optional[int] = True lowerCAmelCase : Any = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Dict = None lowerCAmelCase : Dict = None lowerCAmelCase : List[Any] = False lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : List[str] = None lowerCAmelCase : int = None lowerCAmelCase : List[Any] = True lowerCAmelCase : Any = True lowerCAmelCase : str = False lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Any = "." lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[Any] = "\"" lowerCAmelCase : Dict = 0 lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Tuple = True lowerCAmelCase : List[str] = True lowerCAmelCase : int = 0 lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Dict = False lowerCAmelCase : str = None lowerCAmelCase : str = 1_0_0_0_0 lowerCAmelCase : str = None lowerCAmelCase : List[str] = "strict" lowerCAmelCase : str = "error" lowerCAmelCase : Union[str, Any] = None def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" if self.delimiter is not None: lowercase__ : Dict = self.delimiter if self.column_names is not None: lowercase__ : int = self.column_names @property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,UpperCamelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __A ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCAmelCase : Tuple = CsvConfig def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__ : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ ,(str, list, tuple) ): lowercase__ : Any = data_files if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): lowercase__ : List[str] = [files] lowercase__ : Tuple = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'''files''': files} )] lowercase__ : Dict = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): lowercase__ : Dict = [files] lowercase__ : List[Any] = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase__ ,gen_kwargs={'''files''': files} ) ) return splits def UpperCAmelCase ( self : str ,_snake_case : Any ) -> pa.Table: """simple docstring""" if self.config.features is not None: lowercase__ : Any = self.config.features.arrow_schema if all(not require_storage_cast(UpperCamelCase__ ) for feature in self.config.features.values() ): # cheaper cast lowercase__ : Tuple = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=UpperCamelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase__ : Any = table_cast(UpperCamelCase__ ,UpperCamelCase__ ) return pa_table def UpperCAmelCase ( self : Dict ,_snake_case : str ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase__ : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCamelCase__ ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): lowercase__ : Optional[int] = pd.read_csv(UpperCamelCase__ ,iterator=UpperCamelCase__ ,dtype=UpperCamelCase__ ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCamelCase__ ): lowercase__ : int = pa.Table.from_pandas(UpperCamelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase__ ) except ValueError as e: logger.error(f"""Failed to read file \'{file}\' with error {type(UpperCamelCase__ )}: {e}""" ) raise
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( snake_case__ ,snake_case__ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = IFInpaintingPipeline lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" return self._get_dummy_components() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ,_snake_case : Union[str, Any]=0 ) -> Optional[Any]: """simple docstring""" if str(_A ).startswith('''mps''' ): lowercase__ : str = torch.manual_seed(_A ) else: lowercase__ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) lowercase__ : Optional[int] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_A ) ).to(_A ) lowercase__ : str = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_A ) ).to(_A ) lowercase__ : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' ) def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" self._test_save_load_local() def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
364
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __UpperCAmelCase ( ) -> Dict: lowercase__ : int = 9, 14 # noqa: F841 lowercase__ : Tuple = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase__ : int = defaultdict(snake_case__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowercase__ : int = mst(snake_case__ ) lowercase__ : Dict = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowercase__ : Optional[Any] = tuple(answer[:2] ) lowercase__ : Any = tuple(edge[::-1] ) assert edge in result or reverse in result
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Any = '''huggingface/label-files''' lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Optional[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase__ : List[str] = {v: k for k, v in idalabel.items()} lowercase__ : Union[str, Any] = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase__ : Any = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=10_00 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: if "stem.conv" in name: lowercase__ : List[str] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase__ : Tuple = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase__ : Union[str, Any] = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase__ : Tuple = '''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase__ : int = '''bit.encoder.''' + name return name def __UpperCAmelCase ( ) -> str: lowercase__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Tuple: lowercase__ : Any = get_config(lowerCAmelCase__ ) # load original model from timm lowercase__ : str = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model lowercase__ : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase__ : Optional[int] = state_dict.pop(lowerCAmelCase__ ) lowercase__ : int = val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase__ : List[str] = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor lowercase__ : List[str] = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) lowercase__ : Optional[int] = transform.transforms lowercase__ : int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase__ : Union[str, Any] = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ : Optional[int] = prepare_img() lowercase__ : List[Any] = transform(lowerCAmelCase__ ).unsqueeze(0 ) lowercase__ : Optional[int] = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): lowercase__ : Union[str, Any] = model(lowerCAmelCase__ ) lowercase__ : Union[str, Any] = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase__ : Dict = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(f"""ybelkada/{model_name}""" ) processor.push_to_hub(f"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
366
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase="cosine" , ) -> List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : Optional[Any] = [] for i in range(__lowerCamelCase ): lowercase__ : Any = i / num_diffusion_timesteps lowercase__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase ) / alpha_bar_fn(__lowerCamelCase ) , __lowerCamelCase ) ) return torch.tensor(__lowerCamelCase , dtype=torch.floataa ) class __A ( UpperCAmelCase_ ,UpperCAmelCase_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase : Dict = 2 @register_to_config def __init__( self : int ,_snake_case : Tuple = 1_000 ,_snake_case : Union[str, Any] = 0.0_0085 ,_snake_case : Optional[int] = 0.012 ,_snake_case : Union[str, Any] = "linear" ,_snake_case : Union[str, Any] = None ,_snake_case : int = "epsilon" ,_snake_case : Any = "linspace" ,_snake_case : List[str] = 0 ,) -> Optional[int]: """simple docstring""" if trained_betas is not None: lowercase__ : Any = torch.tensor(__lowercase ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase__ : str = torch.linspace(__lowercase ,__lowercase ,__lowercase ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,__lowercase ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ : Optional[int] = betas_for_alpha_bar(__lowercase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase__ : Any = 1.0 - self.betas lowercase__ : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(__lowercase ,__lowercase ,__lowercase ) def UpperCAmelCase ( self : int ,_snake_case : Union[str, Any] ,_snake_case : List[Any]=None ) -> Any: """simple docstring""" if schedule_timesteps is None: lowercase__ : Dict = self.timesteps lowercase__ : List[str] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase__ : int = 1 if len(__lowercase ) > 1 else 0 else: lowercase__ : str = timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep lowercase__ : Union[str, Any] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase ( self : int ,_snake_case : Dict ,_snake_case : int ,) -> torch.FloatTensor: """simple docstring""" lowercase__ : Dict = self.index_for_timestep(__lowercase ) if self.state_in_first_order: lowercase__ : Dict = self.sigmas[step_index] else: lowercase__ : int = self.sigmas_interpol[step_index] lowercase__ : Tuple = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase ( self : Dict ,_snake_case : Union[str, Any] ,_snake_case : List[Any] = None ,_snake_case : Tuple = None ,) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = num_inference_steps lowercase__ : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase__ : List[Any] = np.linspace(0 ,num_train_timesteps - 1 ,__lowercase ,dtype=__lowercase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase__ : Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ : List[str] = (np.arange(0 ,__lowercase ) * step_ratio).round()[::-1].copy().astype(__lowercase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase__ : Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ : Dict = (np.arange(__lowercase ,0 ,-step_ratio )).round().copy().astype(__lowercase ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) lowercase__ : List[str] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase__ : Tuple = torch.from_numpy(np.log(__lowercase ) ).to(__lowercase ) lowercase__ : Union[str, Any] = np.interp(__lowercase ,np.arange(0 ,len(__lowercase ) ) ,__lowercase ) lowercase__ : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase__ : Optional[Any] = torch.from_numpy(__lowercase ).to(device=__lowercase ) # interpolate sigmas lowercase__ : Optional[int] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() lowercase__ : Tuple = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowercase__ : str = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowercase ).startswith('''mps''' ): # mps does not support float64 lowercase__ : Any = torch.from_numpy(__lowercase ).to(__lowercase ,dtype=torch.floataa ) else: lowercase__ : List[str] = torch.from_numpy(__lowercase ).to(__lowercase ) # interpolate timesteps lowercase__ : int = self.sigma_to_t(__lowercase ).to(__lowercase ,dtype=timesteps.dtype ) lowercase__ : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() lowercase__ : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) lowercase__ : Union[str, Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase__ : str = defaultdict(__lowercase ) def UpperCAmelCase ( self : str ,_snake_case : Tuple ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = sigma.log() # get distribution lowercase__ : Optional[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range lowercase__ : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowercase__ : List[str] = low_idx + 1 lowercase__ : str = self.log_sigmas[low_idx] lowercase__ : List[str] = self.log_sigmas[high_idx] # interpolate sigmas lowercase__ : Tuple = (low - log_sigma) / (low - high) lowercase__ : List[str] = w.clamp(0 ,1 ) # transform interpolation to time range lowercase__ : Tuple = (1 - w) * low_idx + w * high_idx lowercase__ : Optional[int] = t.view(sigma.shape ) return t @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return self.sample is None def UpperCAmelCase ( self : int ,_snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : List[str] ,_snake_case : str = True ,) -> Union[SchedulerOutput, Tuple]: """simple docstring""" lowercase__ : Union[str, Any] = self.index_for_timestep(__lowercase ) # advance index counter by 1 lowercase__ : int = timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase__ : List[Any] = self.sigmas[step_index] lowercase__ : List[str] = self.sigmas_interpol[step_index + 1] lowercase__ : Optional[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowercase__ : List[Any] = self.sigmas[step_index - 1] lowercase__ : List[Any] = self.sigmas_interpol[step_index] lowercase__ : str = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase__ : str = 0 lowercase__ : Optional[int] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase__ : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase__ : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase__ : Dict = sigma_hat if self.state_in_first_order else sigma_interpol lowercase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase__ : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase__ : Union[str, Any] = sigma_interpol - sigma_hat # store for 2nd order step lowercase__ : Any = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowercase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowercase__ : Tuple = sigma_next - sigma_hat lowercase__ : Tuple = self.sample lowercase__ : int = None lowercase__ : Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowercase ) def UpperCAmelCase ( self : int ,_snake_case : int ,_snake_case : List[str] ,_snake_case : List[str] ,) -> torch.FloatTensor: """simple docstring""" lowercase__ : Any = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowercase ): # mps does not support float64 lowercase__ : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase__ : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase__ : Any = self.timesteps.to(original_samples.device ) lowercase__ : List[str] = timesteps.to(original_samples.device ) lowercase__ : List[Any] = [self.index_for_timestep(__lowercase ,__lowercase ) for t in timesteps] lowercase__ : Any = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase__ : Any = sigma.unsqueeze(-1 ) lowercase__ : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self : int ) -> List[Any]: """simple docstring""" return self.config.num_train_timesteps
367
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = torch.device('cpu') def __UpperCAmelCase ( ) -> Any: lowercase__ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Dict = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : Optional[Any] = dct.pop(snake_case_ ) lowercase__ : Tuple = val def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[Any] = [] for k in state_dict.keys(): lowercase__ : Dict = k if ".pwconv" in k: lowercase__ : int = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowercase__ : List[Any] = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowercase__ : List[str] = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowercase__ : int = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowercase__ : Any = k_new.split('''.''' ) if ls[2].isdigit(): lowercase__ : Dict = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowercase__ : Optional[int] = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase__ : List[str] = 10_00 lowercase__ : Tuple = '''huggingface/label-files''' lowercase__ : Dict = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Optional[Any] = {int(snake_case_ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase__ : int = [3, 3, 6, 4] lowercase__ : List[str] = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase__ : List[str] = [3, 3, 9, 6] lowercase__ : Dict = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase__ : Union[str, Any] = [4, 3, 10, 5] lowercase__ : str = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase__ : Optional[int] = [4, 4, 12, 6] lowercase__ : Any = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowercase__ : List[Any] = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' , check_hash=snake_case_ ) else: lowercase__ : Optional[Any] = torch.load(snake_case_ , map_location='''cpu''' ) lowercase__ : int = checkpoint lowercase__ : List[str] = create_rename_keys(snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model lowercase__ : Any = SwiftFormerForImageClassification(snake_case_ ).eval() hf_model.load_state_dict(snake_case_ ) # prepare test inputs lowercase__ : Union[str, Any] = prepare_img() lowercase__ : List[Any] = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowercase__ : str = processor(images=snake_case_ , return_tensors='''pt''' ) # compare outputs from both models lowercase__ : Optional[int] = get_expected_output(snake_case_ ) lowercase__ : Dict = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case_ , atol=1E-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') lowerCAmelCase_ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __A ( _UpperCamelCase ): '''simple docstring''' lowerCAmelCase : List[Any] = 'roberta' def __init__( self : Optional[Any] ,_snake_case : Tuple=50_265 ,_snake_case : int=768 ,_snake_case : Optional[Any]=12 ,_snake_case : List[Any]=12 ,_snake_case : Tuple=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : str=0.1 ,_snake_case : Dict=512 ,_snake_case : str=2 ,_snake_case : Dict=0.02 ,_snake_case : List[str]=1e-12 ,_snake_case : Any=1 ,_snake_case : Optional[int]=0 ,_snake_case : Tuple=2 ,_snake_case : Optional[int]="absolute" ,_snake_case : Tuple=True ,_snake_case : str=None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase ,bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) lowercase__ : Optional[int] = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : Dict = hidden_act lowercase__ : Any = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[Any] = position_embedding_type lowercase__ : List[str] = use_cache lowercase__ : str = classifier_dropout class __A ( _UpperCamelCase ): '''simple docstring''' @property def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" if self.task == "multiple-choice": lowercase__ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0