code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : '''simple docstring''' lowerCAmelCase : List[str] = XGLMConfig lowerCAmelCase : Tuple = {} lowerCAmelCase : List[str] = "gelu" def __init__( self : Tuple ,_snake_case : int ,_snake_case : int=14 ,_snake_case : Union[str, Any]=7 ,_snake_case : Dict=True ,_snake_case : str=True ,_snake_case : Optional[Any]=True ,_snake_case : Tuple=99 ,_snake_case : Dict=32 ,_snake_case : int=2 ,_snake_case : Any=4 ,_snake_case : Optional[int]=37 ,_snake_case : Optional[int]="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : str=512 ,_snake_case : Optional[int]=0.02 ,) -> Dict: """simple docstring""" lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = seq_length lowercase__ : Any = is_training lowercase__ : Dict = use_input_mask lowercase__ : Union[str, Any] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : List[str] = d_model lowercase__ : Tuple = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Optional[Any] = ffn_dim lowercase__ : Union[str, Any] = activation_function lowercase__ : Optional[int] = activation_dropout lowercase__ : Tuple = attention_dropout lowercase__ : int = max_position_embeddings lowercase__ : List[str] = initializer_range lowercase__ : Any = None lowercase__ : Any = 0 lowercase__ : Union[str, Any] = 2 lowercase__ : Tuple = 1 def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Union[str, Any] = self.get_config() lowercase__ : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=_snake_case ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=_snake_case ,) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() ( lowercase__ ) : Dict = config_and_inputs lowercase__ : str = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase : List[str] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : str = TFXGLMModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,n_embd=37 ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @slow def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = TFXGLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ,_snake_case : List[str]=True ) -> List[str]: """simple docstring""" lowercase__ : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Optional[Any] = tf.convert_to_tensor([[2, 268, 9_865]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase__ : Tuple = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowercase__ : Tuple = model.generate(_snake_case ,do_sample=_snake_case ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,_snake_case ) @slow def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ : Dict = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowercase__ : Tuple = tokenizer('''Today is a nice day and''' ,return_tensors='''tf''' ) lowercase__ : str = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowercase__ : Dict = model.generate(_snake_case ,do_sample=_snake_case ,seed=[7, 0] ) lowercase__ : Optional[Any] = tokenizer.decode(output_ids[0] ,skip_special_tokens=_snake_case ) lowercase__ : Tuple = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Union[str, Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Dict = '''left''' # use different length sentences to test batching lowercase__ : Dict = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] lowercase__ : Dict = tokenizer(_snake_case ,return_tensors='''tf''' ,padding=_snake_case ) lowercase__ : Dict = inputs['''input_ids'''] lowercase__ : Tuple = model.generate(input_ids=_snake_case ,attention_mask=inputs['''attention_mask'''] ,max_new_tokens=12 ) lowercase__ : Union[str, Any] = tokenizer(sentences[0] ,return_tensors='''tf''' ).input_ids lowercase__ : str = model.generate(input_ids=_snake_case ,max_new_tokens=12 ) lowercase__ : Tuple = tokenizer(sentences[1] ,return_tensors='''tf''' ).input_ids lowercase__ : List[Any] = model.generate(input_ids=_snake_case ,max_new_tokens=12 ) lowercase__ : Any = tokenizer.batch_decode(_snake_case ,skip_special_tokens=_snake_case ) lowercase__ : Optional[int] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=_snake_case ) lowercase__ : Any = tokenizer.decode(output_padded[0] ,skip_special_tokens=_snake_case ) lowercase__ : List[Any] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_snake_case ,_snake_case ) self.assertListEqual(_snake_case ,[non_padded_sentence, padded_sentence] )
360
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : List[str] = '''laion/clap-htsat-unfused''' lowercase__ : Union[str, Any] = tempfile.mkdtemp() def UpperCAmelCase ( self : Dict ,**_snake_case : Dict ) -> Tuple: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint ,**_snake_case ) def UpperCAmelCase ( self : Any ,**_snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint ,**_snake_case ) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : List[Any] = self.get_feature_extractor() lowercase__ : str = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) processor.save_pretrained(self.tmpdirname ) lowercase__ : str = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ : Dict = ClapProcessor(tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[str] = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) lowercase__ : Optional[int] = self.get_feature_extractor(do_normalize=_snake_case ,padding_value=1.0 ) lowercase__ : Tuple = ClapProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Dict = self.get_feature_extractor() lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Optional[Any] = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) lowercase__ : int = floats_list((3, 1_000) ) lowercase__ : Union[str, Any] = feature_extractor(_snake_case ,return_tensors='''np''' ) lowercase__ : List[str] = processor(audios=_snake_case ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : int = self.get_feature_extractor() lowercase__ : int = self.get_tokenizer() lowercase__ : Dict = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) lowercase__ : List[Any] = '''This is a test string''' lowercase__ : List[str] = processor(text=_snake_case ) lowercase__ : Any = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = self.get_feature_extractor() lowercase__ : str = self.get_tokenizer() lowercase__ : List[Any] = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) lowercase__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Optional[int] = processor.batch_decode(_snake_case ) lowercase__ : str = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : int = self.get_feature_extractor() lowercase__ : str = self.get_tokenizer() lowercase__ : str = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) self.assertListEqual( processor.model_input_names[2:] ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,)
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # TODO Update this lowerCAmelCase_ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "esm" def __init__( self : List[Any] ,_snake_case : int=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=None ,_snake_case : List[str]=768 ,_snake_case : Optional[int]=12 ,_snake_case : Optional[int]=12 ,_snake_case : Optional[Any]=3_072 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : int=0.1 ,_snake_case : Optional[Any]=1_026 ,_snake_case : Optional[int]=0.02 ,_snake_case : int=1e-12 ,_snake_case : Dict="absolute" ,_snake_case : Optional[int]=True ,_snake_case : Union[str, Any]=None ,_snake_case : Dict=False ,_snake_case : List[str]=False ,_snake_case : Optional[Any]=None ,_snake_case : Any=None ,**_snake_case : Optional[Any] ,) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,mask_token_id=_snake_case ,**_snake_case ) lowercase__ : Tuple = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : Dict = initializer_range lowercase__ : int = layer_norm_eps lowercase__ : int = position_embedding_type lowercase__ : Union[str, Any] = use_cache lowercase__ : List[Any] = emb_layer_norm_before lowercase__ : Any = token_dropout lowercase__ : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) lowercase__ : Dict = EsmFoldConfig() elif isinstance(_snake_case ,_snake_case ): lowercase__ : Dict = EsmFoldConfig(**_snake_case ) lowercase__ : Optional[Any] = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) lowercase__ : Tuple = get_default_vocab_list() else: lowercase__ : str = vocab_list else: lowercase__ : str = None lowercase__ : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'''use_esm_attn_map''' ,_snake_case ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config ,_snake_case ): lowercase__ : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = None lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : float = 0 lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : int = 1_2_8 lowerCAmelCase : "TrunkConfig" = None def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" if self.trunk is None: lowercase__ : int = TrunkConfig() elif isinstance(self.trunk ,_snake_case ): lowercase__ : Any = TrunkConfig(**self.trunk ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : Tuple = asdict(self ) lowercase__ : List[str] = self.trunk.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : int = 4_8 lowerCAmelCase : int = 1_0_2_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : float = 0 lowerCAmelCase : float = 0 lowerCAmelCase : bool = False lowerCAmelCase : int = 4 lowerCAmelCase : Optional[int] = 1_2_8 lowerCAmelCase : "StructureModuleConfig" = None def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" if self.structure_module is None: lowercase__ : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,_snake_case ): lowercase__ : Tuple = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowercase__ : Optional[int] = self.sequence_state_dim // self.sequence_head_width lowercase__ : Any = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : List[Any] = asdict(self ) lowercase__ : Dict = self.structure_module.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : int = 3_8_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_6 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_2 lowerCAmelCase : int = 4 lowerCAmelCase : int = 8 lowerCAmelCase : float = 0.1 lowerCAmelCase : int = 8 lowerCAmelCase : int = 1 lowerCAmelCase : int = 2 lowerCAmelCase : int = 7 lowerCAmelCase : int = 1_0 lowerCAmelCase : float = 1e-8 lowerCAmelCase : float = 1e5 def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return asdict(self ) def __UpperCAmelCase ( ) -> Any: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
362
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
0
"""simple docstring""" import re import subprocess import sys lowerCAmelCase_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') lowerCAmelCase_ = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) lowerCAmelCase_ = '|'.join(sys.argv[1:]) lowerCAmelCase_ = re.compile(RF'''^({joined_dirs}).*?\.py$''') lowerCAmelCase_ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {} class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "llama" lowerCAmelCase : Tuple = ["past_key_values"] def __init__( self : Any ,_snake_case : List[Any]=32_000 ,_snake_case : str=4_096 ,_snake_case : Dict=11_008 ,_snake_case : int=32 ,_snake_case : Tuple=32 ,_snake_case : Optional[int]=None ,_snake_case : List[Any]="silu" ,_snake_case : Union[str, Any]=2_048 ,_snake_case : List[str]=0.02 ,_snake_case : List[Any]=1e-6 ,_snake_case : Optional[Any]=True ,_snake_case : Any=0 ,_snake_case : Optional[int]=1 ,_snake_case : List[str]=2 ,_snake_case : Tuple=1 ,_snake_case : str=False ,_snake_case : Tuple=None ,**_snake_case : Tuple ,) -> Tuple: """simple docstring""" lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Any = hidden_size lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Any = num_key_value_heads lowercase__ : Union[str, Any] = hidden_act lowercase__ : Any = initializer_range lowercase__ : str = rms_norm_eps lowercase__ : List[Any] = pretraining_tp lowercase__ : Any = use_cache lowercase__ : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,tie_word_embeddings=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) lowercase__ : List[Any] = self.rope_scaling.get('''type''' ,_snake_case ) lowercase__ : Optional[Any] = self.rope_scaling.get('''factor''' ,_snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_snake_case ,_snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
364
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['YolosFeatureExtractor'] lowerCAmelCase_ = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
from collections import namedtuple lowerCAmelCase_ = namedtuple('from_to', 'from_ to') lowerCAmelCase_ = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 264.172), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 35.3_147), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_226.75), } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(__lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(__lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
367
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = (IPNDMScheduler,) lowerCAmelCase : Optional[int] = (("num_inference_steps", 5_0),) def UpperCAmelCase ( self : Optional[Any] ,**_snake_case : str ) -> int: """simple docstring""" lowercase__ : Optional[Any] = {'''num_train_timesteps''': 1_000} config.update(**_snake_case ) return config def UpperCAmelCase ( self : List[Any] ,_snake_case : int=0 ,**_snake_case : str ) -> Tuple: """simple docstring""" lowercase__ : Dict = dict(self.forward_default_kwargs ) lowercase__ : Union[str, Any] = kwargs.pop('''num_inference_steps''' ,_snake_case ) lowercase__ : List[Any] = self.dummy_sample lowercase__ : Any = 0.1 * sample lowercase__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Optional[Any] = self.get_scheduler_config(**_snake_case ) lowercase__ : List[str] = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowercase__ : Dict = dummy_past_residuals[:] if time_step is None: lowercase__ : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowercase__ : Tuple = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowercase__ : Optional[Any] = dummy_past_residuals[:] lowercase__ : Optional[int] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : int = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : Optional[int] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : List[Any] = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, Any]=0 ,**_snake_case : Any ) -> Optional[Any]: """simple docstring""" lowercase__ : str = dict(self.forward_default_kwargs ) lowercase__ : Optional[int] = kwargs.pop('''num_inference_steps''' ,_snake_case ) lowercase__ : Dict = self.dummy_sample lowercase__ : Any = 0.1 * sample lowercase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : Any = dummy_past_residuals[:] if time_step is None: lowercase__ : Any = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowercase__ : Union[str, Any] = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : Optional[Any] = dummy_past_residuals[:] lowercase__ : Dict = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Optional[int] = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : Union[str, Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : List[str] = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = self.scheduler_classes[0] lowercase__ : Optional[int] = self.get_scheduler_config(**_snake_case ) lowercase__ : Any = scheduler_class(**_snake_case ) lowercase__ : str = 10 lowercase__ : Any = self.dummy_model() lowercase__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : Union[str, Any] = model(_snake_case ,_snake_case ) lowercase__ : int = scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ : List[Any] = model(_snake_case ,_snake_case ) lowercase__ : Tuple = scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample return sample def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : Dict = dict(self.forward_default_kwargs ) lowercase__ : int = kwargs.pop('''num_inference_steps''' ,_snake_case ) for scheduler_class in self.scheduler_classes: lowercase__ : Optional[Any] = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**_snake_case ) lowercase__ : List[Any] = self.dummy_sample lowercase__ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case ,'''set_timesteps''' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case ,'''set_timesteps''' ): lowercase__ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ : str = dummy_past_residuals[:] lowercase__ : Optional[int] = scheduler.timesteps[5] lowercase__ : Union[str, Any] = scheduler.timesteps[6] lowercase__ : Optional[Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Tuple = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) lowercase__ : str = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Tuple = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_snake_case ,time_step=_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=_snake_case ,time_step=_snake_case ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.full_loop() lowercase__ : Any = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('T') class __A ( Generic[T] ): '''simple docstring''' lowerCAmelCase : deque[T] # Cache store of keys lowerCAmelCase : set[T] # References of the keys in cache lowerCAmelCase : int = 1_0 # Maximum capacity of cache def __init__( self : Optional[Any] ,_snake_case : int ) -> None: """simple docstring""" lowercase__ : int = deque() lowercase__ : Any = set() if not n: lowercase__ : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowercase__ : int = n def UpperCAmelCase ( self : str ,_snake_case : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase__ : Optional[Any] = self.dq_store.pop() self.key_reference.remove(_snake_case ) else: self.dq_store.remove(_snake_case ) self.dq_store.appendleft(_snake_case ) self.key_reference.add(_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" for k in self.dq_store: print(_snake_case ) def __repr__( self : List[str] ) -> str: """simple docstring""" return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
"""simple docstring""" import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase_ = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None ) -> str: lowercase__ : List[str] = True while ask_again: lowercase__ : List[str] = input(__lowerCamelCase ) try: if default is not None and len(__lowerCamelCase ) == 0: return default return convert_value(__lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=[] , __lowerCamelCase=None , __lowerCamelCase=0 ) -> Dict: lowercase__ : Optional[Any] = BulletMenu(__lowerCamelCase , __lowerCamelCase ) lowercase__ : str = menu.run(default_choice=__lowerCamelCase ) return convert_value(__lowerCamelCase ) if convert_value is not None else result def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : int = int(__lowerCamelCase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[str] = int(__lowerCamelCase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : Union[str, Any] = int(__lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[Any] = int(__lowerCamelCase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : int = int(__lowerCamelCase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class __A ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ,_snake_case : Any ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = super()._format_usage(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Tuple = usage.replace('''<command> [<args>] ''' ,'''''' ) return usage
370
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCAmelCase_ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=[0, 1, 2, 3] , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=[1, 3_84, 24, 24] , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->List[str]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_size a_ = num_channels a_ = is_training a_ = use_labels a_ = hidden_size a_ = num_hidden_layers a_ = backbone_out_indices a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = num_labels a_ = backbone_featmap_shape a_ = scope a_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a_ = (image_size // patch_size) ** 2 a_ = num_patches + 1 def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->List[Any]: a_ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 1_92, 3_84, 7_68], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = DPTModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = self.num_labels a_ = DPTForDepthEstimation(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = DPTForSemanticSegmentation(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ : Optional[int] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ : str = False a_ : Union[str, Any] = False a_ : List[str] = False def UpperCAmelCase__ ( self) ->Optional[int]: a_ = DPTModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Any: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds") def UpperCAmelCase__ ( self) ->Optional[Any]: pass def UpperCAmelCase__ ( self) ->List[str]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear)) def UpperCAmelCase__ ( self) ->str: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True if model_class in get_values(__UpperCAmelCase): continue a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.train() a_ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a_ = model(**__UpperCAmelCase).loss loss.backward() def UpperCAmelCase__ ( self) ->Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = False a_ = True if model_class in get_values(__UpperCAmelCase) or not model_class.supports_gradient_checkpointing: continue a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.gradient_checkpointing_enable() model.train() a_ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a_ = model(**__UpperCAmelCase).loss loss.backward() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = _config_zero_init(__UpperCAmelCase) for model_class in self.all_model_classes: a_ = model_class(config=__UpperCAmelCase) # Skip the check for the backbone a_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def UpperCAmelCase__ ( self) ->int: pass @slow def UpperCAmelCase__ ( self) ->Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a_ = DPTModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = "add" with self.assertRaises(__UpperCAmelCase): a_ = DPTForDepthEstimation(__UpperCAmelCase) def UpperCamelCase ( ) ->Union[str, Any]: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Any: a_ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") a_ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(__UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) a_ = outputs.predicted_depth # verify the predicted depth a_ = torch.Size((1, 3_84, 3_84)) self.assertEqual(predicted_depth.shape , __UpperCAmelCase) a_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCAmelCase , atol=1E-4))
303
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase_ = logging.getLogger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Tuple: super().__init__( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) a_ = None def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Union[str, Any]: logger.info("initializing retrieval") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized") # needs to be set manually a_ = self._infer_socket_ifname() # avoid clash with the NCCL port a_ = str(distributed_port + 1) a_ = dist.new_group(ranks=__UpperCAmelCase , backend="gloo") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def UpperCAmelCase__ ( self) ->Tuple: return dist.get_rank(group=self.process_group) == 0 def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=torch.floataa) ->Tuple: a_ = torch.empty(__UpperCAmelCase , dtype=__UpperCAmelCase) dist.scatter(__UpperCAmelCase , src=0 , scatter_list=__UpperCAmelCase , group=self.process_group) return target_tensor def UpperCAmelCase__ ( self) ->Any: a_ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names a_ = next((addr for addr in addrs if addr.startswith("e")) , __UpperCAmelCase) return ifname def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): a_ , a_ = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase) # distributed training a_ = dist.get_world_size(group=self.process_group) # gather logic a_ = None if self._is_main(): a_ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(__UpperCAmelCase)] dist.gather(torch.tensor(__UpperCAmelCase) , dst=0 , gather_list=__UpperCAmelCase , group=self.process_group) # scatter logic a_ = question_hidden_states.shape[0] a_ = [] a_ = [] if self._is_main(): assert len(__UpperCAmelCase) == world_size a_ , a_ = self._main_retrieve(torch.cat(__UpperCAmelCase).numpy() , __UpperCAmelCase) a_ , a_ = torch.tensor(__UpperCAmelCase), torch.tensor(__UpperCAmelCase) a_ = self._chunk_tensor(__UpperCAmelCase , __UpperCAmelCase) a_ = self._chunk_tensor(__UpperCAmelCase , __UpperCAmelCase) a_ = self._scattered(__UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa) a_ = self._scattered(__UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__UpperCAmelCase)
303
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase_ = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" if "://" in dataset_path: a_ = dataset_path.split("://" )[1] return dataset_path def UpperCamelCase ( UpperCAmelCase ) ->bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = not is_remote_filesystem(UpperCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(UpperCAmelCase ) , fs._strip_protocol(UpperCAmelCase ) ) else: fs.mv(UpperCAmelCase , UpperCAmelCase , recursive=UpperCAmelCase ) def UpperCamelCase ( ) ->None: """simple docstring""" if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: a_ = None a_ = None a_ = threading.Lock()
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """gpt_neox_japanese""" def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=25_60 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1.00 , __UpperCAmelCase=1_00_00 , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=3_19_96 , __UpperCAmelCase=3_19_99 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , **__UpperCAmelCase , ) ->Tuple: super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_multiple_size a_ = hidden_act a_ = rotary_pct a_ = rotary_emb_base a_ = initializer_range a_ = layer_norm_eps a_ = use_cache a_ = attention_dropout a_ = hidden_dropout
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Any = """distilbert""" a_ : int = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=5_12 , __UpperCAmelCase=False , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=7_68 , __UpperCAmelCase=4 * 7_68 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ) ->Tuple: a_ = vocab_size a_ = max_position_embeddings a_ = sinusoidal_pos_embds a_ = n_layers a_ = n_heads a_ = dim a_ = hidden_dim a_ = dropout a_ = attention_dropout a_ = activation a_ = initializer_range a_ = qa_dropout a_ = seq_classif_dropout super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
1
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) ->int: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def UpperCAmelCase__ ( self) ->Dict: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self) ->Any: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ = BioGptModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->str: a_ = BioGptForCausalLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase) ->List[Any]: a_ = BioGptModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() # create attention mask a_ = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCAmelCase) a_ = self.seq_length // 2 a_ = 0 # first forward pass a_ , a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase).to_tuple() # create hypothetical next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids a_ = ids_tensor((1,) , __UpperCAmelCase).item() + 1 a_ = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) a_ = random_other_next_tokens # append to next input_ids and attn_mask a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__UpperCAmelCase)] , dim=1 , ) # get two different outputs a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase)["last_hidden_state"] a_ = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase)["last_hidden_state"] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -1, random_slice_idx].detach() a_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase) ->str: a_ = BioGptModel(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() a_ = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCAmelCase) # first forward pass a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase) a_ , a_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([attention_mask, next_attn_mask] , dim=-1) a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase)["last_hidden_state"] a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase)[ "last_hidden_state" ] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase=False) ->Union[str, Any]: a_ = BioGptForCausalLM(__UpperCAmelCase) model.to(__UpperCAmelCase) if gradient_checkpointing: model.gradient_checkpointing_enable() a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase) ->Tuple: a_ = BioGptModel(__UpperCAmelCase) a_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase) ->Dict: a_ = self.num_labels a_ = BioGptForTokenClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[int] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) a_ : Any = (BioGptForCausalLM,) if is_torch_available() else () a_ : Optional[Any] = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) a_ : Dict = False def UpperCAmelCase__ ( self) ->Any: a_ = BioGptModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Any: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__UpperCAmelCase , gradient_checkpointing=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->Any: a_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(__UpperCAmelCase) a_ = BioGptTokenizer.from_pretrained("microsoft/biogpt") a_ = "left" # Define PAD Token = EOS Token = 50256 a_ = tokenizer.eos_token a_ = model.config.eos_token_id # use different length sentences to test batching a_ = [ "Hello, my dog is a little", "Today, I", ] a_ = tokenizer(__UpperCAmelCase , return_tensors="pt" , padding=__UpperCAmelCase) a_ = inputs["input_ids"].to(__UpperCAmelCase) a_ = model.generate( input_ids=__UpperCAmelCase , attention_mask=inputs["attention_mask"].to(__UpperCAmelCase) , ) a_ = tokenizer(sentences[0] , return_tensors="pt").input_ids.to(__UpperCAmelCase) a_ = model.generate(input_ids=__UpperCAmelCase) a_ = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() a_ = tokenizer(sentences[1] , return_tensors="pt").input_ids.to(__UpperCAmelCase) a_ = model.generate(input_ids=__UpperCAmelCase , max_length=model.config.max_length - num_paddings) a_ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) a_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase) a_ = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase) a_ = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence]) @slow def UpperCAmelCase__ ( self) ->Optional[int]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = BioGptModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = 3 a_ = input_dict["input_ids"] a_ = input_ids.ne(1).to(__UpperCAmelCase) a_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) a_ = BioGptForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase__ ( self) ->Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = 3 a_ = "multi_label_classification" a_ = input_dict["input_ids"] a_ = input_ids.ne(1).to(__UpperCAmelCase) a_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) a_ = BioGptForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt") a_ = torch.tensor([[2, 48_05, 9, 6_56, 21]]) a_ = model(__UpperCAmelCase)[0] a_ = 4_23_84 a_ = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @slow def UpperCAmelCase__ ( self) ->int: a_ = BioGptTokenizer.from_pretrained("microsoft/biogpt") a_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(__UpperCAmelCase) torch.manual_seed(0) a_ = tokenizer("COVID-19 is" , return_tensors="pt").to(__UpperCAmelCase) a_ = model.generate( **__UpperCAmelCase , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__UpperCAmelCase , ) a_ = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase) a_ = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase)
303
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['PoolFormerFeatureExtractor'] UpperCamelCase_ = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
303
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCamelCase_ = logging.get_logger(__name__) # General docstring UpperCamelCase_ = 'ResNetConfig' # Base docstring UpperCamelCase_ = 'microsoft/resnet-50' UpperCamelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCamelCase_ = 'microsoft/resnet-50' UpperCamelCase_ = 'tiger cat' UpperCamelCase_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu") ->Union[str, Any]: super().__init__() a_ = nn.Convad( __UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=kernel_size // 2 , bias=__UpperCAmelCase) a_ = nn.BatchNormad(__UpperCAmelCase) a_ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = self.convolution(__UpperCAmelCase) a_ = self.normalization(__UpperCAmelCase) a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase) ->Any: super().__init__() a_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) a_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) a_ = config.num_channels def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") a_ = self.embedder(__UpperCAmelCase) a_ = self.pooler(__UpperCAmelCase) return embedding class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 2) ->List[str]: super().__init__() a_ = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , stride=__UpperCAmelCase , bias=__UpperCAmelCase) a_ = nn.BatchNormad(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = self.convolution(__UpperCAmelCase) a_ = self.normalization(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu") ->Union[str, Any]: super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , activation=__UpperCAmelCase) , ) a_ = ACTaFN[activation] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[Any]: a_ = hidden_state a_ = self.layer(__UpperCAmelCase) a_ = self.shortcut(__UpperCAmelCase) hidden_state += residual a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu" , __UpperCAmelCase = 4) ->Dict: super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = out_channels // reduction a_ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase) , ) a_ = ACTaFN[activation] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: a_ = hidden_state a_ = self.layer(__UpperCAmelCase) a_ = self.shortcut(__UpperCAmelCase) hidden_state += residual a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , ) ->str: super().__init__() a_ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer a_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , activation=config.hidden_act) , *[layer(__UpperCAmelCase , __UpperCAmelCase , activation=config.hidden_act) for _ in range(depth - 1)] , ) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = input for layer in self.layers: a_ = layer(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase) ->List[Any]: super().__init__() a_ = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) a_ = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(__UpperCAmelCase , config.depths[1:]): self.stages.append(ResNetStage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , depth=__UpperCAmelCase)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True) ->BaseModelOutputWithNoAttention: a_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ = hidden_states + (hidden_state,) a_ = stage_module(__UpperCAmelCase) if output_hidden_states: a_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = ResNetConfig a_ : List[Any] = """resnet""" a_ : Tuple = """pixel_values""" a_ : Any = True def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: if isinstance(__UpperCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu") elif isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False) ->List[Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = value UpperCamelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase) ->Tuple: super().__init__(__UpperCAmelCase) a_ = config a_ = ResNetEmbeddings(__UpperCAmelCase) a_ = ResNetEncoder(__UpperCAmelCase) a_ = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None) ->BaseModelOutputWithPoolingAndNoAttention: a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.embedder(__UpperCAmelCase) a_ = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = encoder_outputs[0] a_ = self.pooler(__UpperCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase) ->Union[str, Any]: super().__init__(__UpperCAmelCase) a_ = config.num_labels a_ = ResNetModel(__UpperCAmelCase) # classification head a_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) ->ImageClassifierOutputWithNoAttention: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.resnet(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = outputs.pooler_output if return_dict else outputs[1] a_ = self.classifier(__UpperCAmelCase) a_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ = "single_label_classification" else: a_ = "multi_label_classification" if self.config.problem_type == "regression": a_ = MSELoss() if self.num_labels == 1: a_ = loss_fct(logits.squeeze() , labels.squeeze()) else: a_ = loss_fct(__UpperCAmelCase , __UpperCAmelCase) elif self.config.problem_type == "single_label_classification": a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": a_ = BCEWithLogitsLoss() a_ = loss_fct(__UpperCAmelCase , __UpperCAmelCase) if not return_dict: a_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase) ->Dict: super().__init__(__UpperCAmelCase) super()._init_backbone(__UpperCAmelCase) a_ = [config.embedding_size] + config.hidden_sizes a_ = ResNetEmbeddings(__UpperCAmelCase) a_ = ResNetEncoder(__UpperCAmelCase) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None) ->BackboneOutput: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = self.embedder(__UpperCAmelCase) a_ = self.encoder(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = outputs.hidden_states a_ = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: a_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__UpperCAmelCase , )
303
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = {'facebook/bart-base': BartForConditionalGeneration} UpperCamelCase_ = {'facebook/bart-base': BartTokenizer} def UpperCamelCase ( ) ->List[str]: """simple docstring""" a_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=UpperCAmelCase , default=UpperCAmelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=UpperCAmelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=UpperCAmelCase , default=UpperCAmelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=UpperCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=UpperCAmelCase , ) parser.add_argument( "--config_name" , type=UpperCAmelCase , default=UpperCAmelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=UpperCAmelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=UpperCAmelCase , default=UpperCAmelCase , help="Where to store the final ONNX file." ) a_ = parser.parse_args() return args def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase="cpu" ) ->Optional[Any]: """simple docstring""" a_ = model_dict[model_name].from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) a_ = tokenizer_dict[model_name].from_pretrained(UpperCAmelCase ) if model_name in ["facebook/bart-base"]: a_ = 0 a_ = None a_ = 0 return huggingface_model, tokenizer def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" model.eval() a_ = None a_ = torch.jit.script(BARTBeamSearchGenerator(UpperCAmelCase ) ) with torch.no_grad(): a_ = "My friends are cool but they eat too many carbs." a_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors="pt" ).to(model.device ) a_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=UpperCAmelCase , max_length=UpperCAmelCase , early_stopping=UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCAmelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCAmelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=UpperCAmelCase , ) logger.info("Model exported to {}".format(UpperCAmelCase ) ) a_ = remove_dup_initializers(os.path.abspath(UpperCAmelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(UpperCAmelCase ) ) a_ = onnxruntime.InferenceSession(UpperCAmelCase ) a_ = ort_sess.run( UpperCAmelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(UpperCAmelCase ), "max_length": np.array(UpperCAmelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCamelCase ( ) ->Any: """simple docstring""" a_ = parse_args() a_ = 5 a_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() a_ = torch.device(args.device ) a_ , a_ = load_model_tokenizer(args.model_name_or_path , UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(UpperCAmelCase ) if args.max_length: a_ = args.max_length if args.num_beams: a_ = args.num_beams if args.output_file_path: a_ = args.output_file_path else: a_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
303
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" import os import sys UpperCamelCase_ = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase_ = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return AutoConfig.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Tuple: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Dict: """simple docstring""" return AutoModel.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Any: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Optional[Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Optional[Any]: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCAmelCase , **UpperCAmelCase )
303
"""simple docstring""" import os import numpy import onnx def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = a.name a_ = b.name a_ = "" a_ = "" a_ = a == b a_ = name_a a_ = name_b return res def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = list(model.graph.initializer ) a_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a_ = inits[i].name a_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = os.path.dirname(UpperCAmelCase ) a_ = os.path.basename(UpperCAmelCase ) a_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) a_ = list(model.graph.initializer ) a_ = set() a_ = {} a_ = [] a_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) a_ = inits[j].data_type a_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase ) total_reduced_size += mem_size a_ = inits[i].name a_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: a_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = "optimized_" + model_file_name a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
303
1
"""simple docstring""" from __future__ import annotations def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->list[list[int]]: """simple docstring""" a_ = [] create_all_state(1 , UpperCAmelCase , UpperCAmelCase , [] , UpperCAmelCase ) return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCAmelCase , total_number - level + 2 ): current_list.append(UpperCAmelCase ) create_all_state(i + 1 , UpperCAmelCase , level - 1 , UpperCAmelCase , UpperCAmelCase ) current_list.pop() def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" for i in total_list: print(*UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = 4 UpperCamelCase_ = 2 UpperCamelCase_ = generate_all_combinations(n, k) print_all_state(total_list)
303
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = """roberta""" def __init__( self , __UpperCAmelCase=5_02_65 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->int: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) a_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above a_ = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above a_ = tf_top_k_top_p_filtering(__UpperCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) a_ = output[output != -float("inf")] a_ = tf.cast( tf.where(tf.not_equal(__UpperCAmelCase , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-12) tf.debugging.assert_equal(__UpperCAmelCase , __UpperCAmelCase) @require_tf class snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE_ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): a_ : Any = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def UpperCAmelCase__ ( self) ->List[Any]: # TF-only test: tf.saved_model export a_ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = 2 a_ = 2 class snake_case ( tf.Module ): def __init__( self , __UpperCAmelCase) ->Optional[int]: super(__UpperCAmelCase , self).__init__() a_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=__UpperCAmelCase , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = self.model.generate( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , max_new_tokens=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , ) return {"sequences": outputs["sequences"]} a_ = [[2, 0], [1_02, 1_03]] a_ = [[1, 0], [1, 1]] a_ = DummyModel(model=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={"serving_default": dummy_model.serving}) a_ = tf.saved_model.load(__UpperCAmelCase).signatures["serving_default"] for batch_size in range(1 , len(__UpperCAmelCase) + 1): a_ = { "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } a_ = serving_func(**__UpperCAmelCase)["sequences"] a_ = test_model.generate(**__UpperCAmelCase , max_new_tokens=__UpperCAmelCase) tf.debugging.assert_equal(__UpperCAmelCase , __UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->Optional[int]: # TF-only test: tf.saved_model export a_ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = 1 a_ = 2 class snake_case ( tf.Module ): def __init__( self , __UpperCAmelCase) ->int: super(__UpperCAmelCase , self).__init__() a_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=__UpperCAmelCase , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ = self.model.generate( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , max_new_tokens=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , ) return {"sequences": outputs["sequences"]} a_ = [[2], [1_02, 1_03]] a_ = [[1], [1, 1]] a_ = DummyModel(model=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={"serving_default": dummy_model.serving}) a_ = tf.saved_model.load(__UpperCAmelCase).signatures["serving_default"] for input_row in range(len(__UpperCAmelCase)): a_ = { "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } a_ = serving_func(**__UpperCAmelCase)["sequences"] a_ = test_model.generate(**__UpperCAmelCase , max_new_tokens=__UpperCAmelCase) tf.debugging.assert_equal(__UpperCAmelCase , __UpperCAmelCase) @slow @require_tensorflow_text def UpperCAmelCase__ ( self) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=__UpperCAmelCase) class snake_case ( tf.keras.layers.Layer ): def __init__( self) ->str: super().__init__() a_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__UpperCAmelCase , "spiece.model") , "rb").read()) a_ = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: a_ = self.tokenizer.tokenize(__UpperCAmelCase) a_ , a_ = text.pad_model_inputs( __UpperCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id) a_ = self.model.generate(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase) return self.tokenizer.detokenize(__UpperCAmelCase) a_ = CompleteSentenceTransformer() a_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") a_ = complete_model(__UpperCAmelCase) a_ = tf.keras.Model(__UpperCAmelCase , __UpperCAmelCase) keras_model.save(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # Has PT equivalent: this test relies on random sampling a_ = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } a_ = 14 a_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = "Hello, my dog is cute and" a_ = tokenizer(__UpperCAmelCase , return_tensors="tf") a_ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) a_ = model.generate(**__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) self.assertTrue(expectation == len(generated_tokens[0])) a_ = [6_38, 1_98] with tf.device(":/CPU:0"): tf.random.set_seed(0) a_ = model.generate(**__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) self.assertTrue(expectation == len(generated_tokens[0])) def UpperCAmelCase__ ( self) ->Union[str, Any]: # Has PT equivalent: ample use of framework-specific code a_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") a_ = "Hugging Face is a technology company based in New York and Paris." a_ = bart_tokenizer(__UpperCAmelCase , return_tensors="tf").input_ids a_ = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") a_ = bart_model.generate(__UpperCAmelCase).numpy() class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase) ->List[Any]: return super().call(__UpperCAmelCase , **__UpperCAmelCase) a_ = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") a_ = bart_model.generate(__UpperCAmelCase , foo="bar").numpy() self.assertTrue(np.array_equal(__UpperCAmelCase , __UpperCAmelCase)) class snake_case ( bart_model.model.encoder.__class__ ): def UpperCAmelCase__ ( self , __UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: return super().call(__UpperCAmelCase , **__UpperCAmelCase) a_ = FakeEncoder(bart_model.config , bart_model.model.shared) a_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) a_ = bart_model.generate(__UpperCAmelCase).numpy() with self.assertRaises(__UpperCAmelCase): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__UpperCAmelCase , foo="bar")
303
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
303
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[Any]: a_ = 3 a_ = 2_50 a_ = ids_tensor((batch_size, length) , __UpperCAmelCase) a_ = torch.ones((batch_size, length) , device=__UpperCAmelCase , dtype=torch.float) / length return input_ids, scores def UpperCAmelCase__ ( self) ->Optional[Any]: a_ , a_ = self._get_tensors(5) a_ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10), MaxTimeCriteria(max_time=0.1), ]) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ , a_ = self._get_tensors(9) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ , a_ = self._get_tensors(10) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) def UpperCAmelCase__ ( self) ->int: a_ = MaxLengthCriteria(max_length=10) a_ , a_ = self._get_tensors(5) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ , a_ = self._get_tensors(9) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ , a_ = self._get_tensors(10) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) def UpperCAmelCase__ ( self) ->Tuple: a_ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5) a_ , a_ = self._get_tensors(5) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ , a_ = self._get_tensors(9) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ , a_ = self._get_tensors(10) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ = StoppingCriteriaList([criteria]) self.assertEqual(criteria_list.max_length , 10) def UpperCAmelCase__ ( self) ->List[str]: a_ , a_ = self._get_tensors(5) a_ = MaxTimeCriteria(max_time=0.1) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a_ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) def UpperCAmelCase__ ( self) ->Any: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 10) with self.assertWarns(__UpperCAmelCase): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 11) a_ = validate_stopping_criteria(StoppingCriteriaList() , 11) self.assertEqual(len(__UpperCAmelCase) , 1)
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): a_ : Any = ["""torch""", """scipy"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Any: requires_backends(self , ["torch", "scipy"]) @classmethod def UpperCAmelCase__ ( cls , *__UpperCAmelCase , **__UpperCAmelCase) ->str: requires_backends(cls , ["torch", "scipy"]) @classmethod def UpperCAmelCase__ ( cls , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[Any]: requires_backends(cls , ["torch", "scipy"])
303
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" UpperCamelCase_ = 0 # The first color of the flag. UpperCamelCase_ = 1 # The second color of the flag. UpperCamelCase_ = 2 # The third color of the flag. UpperCamelCase_ = (red, white, blue) def UpperCamelCase ( UpperCAmelCase ) ->list: """simple docstring""" if not sequence: return [] if len(UpperCAmelCase ) == 1: return list(UpperCAmelCase ) a_ = 0 a_ = len(UpperCAmelCase ) - 1 a_ = 0 while mid <= high: if sequence[mid] == colors[0]: a_ , a_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: a_ , a_ = sequence[high], sequence[mid] high -= 1 else: a_ = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input('Enter numbers separated by commas:\n').strip() UpperCamelCase_ = [int(item.strip()) for item in user_input.split(',')] print(F"""{dutch_national_flag_sort(unsorted)}""")
303
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
1
"""simple docstring""" import math import os import sys def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = "" try: with open(UpperCAmelCase , "rb" ) as binary_file: a_ = binary_file.read() for dat in data: a_ = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" lexicon.pop(UpperCAmelCase ) a_ = last_match_id if math.loga(UpperCAmelCase ).is_integer(): for curr_key in lexicon: a_ = "0" + lexicon[curr_key] a_ = bin(UpperCAmelCase )[2:] def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = {"0": "0", "1": "1"} a_ , a_ = "", "" a_ = len(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) index += 1 a_ = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a_ = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = os.path.getsize(UpperCAmelCase ) a_ = bin(UpperCAmelCase )[2:] a_ = len(UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = 8 try: with open(UpperCAmelCase , "wb" ) as opened_file: a_ = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = read_file_binary(UpperCAmelCase ) a_ = compress_data(UpperCAmelCase ) a_ = add_file_length(UpperCAmelCase , UpperCAmelCase ) write_file_binary(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a_ : str = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a_ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) a_ : ClassVar[Features] = Features({"""summary""": Value("""string""" )} ) a_ : str = "text" a_ : str = "summary" @property def UpperCAmelCase__ ( self) ->Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
303
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ) or number < 0: raise ValueError("Input must be a non-negative integer" ) a_ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = MgpstrTokenizer a_ : Any = False a_ : Tuple = {} a_ : str = False def UpperCAmelCase__ ( self) ->Any: super().setUp() # fmt: off a_ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on a_ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase)))) a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__UpperCAmelCase) + "\n") def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Optional[Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: a_ = "tester" a_ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters.") def UpperCAmelCase__ ( self) ->List[str]: pass def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.get_tokenizers(do_lower_case=__UpperCAmelCase) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}'''): a_ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token}) a_ = tokenizer.encode([special_token] , add_special_tokens=__UpperCAmelCase) self.assertEqual(len(__UpperCAmelCase) , 1) a_ = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) self.assertTrue(special_token not in decoded) def UpperCAmelCase__ ( self) ->Dict: a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}'''): a_ , a_ = self.get_input_output_texts(__UpperCAmelCase) a_ = tokenizer.tokenize(__UpperCAmelCase) a_ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase) a_ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) a_ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase) self.assertNotEqual(len(__UpperCAmelCase) , 0) a_ = tokenizer.decode(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) self.assertEqual(text_a.replace(" " , "") , __UpperCAmelCase) @unittest.skip("MGP-STR tokenizer only handles one sequence.") def UpperCAmelCase__ ( self) ->List[Any]: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer") def UpperCAmelCase__ ( self) ->int: pass
303
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
1
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
1
"""simple docstring""" from timeit import timeit def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) a_ = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) a_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase ( ) ->None: """simple docstring""" def do_benchmark(UpperCAmelCase ) -> None: a_ = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(UpperCAmelCase ) = }''' ) a_ = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(UpperCAmelCase ) = }''' ) a_ = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class snake_case ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=4_00 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 2_55 , __UpperCAmelCase=True , ) ->List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} a_ = parent a_ = batch_size a_ = num_channels a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = do_normalize a_ = image_mean a_ = image_std a_ = do_rescale a_ = rescale_factor a_ = do_pad def UpperCAmelCase__ ( self) ->str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False) ->Dict: if not batched: a_ = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image): a_ , a_ = image.size else: a_ , a_ = image.shape[1], image.shape[2] if w < h: a_ = int(self.size["shortest_edge"] * h / w) a_ = self.size["shortest_edge"] elif w > h: a_ = self.size["shortest_edge"] a_ = int(self.size["shortest_edge"] * w / h) else: a_ = self.size["shortest_edge"] a_ = self.size["shortest_edge"] else: a_ = [] for image in image_inputs: a_ , a_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) a_ = max(__UpperCAmelCase , key=lambda __UpperCAmelCase: item[0])[0] a_ = max(__UpperCAmelCase , key=lambda __UpperCAmelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[Any] = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self) ->Any: a_ = DetaImageProcessingTester(self) @property def UpperCAmelCase__ ( self) ->Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self) ->int: a_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCAmelCase , "image_mean")) self.assertTrue(hasattr(__UpperCAmelCase , "image_std")) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize")) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize")) self.assertTrue(hasattr(__UpperCAmelCase , "do_rescale")) self.assertTrue(hasattr(__UpperCAmelCase , "do_pad")) self.assertTrue(hasattr(__UpperCAmelCase , "size")) def UpperCAmelCase__ ( self) ->Dict: a_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33}) self.assertEqual(image_processor.do_pad , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: pass def UpperCAmelCase__ ( self) ->Dict: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="pt").pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(__UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase) a_ = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self) ->int: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="pt").pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(__UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self) ->Optional[int]: # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="pt").pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(__UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self) ->str: # prepare image and target a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r") as f: a_ = json.loads(f.read()) a_ = {"image_id": 3_97_69, "annotations": target} # encode them a_ = DetaImageProcessor() a_ = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors="pt") # verify pixel values a_ = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding["pixel_values"].shape , __UpperCAmelCase) a_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4)) # verify area a_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCAmelCase)) # verify boxes a_ = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCAmelCase) a_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCAmelCase , atol=1E-3)) # verify image_id a_ = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCAmelCase)) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCAmelCase)) # verify class_labels a_ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCAmelCase)) # verify orig_size a_ = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCAmelCase)) # verify size a_ = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCAmelCase)) @slow def UpperCAmelCase__ ( self) ->Tuple: # prepare image, target and masks_path a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r") as f: a_ = json.loads(f.read()) a_ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} a_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them a_ = DetaImageProcessor(format="coco_panoptic") a_ = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors="pt") # verify pixel values a_ = torch.Size([1, 3, 8_00, 10_66]) self.assertEqual(encoding["pixel_values"].shape , __UpperCAmelCase) a_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4)) # verify area a_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCAmelCase)) # verify boxes a_ = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCAmelCase) a_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCAmelCase , atol=1E-3)) # verify image_id a_ = torch.tensor([3_97_69]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCAmelCase)) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCAmelCase)) # verify class_labels a_ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCAmelCase)) # verify masks a_ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __UpperCAmelCase) # verify orig_size a_ = torch.tensor([4_80, 6_40]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCAmelCase)) # verify size a_ = torch.tensor([8_00, 10_66]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCAmelCase))
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
303
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Tuple = StableUnCLIPImgaImgPipeline a_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS a_ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ : str = frozenset([] ) def UpperCAmelCase__ ( self) ->Any: a_ = 32 a_ = embedder_hidden_size # image encoding components a_ = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) a_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__UpperCAmelCase , projection_dim=__UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) a_ = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase) a_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2") torch.manual_seed(0) a_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) a_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )) torch.manual_seed(0) a_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCAmelCase , layers_per_block=1 , upcast_attention=__UpperCAmelCase , use_linear_projection=__UpperCAmelCase , ) torch.manual_seed(0) a_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0) a_ = AutoencoderKL() a_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True) ->Union[str, Any]: if str(__UpperCAmelCase).startswith("mps"): a_ = torch.manual_seed(__UpperCAmelCase) else: a_ = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) if pil_image: a_ = input_image * 0.5 + 0.5 a_ = input_image.clamp(0 , 1) a_ = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = DiffusionPipeline.numpy_to_pil(__UpperCAmelCase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCAmelCase__ ( self) ->int: a_ = "cpu" # ensure determinism for the device-dependent torch.Generator a_ = self.get_dummy_components() a_ = StableUnCLIPImgaImgPipeline(**__UpperCAmelCase) a_ = sd_pipe.to(__UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_dummy_inputs(__UpperCAmelCase) inputs.update({"image_embeds": None}) a_ = sd_pipe(**__UpperCAmelCase).images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase__ ( self) ->Optional[int]: a_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Any: a_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase__ ( self) ->Dict: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__UpperCAmelCase) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png") a_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy") a_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a_ = torch.Generator(device="cpu").manual_seed(0) a_ = pipe(__UpperCAmelCase , "anime turle" , generator=__UpperCAmelCase , output_type="np") a_ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png") a_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy") a_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a_ = torch.Generator(device="cpu").manual_seed(0) a_ = pipe(__UpperCAmelCase , "anime turle" , generator=__UpperCAmelCase , output_type="np") a_ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png") torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa) a_ = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a_ = pipe( __UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) a_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
303
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : BigBirdConfig a_ : jnp.dtype = jnp.floataa a_ : bool = True def UpperCAmelCase__ ( self) ->Optional[int]: super().setup() a_ = nn.Dense(5 , dtype=self.dtype) def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: a_ = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase) a_ = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" def cross_entropy(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ): a_ = logits.shape[-1] a_ = (labels[..., None] == jnp.arange(UpperCAmelCase )[None]).astype("f4" ) a_ = jax.nn.log_softmax(UpperCAmelCase , axis=-1 ) a_ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: a_ = reduction(UpperCAmelCase ) return loss a_ = partial(UpperCAmelCase , reduction=jnp.mean ) a_ = cross_entropy(UpperCAmelCase , UpperCAmelCase ) a_ = cross_entropy(UpperCAmelCase , UpperCAmelCase ) a_ = cross_entropy(UpperCAmelCase , UpperCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case : a_ : str = "google/bigbird-roberta-base" a_ : int = 3000 a_ : int = 1_0500 a_ : int = 128 a_ : int = 3 a_ : int = 1 a_ : int = 5 # tx_args a_ : float = 3e-5 a_ : float = 0.0 a_ : int = 2_0000 a_ : float = 0.0095 a_ : str = "bigbird-roberta-natural-questions" a_ : str = "training-expt" a_ : str = "data/nq-training.jsonl" a_ : str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self) ->Dict: os.makedirs(self.base_dir , exist_ok=__UpperCAmelCase) a_ = os.path.join(self.base_dir , self.save_dir) a_ = self.batch_size_per_device * jax.device_count() @dataclass class snake_case : a_ : int a_ : int = 4096 # no dynamic padding on TPUs def __call__( self , __UpperCAmelCase) ->List[Any]: a_ = self.collate_fn(__UpperCAmelCase) a_ = jax.tree_util.tree_map(__UpperCAmelCase , __UpperCAmelCase) return batch def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: a_ , a_ = self.fetch_inputs(features["input_ids"]) a_ = { "input_ids": jnp.array(__UpperCAmelCase , dtype=jnp.intaa), "attention_mask": jnp.array(__UpperCAmelCase , dtype=jnp.intaa), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa), } return batch def UpperCAmelCase__ ( self , __UpperCAmelCase) ->int: a_ = [self._fetch_inputs(__UpperCAmelCase) for ids in input_ids] return zip(*__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Union[str, Any]: a_ = [1 for _ in range(len(__UpperCAmelCase))] while len(__UpperCAmelCase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) ->List[str]: """simple docstring""" if seed is not None: a_ = dataset.shuffle(seed=UpperCAmelCase ) for i in range(len(UpperCAmelCase ) // batch_size ): a_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase ) @partial(jax.pmap , axis_name="batch" ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) ->List[Any]: """simple docstring""" def loss_fn(UpperCAmelCase ): a_ = model_inputs.pop("start_labels" ) a_ = model_inputs.pop("end_labels" ) a_ = model_inputs.pop("pooled_labels" ) a_ = state.apply_fn(**UpperCAmelCase , params=UpperCAmelCase , dropout_rng=UpperCAmelCase , train=UpperCAmelCase ) a_ , a_ , a_ = outputs return state.loss_fn( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) a_ , a_ = jax.random.split(UpperCAmelCase ) a_ = jax.value_and_grad(UpperCAmelCase ) a_ , a_ = grad_fn(state.params ) a_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) a_ = jax.lax.pmean(UpperCAmelCase , "batch" ) a_ = state.apply_gradients(grads=UpperCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def UpperCamelCase ( UpperCAmelCase , **UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = model_inputs.pop("start_labels" ) a_ = model_inputs.pop("end_labels" ) a_ = model_inputs.pop("pooled_labels" ) a_ = state.apply_fn(**UpperCAmelCase , params=state.params , train=UpperCAmelCase ) a_ , a_ , a_ = outputs a_ = state.loss_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class snake_case ( train_state.TrainState ): a_ : Callable = struct.field(pytree_node=SCREAMING_SNAKE_CASE_ ) @dataclass class snake_case : a_ : Args a_ : Callable a_ : Callable a_ : Callable a_ : Callable a_ : wandb a_ : Callable = None def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Tuple: a_ = model.params a_ = TrainState.create( apply_fn=model.__call__ , params=__UpperCAmelCase , tx=__UpperCAmelCase , loss_fn=__UpperCAmelCase , ) if ckpt_dir is not None: a_ , a_ , a_ , a_ , a_ = restore_checkpoint(__UpperCAmelCase , __UpperCAmelCase) a_ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } a_ , a_ = build_tx(**__UpperCAmelCase) a_ = train_state.TrainState( step=__UpperCAmelCase , apply_fn=model.__call__ , params=__UpperCAmelCase , tx=__UpperCAmelCase , opt_state=__UpperCAmelCase , ) a_ = args a_ = data_collator a_ = lr a_ = params a_ = jax_utils.replicate(__UpperCAmelCase) return state def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = self.args a_ = len(__UpperCAmelCase) // args.batch_size a_ = jax.random.PRNGKey(0) a_ = jax.random.split(__UpperCAmelCase , jax.device_count()) for epoch in range(args.max_epochs): a_ = jnp.array(0 , dtype=jnp.floataa) a_ = get_batched_dataset(__UpperCAmelCase , args.batch_size , seed=__UpperCAmelCase) a_ = 0 for batch in tqdm(__UpperCAmelCase , total=__UpperCAmelCase , desc=F'''Running EPOCH-{epoch}'''): a_ = self.data_collator(__UpperCAmelCase) a_ , a_ , a_ = self.train_step_fn(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 if i % args.logging_steps == 0: a_ = jax_utils.unreplicate(state.step) a_ = running_loss.item() / i a_ = self.scheduler_fn(state_step - 1) a_ = self.evaluate(__UpperCAmelCase , __UpperCAmelCase) a_ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__UpperCAmelCase)) self.logger.log(__UpperCAmelCase , commit=__UpperCAmelCase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: a_ = get_batched_dataset(__UpperCAmelCase , self.args.batch_size) a_ = len(__UpperCAmelCase) // self.args.batch_size a_ = jnp.array(0 , dtype=jnp.floataa) a_ = 0 for batch in tqdm(__UpperCAmelCase , total=__UpperCAmelCase , desc="Evaluating ... "): a_ = self.data_collator(__UpperCAmelCase) a_ = self.val_step_fn(__UpperCAmelCase , **__UpperCAmelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 return running_loss / i def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = jax_utils.unreplicate(__UpperCAmelCase) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=" ... ") self.model_save_fn(__UpperCAmelCase , params=state.params) with open(os.path.join(__UpperCAmelCase , "opt_state.msgpack") , "wb") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(__UpperCAmelCase , "args.joblib")) joblib.dump(self.data_collator , os.path.join(__UpperCAmelCase , "data_collator.joblib")) with open(os.path.join(__UpperCAmelCase , "training_state.json") , "w") as f: json.dump({"step": state.step.item()} , __UpperCAmelCase) print("DONE") def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=" ... " ) with open(os.path.join(UpperCAmelCase , "flax_model.msgpack" ) , "rb" ) as f: a_ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCAmelCase , "opt_state.msgpack" ) , "rb" ) as f: a_ = from_bytes(state.opt_state , f.read() ) a_ = joblib.load(os.path.join(UpperCAmelCase , "args.joblib" ) ) a_ = joblib.load(os.path.join(UpperCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(UpperCAmelCase , "training_state.json" ) , "r" ) as f: a_ = json.load(UpperCAmelCase ) a_ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = num_train_steps - warmup_steps a_ = optax.linear_schedule(init_value=UpperCAmelCase , end_value=UpperCAmelCase , transition_steps=UpperCAmelCase ) a_ = optax.linear_schedule(init_value=UpperCAmelCase , end_value=1E-7 , transition_steps=UpperCAmelCase ) a_ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" def weight_decay_mask(UpperCAmelCase ): a_ = traverse_util.flatten_dict(UpperCAmelCase ) a_ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase ) a_ = scheduler_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = optax.adamw(learning_rate=UpperCAmelCase , weight_decay=UpperCAmelCase , mask=UpperCAmelCase ) return tx, lr
303
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """vit_mae""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=5_12 , __UpperCAmelCase=8 , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.75 , __UpperCAmelCase=False , **__UpperCAmelCase , ) ->int: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = decoder_num_attention_heads a_ = decoder_hidden_size a_ = decoder_num_hidden_layers a_ = decoder_intermediate_size a_ = mask_ratio a_ = norm_pix_loss
303
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
1
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) ->Optional[int]: """simple docstring""" if attention_mask is None: a_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: a_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: a_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: a_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: a_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = encoder_layerdrop a_ = decoder_layerdrop a_ = max_position_embeddings a_ = eos_token_id a_ = pad_token_id a_ = bos_token_id def UpperCAmelCase__ ( self) ->str: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.eos_token_id # Eos Token a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a_ = input_ids.clamp(self.pad_token_id + 1) a_ = decoder_input_ids.clamp(self.pad_token_id + 1) a_ = self.get_config() a_ = prepare_mam_aaa_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) return config, inputs_dict def UpperCAmelCase__ ( self) ->str: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ , a_ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = MaMaaaModel(config=__UpperCAmelCase).get_decoder().to(__UpperCAmelCase).eval() a_ = inputs_dict["input_ids"] a_ = inputs_dict["attention_mask"] a_ = inputs_dict["head_mask"] # first forward pass a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase) a_ , a_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([attention_mask, next_attn_mask] , dim=-1) a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase)["last_hidden_state"] a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase)[ "last_hidden_state" ] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Dict: a_ = MaMaaaModel(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() a_ = model(**__UpperCAmelCase) a_ = outputs.encoder_last_hidden_state a_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: a_ = model.get_encoder() encoder.save_pretrained(__UpperCAmelCase) a_ = MaMaaaEncoder.from_pretrained(__UpperCAmelCase).to(__UpperCAmelCase) a_ = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3) with tempfile.TemporaryDirectory() as tmpdirname: a_ = model.get_decoder() decoder.save_pretrained(__UpperCAmelCase) a_ = MaMaaaDecoder.from_pretrained(__UpperCAmelCase).to(__UpperCAmelCase) a_ = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3) @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ : Optional[int] = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ : Union[str, Any] = True a_ : Optional[int] = True a_ : Dict = False a_ : Optional[int] = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase__ ( self) ->Dict: a_ = MaMaaaModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->List[Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase) a_ , a_ = model_class.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase) self.assertEqual(info["missing_keys"] , []) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = copy.deepcopy(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) if not self.is_encoder_decoder: a_ = inputs["input_ids"] del inputs["input_ids"] else: a_ = inputs["input_ids"] a_ = inputs.get("decoder_input_ids" , __UpperCAmelCase) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __UpperCAmelCase) a_ = model.get_input_embeddings() if not self.is_encoder_decoder: a_ = wte(__UpperCAmelCase) else: a_ = wte(__UpperCAmelCase) a_ = wte(__UpperCAmelCase) with torch.no_grad(): model(**__UpperCAmelCase)[0] def UpperCAmelCase__ ( self) ->List[str]: a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = input_dict["input_ids"] a_ = input_ids.ne(1).to(__UpperCAmelCase) a_ = MaMaaaForConditionalGeneration(__UpperCAmelCase).eval().to(__UpperCAmelCase) if torch_device == "cuda": model.half() model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase) model.generate(num_beams=4 , do_sample=__UpperCAmelCase , early_stopping=__UpperCAmelCase , num_return_sequences=3) def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" return torch.tensor(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase ) UpperCamelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->Tuple: return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M") def UpperCAmelCase__ ( self) ->List[Any]: a_ = MaMaaaModel.from_pretrained("facebook/m2m100_418M").to(__UpperCAmelCase) a_ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]]) a_ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]]) a_ = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase) with torch.no_grad(): a_ = model(**__UpperCAmelCase)[0] a_ = torch.Size((1, 11, 10_24)) self.assertEqual(output.shape , __UpperCAmelCase) # change to expected output here a_ = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=__UpperCAmelCase) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase)) def UpperCAmelCase__ ( self) ->Dict: a_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(__UpperCAmelCase) # change to intended input a_ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]]) a_ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]]) a_ = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase) with torch.no_grad(): a_ = model(**__UpperCAmelCase)[0] a_ = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape , __UpperCAmelCase) # change to expected output here a_ = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=__UpperCAmelCase) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase)) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(__UpperCAmelCase) a_ = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en") a_ = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams a_ = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="pt") a_ = model.generate( input_ids=dct["input_ids"].to(__UpperCAmelCase) , attention_mask=dct["attention_mask"].to(__UpperCAmelCase) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en") , ) a_ = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] a_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) assert generated == expected_en
303
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class snake_case : def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: raise NotImplementedError() def UpperCAmelCase__ ( self) ->Optional[int]: raise NotImplementedError() class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = False , **__UpperCAmelCase) ->int: a_ = tokenizer a_ = skip_prompt a_ = decode_kwargs # variables used in the streaming process a_ = [] a_ = 0 a_ = True def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Union[str, Any]: if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1") elif len(value.shape) > 1: a_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: a_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist()) a_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs) # After the symbol for a new line, we flush the cache. if text.endswith("\n"): a_ = text[self.print_len :] a_ = [] a_ = 0 # If the last token is a CJK character, we print the characters. elif len(__UpperCAmelCase) > 0 and self._is_chinese_char(ord(text[-1])): a_ = text[self.print_len :] self.print_len += len(__UpperCAmelCase) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a_ = text[self.print_len : text.rfind(" ") + 1] self.print_len += len(__UpperCAmelCase) self.on_finalized_text(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: # Flush the cache, if it exists if len(self.token_cache) > 0: a_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs) a_ = text[self.print_len :] a_ = [] a_ = 0 else: a_ = "" a_ = True self.on_finalized_text(__UpperCAmelCase , stream_end=__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False) ->Dict: print(__UpperCAmelCase , flush=__UpperCAmelCase , end="" if not stream_end else None) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E00 and cp <= 0X9_FFF) or (cp >= 0X3_400 and cp <= 0X4_DBF) # or (cp >= 0X20_000 and cp <= 0X2A_6DF) # or (cp >= 0X2A_700 and cp <= 0X2B_73F) # or (cp >= 0X2B_740 and cp <= 0X2B_81F) # or (cp >= 0X2B_820 and cp <= 0X2C_EAF) # or (cp >= 0XF_900 and cp <= 0XF_AFF) or (cp >= 0X2F_800 and cp <= 0X2F_A1F) # ): # return True return False class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , **__UpperCAmelCase) ->Optional[int]: super().__init__(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) a_ = Queue() a_ = None a_ = timeout def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False) ->str: self.text_queue.put(__UpperCAmelCase , timeout=self.timeout) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout) def __iter__( self) ->Dict: return self def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.text_queue.get(timeout=self.timeout) if value == self.stop_signal: raise StopIteration() else: return value
303
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" UpperCamelCase_ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCamelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCamelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
303
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase="pt" ) ->str: """simple docstring""" a_ = {"add_prefix_space": True} if isinstance(UpperCAmelCase , UpperCAmelCase ) and not line.startswith(" " ) else {} a_ = padding_side return tokenizer( [line] , max_length=UpperCAmelCase , padding="max_length" if pad_to_max_length else None , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , ) ->str: """simple docstring""" a_ = input_ids.ne(UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , ) ->Union[str, Any]: super().__init__() a_ = Path(__UpperCAmelCase).joinpath(type_path + ".source") a_ = Path(__UpperCAmelCase).joinpath(type_path + ".target") a_ = self.get_char_lens(self.src_file) a_ = max_source_length a_ = max_target_length assert min(self.src_lens) > 0, F'''found empty line in {self.src_file}''' a_ = tokenizer a_ = prefix if n_obs is not None: a_ = self.src_lens[:n_obs] a_ = src_lang a_ = tgt_lang def __len__( self) ->Union[str, Any]: return len(self.src_lens) def __getitem__( self , __UpperCAmelCase) ->Dict[str, torch.Tensor]: a_ = index + 1 # linecache starts at 1 a_ = self.prefix + linecache.getline(str(self.src_file) , __UpperCAmelCase).rstrip("\n") a_ = linecache.getline(str(self.tgt_file) , __UpperCAmelCase).rstrip("\n") assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCAmelCase): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right a_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer ) a_ = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer a_ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , "right") a_ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , "right") a_ = source_inputs["input_ids"].squeeze() a_ = target_inputs["input_ids"].squeeze() a_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase) ->Tuple: return [len(__UpperCAmelCase) for x in Path(__UpperCAmelCase).open().readlines()] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Dict[str, torch.Tensor]: a_ = torch.stack([x["input_ids"] for x in batch]) a_ = torch.stack([x["attention_mask"] for x in batch]) a_ = torch.stack([x["decoder_input_ids"] for x in batch]) a_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer.pad_token_id ) a_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase) else self.tokenizer.pad_token_id ) a_ = trim_batch(__UpperCAmelCase , __UpperCAmelCase) a_ , a_ = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch UpperCamelCase_ = getLogger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" return list(itertools.chain.from_iterable(UpperCAmelCase ) ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" a_ = get_git_info() save_json(UpperCAmelCase , os.path.join(UpperCAmelCase , "git_log.json" ) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=4 , **UpperCAmelCase ) ->Tuple: """simple docstring""" with open(UpperCAmelCase , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase , indent=UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" with open(UpperCAmelCase ) as f: return json.load(UpperCAmelCase ) def UpperCamelCase ( ) ->List[Any]: """simple docstring""" a_ = git.Repo(search_parent_directories=UpperCAmelCase ) a_ = { "repo_id": str(UpperCAmelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List: """simple docstring""" return list(map(UpperCAmelCase , UpperCAmelCase ) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" with open(UpperCAmelCase , "wb" ) as f: return pickle.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" def remove_articles(UpperCAmelCase ): return re.sub(r"\b(a|an|the)\b" , " " , UpperCAmelCase ) def white_space_fix(UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase ): a_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase ) ) ) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = normalize_answer(UpperCAmelCase ).split() a_ = normalize_answer(UpperCAmelCase ).split() a_ = Counter(UpperCAmelCase ) & Counter(UpperCAmelCase ) a_ = sum(common.values() ) if num_same == 0: return 0 a_ = 1.0 * num_same / len(UpperCAmelCase ) a_ = 1.0 * num_same / len(UpperCAmelCase ) a_ = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return normalize_answer(UpperCAmelCase ) == normalize_answer(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" assert len(UpperCAmelCase ) == len(UpperCAmelCase ) a_ = 0 for hypo, pred in zip(UpperCAmelCase , UpperCAmelCase ): em += exact_match_score(UpperCAmelCase , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: em /= len(UpperCAmelCase ) return {"em": em} def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" return model_prefix.startswith("rag" ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead a_ = "dropout_rate" for p in extra_params: if getattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if not hasattr(UpperCAmelCase , UpperCAmelCase ) and not hasattr(UpperCAmelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(UpperCAmelCase ) ) delattr(UpperCAmelCase , UpperCAmelCase ) continue a_ = p if hasattr(UpperCAmelCase , UpperCAmelCase ) else equivalent_param[p] setattr(UpperCAmelCase , UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) delattr(UpperCAmelCase , UpperCAmelCase ) return hparams, config
303
"""simple docstring""" import os import numpy import onnx def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = a.name a_ = b.name a_ = "" a_ = "" a_ = a == b a_ = name_a a_ = name_b return res def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = list(model.graph.initializer ) a_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a_ = inits[i].name a_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = os.path.dirname(UpperCAmelCase ) a_ = os.path.basename(UpperCAmelCase ) a_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) a_ = list(model.graph.initializer ) a_ = set() a_ = {} a_ = [] a_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) a_ = inits[j].data_type a_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase ) total_reduced_size += mem_size a_ = inits[i].name a_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: a_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = "optimized_" + model_file_name a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
303
1
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCamelCase_ = HfApi() UpperCamelCase_ = {} # fmt: off UpperCamelCase_ = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) UpperCamelCase_ = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) UpperCamelCase_ = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) UpperCamelCase_ = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) UpperCamelCase_ = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) UpperCamelCase_ = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) UpperCamelCase_ = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) UpperCamelCase_ = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) UpperCamelCase_ = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) UpperCamelCase_ = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) UpperCamelCase_ = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) UpperCamelCase_ = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) UpperCamelCase_ = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) UpperCamelCase_ = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) UpperCamelCase_ = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on UpperCamelCase_ = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCamelCase_ = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): UpperCamelCase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: UpperCamelCase_ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCamelCase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCamelCase_ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCamelCase_ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
303
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
1
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCamelCase_ = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if args.student_type == "roberta": a_ = False elif args.student_type == "gpt2": a_ = False def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if args.student_type == "roberta": a_ = False def UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" a_ = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=UpperCAmelCase , required=UpperCAmelCase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=UpperCAmelCase , required=UpperCAmelCase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=UpperCAmelCase , choices=["distilbert", "roberta", "gpt2"] , required=UpperCAmelCase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=UpperCAmelCase , required=UpperCAmelCase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=UpperCAmelCase , type=UpperCAmelCase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=UpperCAmelCase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=UpperCAmelCase , required=UpperCAmelCase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=UpperCAmelCase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=UpperCAmelCase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=UpperCAmelCase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=UpperCAmelCase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=UpperCAmelCase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=UpperCAmelCase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=UpperCAmelCase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=UpperCAmelCase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=UpperCAmelCase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=UpperCAmelCase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=UpperCAmelCase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=UpperCAmelCase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=UpperCAmelCase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=UpperCAmelCase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=UpperCAmelCase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=UpperCAmelCase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=UpperCAmelCase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=UpperCAmelCase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=UpperCAmelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=UpperCAmelCase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=UpperCAmelCase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=UpperCAmelCase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=UpperCAmelCase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=UpperCAmelCase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=UpperCAmelCase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=UpperCAmelCase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=UpperCAmelCase , default=4_000 , help="Checkpoint interval." ) a_ = parser.parse_args() sanity_checks(UpperCAmelCase ) # ARGS # init_gpu_params(UpperCAmelCase ) set_seed(UpperCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(UpperCAmelCase ) , UpperCAmelCase , indent=4 ) git_log(args.dump_path ) a_ , a_ , a_ = MODEL_CLASSES[args.student_type] a_ , a_ , a_ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # a_ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) a_ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): a_ = tokenizer.all_special_tokens.index(UpperCAmelCase ) a_ = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) a_ = special_tok_ids a_ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , "rb" ) as fp: a_ = pickle.load(UpperCAmelCase ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , "rb" ) as fp: a_ = pickle.load(UpperCAmelCase ) a_ = np.maximum(UpperCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): a_ = 0.0 # do not predict special tokens a_ = torch.from_numpy(UpperCAmelCase ) else: a_ = None a_ = LmSeqsDataset(params=UpperCAmelCase , data=UpperCAmelCase ) logger.info("Data loader created." ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) a_ = student_config_class.from_pretrained(args.student_config ) a_ = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) a_ = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCAmelCase ) else: a_ = student_model_class(UpperCAmelCase ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info("Student loaded." ) # TEACHER # a_ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCAmelCase ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(UpperCAmelCase , UpperCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(UpperCAmelCase , UpperCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() a_ = Distiller( params=UpperCAmelCase , dataset=UpperCAmelCase , token_probs=UpperCAmelCase , student=UpperCAmelCase , teacher=UpperCAmelCase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
303
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
1
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class snake_case ( SCREAMING_SNAKE_CASE_ ): def __lt__( self , __UpperCAmelCase) ->List[Any]: return self[-1] < other[-1] def __eq__( self , __UpperCAmelCase) ->Dict: return self[-1] == other[-1] def UpperCamelCase ( UpperCAmelCase ) ->list: """simple docstring""" a_ = [] # sort into stacks for element in collection: a_ = Stack([element] ) a_ = bisect_left(UpperCAmelCase , UpperCAmelCase ) if i != len(UpperCAmelCase ): stacks[i].append(UpperCAmelCase ) else: stacks.append(UpperCAmelCase ) # use a heap-based merge to merge stack efficiently a_ = merge(*(reversed(UpperCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCamelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase_ = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
303
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
1
"""simple docstring""" from __future__ import annotations import numpy as np def UpperCamelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" return np.maximum(0 , UpperCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
1
"""simple docstring""" from numpy import exp, pi, sqrt def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 ) ->int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['GLPNFeatureExtractor'] UpperCamelCase_ = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a_ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=__UpperCAmelCase , cache_dir=__UpperCAmelCase) a_ = [t[-1] for t in os.walk(os.path.join(__UpperCAmelCase , os.listdir(__UpperCAmelCase)[0] , "snapshots"))] a_ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin") for f in files) @slow @require_flax class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=__UpperCAmelCase) a_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a_ = jax.random.PRNGKey(0) a_ = 4 a_ = jax.device_count() a_ = num_samples * [prompt] a_ = pipeline.prepare_inputs(__UpperCAmelCase) # shard inputs and rng a_ = replicate(__UpperCAmelCase) a_ = jax.random.split(__UpperCAmelCase , __UpperCAmelCase) a_ = shard(__UpperCAmelCase) a_ = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_514_745) < 1E-3 assert np.abs(np.abs(__UpperCAmelCase , dtype=np.floataa).sum() - 49_947.875) < 5E-1 a_ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(__UpperCAmelCase) == num_samples def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=__UpperCAmelCase) a_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a_ = jax.random.PRNGKey(0) a_ = 50 a_ = jax.device_count() a_ = num_samples * [prompt] a_ = pipeline.prepare_inputs(__UpperCAmelCase) # shard inputs and rng a_ = replicate(__UpperCAmelCase) a_ = jax.random.split(__UpperCAmelCase , __UpperCAmelCase) a_ = shard(__UpperCAmelCase) a_ = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_652_401)) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa).sum() - 2_383_808.2)) < 5E-1 def UpperCAmelCase__ ( self) ->str: a_ , a_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase) a_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a_ = jax.random.PRNGKey(0) a_ = 50 a_ = jax.device_count() a_ = num_samples * [prompt] a_ = pipeline.prepare_inputs(__UpperCAmelCase) # shard inputs and rng a_ = replicate(__UpperCAmelCase) a_ = jax.random.split(__UpperCAmelCase , __UpperCAmelCase) a_ = shard(__UpperCAmelCase) a_ = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_003_906)) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa).sum() - 2_373_516.75)) < 5E-1 def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa) a_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a_ = jax.random.PRNGKey(0) a_ = 50 a_ = jax.device_count() a_ = num_samples * [prompt] a_ = pipeline.prepare_inputs(__UpperCAmelCase) # shard inputs and rng a_ = replicate(__UpperCAmelCase) a_ = jax.random.split(__UpperCAmelCase , __UpperCAmelCase) a_ = shard(__UpperCAmelCase) a_ = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_003_906)) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa).sum() - 2_373_516.75)) < 5E-1 def UpperCAmelCase__ ( self) ->Tuple: a_ = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , ) a_ , a_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , ) a_ = scheduler.create_state() a_ = scheduler_state a_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a_ = jax.random.PRNGKey(0) a_ = 50 a_ = jax.device_count() a_ = num_samples * [prompt] a_ = pipeline.prepare_inputs(__UpperCAmelCase) # shard inputs and rng a_ = replicate(__UpperCAmelCase) a_ = jax.random.split(__UpperCAmelCase , __UpperCAmelCase) a_ = shard(__UpperCAmelCase) a_ = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.045_043_945)) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa).sum() - 2_347_693.5)) < 5E-1 def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a_ = jax.device_count() a_ = num_samples * [prompt] a_ = jax.random.split(jax.random.PRNGKey(0) , __UpperCAmelCase) a_ , a_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase , ) a_ = replicate(__UpperCAmelCase) a_ = pipeline.prepare_inputs(__UpperCAmelCase) a_ = shard(__UpperCAmelCase) a_ = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) a_ = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention a_ , a_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase , use_memory_efficient_attention=__UpperCAmelCase , ) a_ = replicate(__UpperCAmelCase) a_ = pipeline.prepare_inputs(__UpperCAmelCase) a_ = shard(__UpperCAmelCase) a_ = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) a_ = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase = 16 , __UpperCAmelCase = 88 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 32 , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "geglu" , __UpperCAmelCase = None , ) ->int: super().__init__() a_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , in_channels=__UpperCAmelCase , num_layers=__UpperCAmelCase , dropout=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , cross_attention_dim=__UpperCAmelCase , attention_bias=__UpperCAmelCase , sample_size=__UpperCAmelCase , num_vector_embeds=__UpperCAmelCase , activation_fn=__UpperCAmelCase , num_embeds_ada_norm=__UpperCAmelCase , ) for _ in range(2) ]) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference a_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` a_ = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` a_ = [1, 0] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = True , ) ->str: a_ = hidden_states a_ = [] a_ = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens a_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] a_ = self.transformer_index_for_condition[i] a_ = self.transformers[transformer_index]( __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase , cross_attention_kwargs=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] a_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) a_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCAmelCase)
303
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Union[str, Any]: """simple docstring""" a_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): a_ = "segformer.encoder." + key if key.startswith("backbone" ): a_ = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 a_ = key[key.find("patch_embed" ) + len("patch_embed" )] a_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(UpperCAmelCase )-1}''' ) if "norm" in key: a_ = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 a_ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] a_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(UpperCAmelCase )-1}''' ) if "layer_norm1" in key: a_ = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: a_ = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 a_ = key[key.find("block" ) + len("block" )] a_ = key.replace(F'''block{idx}''' , F'''block.{int(UpperCAmelCase )-1}''' ) if "attn.q" in key: a_ = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: a_ = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: a_ = key.replace("attn" , "attention.self" ) if "fc1" in key: a_ = key.replace("fc1" , "dense1" ) if "fc2" in key: a_ = key.replace("fc2" , "dense2" ) if "linear_pred" in key: a_ = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: a_ = key.replace("linear_fuse.conv" , "linear_fuse" ) a_ = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 a_ = key[key.find("linear_c" ) + len("linear_c" )] a_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(UpperCAmelCase )-1}''' ) if key.startswith("head" ): a_ = key.replace("head" , "classifier" ) a_ = value return new_state_dict def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) a_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) a_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict a_ = kv_weight[ : config.hidden_sizes[i], : ] a_ = kv_bias[: config.hidden_sizes[i]] a_ = kv_weight[ config.hidden_sizes[i] :, : ] a_ = kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase ( ) ->List[Any]: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return image @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = SegformerConfig() a_ = False # set attributes based on model_name a_ = "huggingface/label-files" if "segformer" in model_name: a_ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: a_ = 150 a_ = "ade20k-id2label.json" a_ = (1, 150, 128, 128) elif "city" in model_name: a_ = 19 a_ = "cityscapes-id2label.json" a_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: a_ = True a_ = model_name[4:6] a_ = 1_000 a_ = "imagenet-1k-id2label.json" a_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": a_ = [64, 128, 320, 512] a_ = 256 elif size == "b2": a_ = [64, 128, 320, 512] a_ = 768 a_ = [3, 4, 6, 3] elif size == "b3": a_ = [64, 128, 320, 512] a_ = 768 a_ = [3, 4, 18, 3] elif size == "b4": a_ = [64, 128, 320, 512] a_ = 768 a_ = [3, 8, 27, 3] elif size == "b5": a_ = [64, 128, 320, 512] a_ = 768 a_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) a_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCAmelCase , align=UpperCAmelCase , do_random_crop=UpperCAmelCase ) # prepare image a_ = prepare_img() a_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: a_ = torch.load(UpperCAmelCase , map_location=torch.device("cpu" ) ) else: a_ = torch.load(UpperCAmelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys a_ = rename_keys(UpperCAmelCase , encoder_only=UpperCAmelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCAmelCase , UpperCAmelCase ) # create HuggingFace model and load state dict if encoder_only: a_ = False a_ = SegformerForImageClassification(UpperCAmelCase ) else: a_ = SegformerForSemanticSegmentation(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # forward pass a_ = model(UpperCAmelCase ) a_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": a_ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": a_ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": a_ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": a_ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": a_ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": a_ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": a_ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": a_ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": a_ = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": a_ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": a_ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": a_ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": a_ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": a_ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": a_ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: a_ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = load_tool("text-to-speech") self.tool.setup() def UpperCAmelCase__ ( self) ->Tuple: # SpeechT5 isn't deterministic torch.manual_seed(0) a_ = self.tool("hey") a_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485]) , )) def UpperCAmelCase__ ( self) ->List[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0) a_ = self.tool("hey") a_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485]) , ))
303
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
1
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" for attribute in key.split("." ): a_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: a_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: a_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ = value elif weight_type == "weight_g": a_ = value elif weight_type == "weight_v": a_ = value elif weight_type == "bias": a_ = value else: a_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] a_ = fairseq_model.state_dict() a_ = hf_model.feature_extractor a_ = hf_model.adapter for name, value in fairseq_dict.items(): a_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) a_ = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a_ = True if "*" in mapped_key: a_ = name.split(UpperCAmelCase )[0].split("." )[-2] a_ = mapped_key.replace("*" , UpperCAmelCase ) if "weight_g" in name: a_ = "weight_g" elif "weight_v" in name: a_ = "weight_v" elif "bias" in name: a_ = "bias" elif "weight" in name: a_ = "weight" else: a_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = full_name.split("conv_layers." )[-1] a_ = name.split("." ) a_ = int(items[0] ) a_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = full_name.split("adaptor." )[-1] a_ = name.split("." ) if items[1].isdigit(): a_ = int(items[1] ) else: a_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' a_ = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' a_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' a_ = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' a_ = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' a_ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' a_ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" a_ , a_ = emb.weight.shape a_ = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) a_ = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->List[str]: """simple docstring""" a_ = WavaVecaConfig.from_pretrained( UpperCAmelCase , add_adapter=UpperCAmelCase , adapter_stride=UpperCAmelCase , adapter_kernel_size=UpperCAmelCase , use_auth_token=UpperCAmelCase , output_hidden_size=UpperCAmelCase , ) a_ = MBartConfig.from_pretrained(UpperCAmelCase ) # load model a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) a_ = model[0].eval() # load feature extractor a_ = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase , use_auth_token=UpperCAmelCase ) # set weights for wav2vec2 encoder a_ = WavaVecaModel(UpperCAmelCase ) recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase ) # load decoder weights a_ = MBartForCausalLM(UpperCAmelCase ) a_ , a_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) a_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase , decoder=UpperCAmelCase ) a_ = False a_ = MBartaaTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) a_ = hf_wavavec.config.to_dict() a_ = tokenizer.pad_token_id a_ = tokenizer.bos_token_id a_ = tokenizer.eos_token_id a_ = "mbart50" a_ = "wav2vec2" a_ = tokenizer.eos_token_id a_ = 250_004 a_ = tokenizer.eos_token_id a_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase ) hf_wavavec.save_pretrained(UpperCAmelCase ) feature_extractor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250004, type=int, help='`decoder_start_token_id` of model config') UpperCamelCase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
303
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = 1_000_000 ) ->int: """simple docstring""" a_ = 1 a_ = 1 a_ = {1: 1} for inputa in range(2 , UpperCAmelCase ): a_ = 0 a_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: a_ = (3 * number) + 1 counter += 1 if inputa not in counters: a_ = counter if counter > pre_counter: a_ = inputa a_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[int] = """speech_to_text_2""" a_ : Tuple = ["""past_key_values"""] a_ : List[str] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCAmelCase=1_00_00 , __UpperCAmelCase=6 , __UpperCAmelCase=20_48 , __UpperCAmelCase=4 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=2_56 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=10_24 , **__UpperCAmelCase , ) ->Any: a_ = vocab_size a_ = d_model a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = decoder_layerdrop a_ = use_cache a_ = decoder_layers a_ = scale_embedding # scale factor will be sqrt(d_model) if True a_ = max_target_positions super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->int: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "hidden_sizes")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_attention_heads")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_encoder_blocks")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[8, 4, 2, 1] , __UpperCAmelCase=[16, 32, 64, 1_28] , __UpperCAmelCase=[1, 4, 8, 16] , __UpperCAmelCase=[1, 2, 4, 8] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) ->str: a_ = parent a_ = batch_size a_ = image_size a_ = num_channels a_ = num_encoder_blocks a_ = sr_ratios a_ = depths a_ = hidden_sizes a_ = downsampling_rates a_ = num_attention_heads a_ = is_training a_ = use_labels a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = num_labels a_ = scope def UpperCAmelCase__ ( self) ->List[str]: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Optional[Any]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = SegformerModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) a_ = a_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: a_ = self.num_labels a_ = SegformerForSemanticSegmentation(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Union[str, Any]: a_ = 1 a_ = SegformerForSemanticSegmentation(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertGreater(result.loss , 0.0) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) a_ : Any = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) a_ : Optional[int] = True a_ : List[Any] = False a_ : int = False a_ : Dict = False def UpperCAmelCase__ ( self) ->int: a_ = SegformerModelTester(self) a_ = SegformerConfigTester(self , config_class=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__UpperCAmelCase) @unittest.skip("SegFormer does not use inputs_embeds") def UpperCAmelCase__ ( self) ->Optional[int]: pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def UpperCAmelCase__ ( self) ->str: pass def UpperCAmelCase__ ( self) ->Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True for model_class in self.all_model_classes: a_ = True a_ = False a_ = True a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.attentions a_ = sum(self.model_tester.depths) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # check that output_attentions also work using config del inputs_dict["output_attentions"] a_ = True a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.attentions self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first attentions (first block, first layer) a_ = (self.model_tester.image_size // 4) ** 2 a_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a_ = (self.model_tester.image_size // 32) ** 2 a_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a_ = len(__UpperCAmelCase) # Check attention is always last and order is fine a_ = True a_ = True a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) self.assertEqual(out_len + 1 , len(__UpperCAmelCase)) a_ = outputs.attentions self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first attentions (first block, first layer) a_ = (self.model_tester.image_size // 4) ** 2 a_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCAmelCase__ ( self) ->Optional[Any]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = self.model_tester.num_encoder_blocks self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: if not self.model_tester.is_training: return a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase): continue a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.train() a_ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a_ = model(**__UpperCAmelCase).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def UpperCAmelCase__ ( self) ->List[Any]: pass @slow def UpperCAmelCase__ ( self) ->str: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = SegformerModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->List[Any]: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Dict: # only resize + normalize a_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase) a_ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( __UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt") a_ = encoded_inputs.pixel_values.to(__UpperCAmelCase) with torch.no_grad(): a_ = model(__UpperCAmelCase) a_ = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4)) @slow def UpperCAmelCase__ ( self) ->List[Any]: # only resize + normalize a_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase) a_ = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024").to(__UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt") a_ = encoded_inputs.pixel_values.to(__UpperCAmelCase) with torch.no_grad(): a_ = model(__UpperCAmelCase) a_ = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-1)) @slow def UpperCAmelCase__ ( self) ->Dict: # only resize + normalize a_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase) a_ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( __UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt") a_ = encoded_inputs.pixel_values.to(__UpperCAmelCase) with torch.no_grad(): a_ = model(__UpperCAmelCase) a_ = outputs.logits.detach().cpu() a_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(5_00, 3_00)]) a_ = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , __UpperCAmelCase) a_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase) a_ = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , __UpperCAmelCase)
303
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
1
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ) ->List[Any]: """simple docstring""" a_ = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" if split_mlp_wi: a_ = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] a_ = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] a_ = (wi_a, wi_a) else: a_ = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] a_ = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def UpperCamelCase ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = traverse_util.flatten_dict(variables["target"] ) a_ = {"/".join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a_ = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , UpperCAmelCase ) a_ = collections.OrderedDict() # Shared embeddings. a_ = old["token_embedder/embedding"] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 1 (MLP). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_mlp_layer_norm" ) a_ , a_ = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , UpperCAmelCase ) a_ = layer_norm if split_mlp_wi: a_ = wi[0].T a_ = wi[1].T else: a_ = wi.T a_ = wo.T a_ = old[ "encoder/relpos_bias/rel_embedding" ].T a_ = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "self_attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 1 (Cross Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "encoder_decoder_attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 2 (MLP). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_mlp_layer_norm" ) a_ , a_ = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , UpperCAmelCase ) a_ = layer_norm if split_mlp_wi: a_ = wi[0].T a_ = wi[1].T else: a_ = wi.T a_ = wo.T a_ = old["decoder/decoder_norm/scale"] a_ = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a_ = old["decoder/logits_dense/kernel"].T return new def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) a_ = state_dict["shared.weight"] return state_dict def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = checkpoints.load_tax_checkpoint(UpperCAmelCase ) a_ = convert_tax_to_pytorch(UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase ) a_ = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) ->int: """simple docstring""" a_ = TaConfig.from_json_file(UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a_ = TaEncoderModel(UpperCAmelCase ) else: a_ = TaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) UpperCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
303
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
1
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase_ = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" inspect_dataset(UpperCAmelCase , UpperCAmelCase ) a_ = path + ".py" assert script_name in os.listdir(UpperCAmelCase ) assert "__pycache__" not in os.listdir(UpperCAmelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" inspect_metric(UpperCAmelCase , UpperCAmelCase ) a_ = path + ".py" assert script_name in os.listdir(UpperCAmelCase ) assert "__pycache__" not in os.listdir(UpperCAmelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = get_dataset_config_info(UpperCAmelCase , config_name=UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" with pytest.raises(UpperCAmelCase ): get_dataset_config_info(UpperCAmelCase , config_name=UpperCAmelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" a_ = get_dataset_config_names(UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = get_dataset_infos(UpperCAmelCase ) assert list(infos.keys() ) == expected_configs a_ = expected_configs[0] assert expected_config in infos a_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = get_dataset_infos(UpperCAmelCase ) assert expected_config in infos a_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" with pytest.raises(UpperCAmelCase ): get_dataset_split_names(UpperCAmelCase , config_name=UpperCAmelCase )
303
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = """unispeech""" def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=1_28 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=3_20 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_00 , __UpperCAmelCase=2_56 , __UpperCAmelCase=2_56 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2_56 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) ->List[Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase) a_ = hidden_size a_ = feat_extract_norm a_ = feat_extract_activation a_ = list(__UpperCAmelCase) a_ = list(__UpperCAmelCase) a_ = list(__UpperCAmelCase) a_ = conv_bias a_ = num_conv_pos_embeddings a_ = num_conv_pos_embedding_groups a_ = len(self.conv_dim) a_ = num_hidden_layers a_ = intermediate_size a_ = hidden_act a_ = num_attention_heads a_ = hidden_dropout a_ = attention_dropout a_ = activation_dropout a_ = feat_proj_dropout a_ = final_dropout a_ = layerdrop a_ = layer_norm_eps a_ = initializer_range a_ = num_ctc_classes a_ = vocab_size a_ = do_stable_layer_norm a_ = use_weighted_layer_sum a_ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a_ = apply_spec_augment a_ = mask_time_prob a_ = mask_time_length a_ = mask_time_min_masks a_ = mask_feature_prob a_ = mask_feature_length a_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a_ = num_codevectors_per_group a_ = num_codevector_groups a_ = contrastive_logits_temperature a_ = feat_quantizer_dropout a_ = num_negatives a_ = codevector_dim a_ = proj_codevector_dim a_ = diversity_loss_weight # ctc loss a_ = ctc_loss_reduction a_ = ctc_zero_infinity # pretraining loss a_ = replace_prob @property def UpperCAmelCase__ ( self) ->str: return functools.reduce(operator.mul , self.conv_stride , 1)
303
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def UpperCamelCase ( UpperCAmelCase ) ->np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->np.ndarray: """simple docstring""" a_ = np.nan for i in range(UpperCAmelCase ): a_ = features[:, labels == i] a_ = data.mean(1 ) # Centralize the data of class i a_ = data - column_reshape(UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) a_ = np.dot(UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->np.ndarray: """simple docstring""" a_ = features.mean(1 ) a_ = np.nan for i in range(UpperCAmelCase ): a_ = features[:, labels == i] a_ = data.shape[1] a_ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) a_ = device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->np.ndarray: """simple docstring""" if features.any(): a_ = features.mean(1 ) # Center the dataset a_ = features - np.reshape(UpperCAmelCase , (data_mean.size, 1) ) a_ = np.dot(UpperCAmelCase , centered_data.T ) / features.shape[1] a_ , a_ = np.linalg.eigh(UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first a_ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space a_ = np.dot(filtered_eigenvectors.T , UpperCAmelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCAmelCase ) logging.error("Dataset empty" ) raise AssertionError def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: a_ , a_ = eigh( covariance_between_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , covariance_within_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) a_ = eigenvectors[:, ::-1][:, :dimensions] a_ , a_ , a_ = np.linalg.svd(UpperCAmelCase ) a_ = svd_matrix[:, 0:dimensions] a_ = np.dot(filtered_svd_matrix.T , UpperCAmelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCAmelCase ) logging.error("Dataset empty" ) raise AssertionError def UpperCamelCase ( ) ->None: """simple docstring""" a_ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) a_ = np.array([0, 0, 0, 1, 1] ) a_ = 2 a_ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCAmelCase ) as error_info: a_ = linear_discriminant_analysis( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if isinstance(UpperCAmelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def UpperCamelCase ( ) ->None: """simple docstring""" a_ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) a_ = 2 a_ = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCAmelCase ) as error_info: a_ = principal_component_analysis(UpperCAmelCase , UpperCAmelCase ) if not np.allclose(UpperCAmelCase , UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
303
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int(input_a == input_a == 0 ) def UpperCamelCase ( ) ->None: """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
303
"""simple docstring""" import os import numpy import onnx def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = a.name a_ = b.name a_ = "" a_ = "" a_ = a == b a_ = name_a a_ = name_b return res def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = list(model.graph.initializer ) a_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a_ = inits[i].name a_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = os.path.dirname(UpperCAmelCase ) a_ = os.path.basename(UpperCAmelCase ) a_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) a_ = list(model.graph.initializer ) a_ = set() a_ = {} a_ = [] a_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) a_ = inits[j].data_type a_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase ) total_reduced_size += mem_size a_ = inits[i].name a_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: a_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = "optimized_" + model_file_name a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
303
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase_ = 16 UpperCamelCase_ = 32 def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 16 , UpperCAmelCase = "bert-base-cased" ) ->Optional[Any]: """simple docstring""" a_ = AutoTokenizer.from_pretrained(UpperCAmelCase ) a_ = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) a_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a_ = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. a_ = DataLoader( tokenized_datasets["train"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) a_ = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" model.eval() a_ = 0 for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times a_ , a_ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase ) - 1: a_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] a_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) a_ = metric.compute() return eval_metric["accuracy"] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" a_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a_ = config["lr"] a_ = int(config["num_epochs"] ) a_ = int(config["seed"] ) a_ = int(config["batch_size"] ) a_ = args.model_name_or_path set_seed(UpperCAmelCase ) a_ , a_ = get_dataloaders(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a_ = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase , return_dict=UpperCAmelCase ) # Instantiate optimizer a_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a_ = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: a_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: a_ = 1 a_ = (len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a_ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=0 , num_training_steps=UpperCAmelCase , ) else: a_ = DummyScheduler(UpperCAmelCase , total_num_steps=UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a_ , a_ , a_ , a_ , a_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over a_ = 0 # We also need to keep track of the stating epoch so files are named properly a_ = 0 a_ = evaluate.load("glue" , "mrpc" ) a_ = num_epochs if args.partial_train_epoch is not None: a_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) a_ = args.resume_from_checkpoint.split("epoch_" )[1] a_ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break a_ = int(UpperCAmelCase ) + 1 a_ = evaluation_loop(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.print("resumed checkpoint performance:" , UpperCAmelCase ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , "r" ) as f: a_ = json.load(UpperCAmelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model a_ = {} for epoch in range(UpperCAmelCase , UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): a_ = model(**UpperCAmelCase ) a_ = outputs.loss a_ = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 a_ = F'''epoch_{epoch}''' a_ = os.path.join(args.output_dir , UpperCAmelCase ) accelerator.save_state(UpperCAmelCase ) a_ = evaluation_loop(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = accuracy a_ = lr_scheduler.get_lr()[0] a_ = optimizer.param_groups[0]["lr"] a_ = epoch a_ = overall_step accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( ) ->str: """simple docstring""" a_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=UpperCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=UpperCAmelCase , ) parser.add_argument( "--output_dir" , type=UpperCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=UpperCAmelCase , default=UpperCAmelCase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=UpperCAmelCase , default=UpperCAmelCase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=UpperCAmelCase , default=2 , help="Number of train epochs." , ) a_ = parser.parse_args() a_ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
303
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) ->str: a_ = parent a_ = batch_size a_ = image_size a_ = num_channels a_ = embeddings_size a_ = hidden_sizes a_ = depths a_ = is_training a_ = use_labels a_ = hidden_act a_ = num_labels a_ = scope a_ = len(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->str: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ = TFResNetModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFResNetForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : int = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a_ : Union[str, Any] = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) a_ : Optional[int] = False a_ : str = False a_ : Any = False a_ : List[Any] = False a_ : Any = False def UpperCAmelCase__ ( self) ->str: a_ = TFResNetModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self) ->List[Any]: return @unittest.skip(reason="ResNet does not use inputs_embeds") def UpperCAmelCase__ ( self) ->int: pass @unittest.skip(reason="ResNet does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Tuple: pass def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase) , expected_num_stages + 1) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: a_ = layer_type a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->Dict: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFResNetModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->List[Any]: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->List[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([-11.1_069, -9.7_877, -8.3_777]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_28 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) ->int: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def UpperCAmelCase__ ( self) ->List[str]: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->Dict: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: a_ = NezhaModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->str: a_ = True a_ = NezhaModel(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = NezhaForMaskedLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ = NezhaForNextSentencePrediction(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = NezhaForPreTraining(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , next_sentence_label=__UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = NezhaForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: a_ = self.num_labels a_ = NezhaForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = self.num_labels a_ = NezhaForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = self.num_choices a_ = NezhaForMultipleChoice(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : int = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) a_ : str = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) a_ : Optional[Any] = True def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False) ->Optional[int]: a_ = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) if return_labels: if model_class in get_values(__UpperCAmelCase): a_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase) return inputs_dict def UpperCAmelCase__ ( self) ->int: a_ = NezhaModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Any: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->int: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = NezhaModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @slow @require_torch_gpu def UpperCAmelCase__ ( self) ->int: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return a_ = True a_ = model_class(config=__UpperCAmelCase) a_ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase) a_ = torch.jit.trace( __UpperCAmelCase , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , "bert.pt")) a_ = torch.jit.load(os.path.join(__UpperCAmelCase , "bert.pt") , map_location=__UpperCAmelCase) loaded(inputs_dict["input_ids"].to(__UpperCAmelCase) , inputs_dict["attention_mask"].to(__UpperCAmelCase)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Any: a_ = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") a_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) a_ = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase)[0] a_ = torch.Size((1, 6, 7_68)) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4)) @slow def UpperCAmelCase__ ( self) ->Optional[int]: a_ = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base") a_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) a_ = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase)[0] a_ = torch.Size((1, 6, 2_11_28)) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4))
303
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
1
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = (IPNDMScheduler,) a_ : List[str] = (("""num_inference_steps""", 50),) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->List[Any]: a_ = {"num_train_timesteps": 10_00} config.update(**__UpperCAmelCase) return config def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , **__UpperCAmelCase) ->Dict: a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**__UpperCAmelCase) a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a_ = dummy_past_residuals[:] if time_step is None: a_ = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a_ = scheduler_class.from_pretrained(__UpperCAmelCase) new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self) ->List[str]: pass def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , **__UpperCAmelCase) ->List[str]: a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] if time_step is None: a_ = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a_ = scheduler_class.from_pretrained(__UpperCAmelCase) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Any: a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**__UpperCAmelCase) a_ = scheduler_class(**__UpperCAmelCase) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample for i, t in enumerate(scheduler.timesteps): a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample return sample def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , __UpperCAmelCase) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCAmelCase , "set_timesteps"): scheduler.set_timesteps(__UpperCAmelCase) elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.timesteps[5] a_ = scheduler.timesteps[6] a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def UpperCAmelCase__ ( self) ->Union[str, Any]: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase , time_step=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.full_loop() a_ = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 2_54_05_29) < 10
303
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) if k.startswith("encoder" ): a_ = k.replace(".attn" , ".self_attn" ) a_ = k.replace("norm1" , "self_attn_layer_norm" ) a_ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): a_ = k.replace("norm1" , "self_attn_layer_norm" ) a_ = k.replace("norm2" , "encoder_attn_layer_norm" ) a_ = k.replace("norm3" , "final_layer_norm" ) return k def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: a_ = sd.pop(UpperCAmelCase ) a_ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd a_ = v UpperCamelCase_ = ['START'] @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = torch.load(UpperCAmelCase , map_location="cpu" ) a_ = model["model"] a_ = BlenderbotConfig.from_json_file(UpperCAmelCase ) a_ = BlenderbotForConditionalGeneration(UpperCAmelCase ) a_ = m.model.state_dict().keys() a_ = [] a_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase ) m.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) m.half() m.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) UpperCamelCase_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: return F'''gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase) for s in shape])}.npy''' def UpperCAmelCase__ ( self) ->str: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False) ->str: a_ = jnp.bfloataa if fpaa else jnp.floataa a_ = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase)) , dtype=__UpperCAmelCase) return image def UpperCAmelCase__ ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4") ->Tuple: a_ = jnp.bfloataa if fpaa else jnp.floataa a_ = "bf16" if fpaa else None a_ , a_ = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder="unet" , dtype=__UpperCAmelCase , revision=__UpperCAmelCase) return model, params def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 7_68) , __UpperCAmelCase=False) ->Optional[int]: a_ = jnp.bfloataa if fpaa else jnp.floataa a_ = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase)) , dtype=__UpperCAmelCase) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 10_00, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ]) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Tuple: a_ , a_ = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=__UpperCAmelCase) a_ = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase) a_ = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase) a_ = model.apply( {"params": params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape a_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) a_ = jnp.array(__UpperCAmelCase , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 10_00, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ]) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ , a_ = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=__UpperCAmelCase) a_ = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase) a_ = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 10_24) , fpaa=__UpperCAmelCase) a_ = model.apply( {"params": params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape a_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) a_ = jnp.array(__UpperCAmelCase , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2)
303
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCamelCase_ = logging.get_logger(__name__) @dataclass class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **__UpperCAmelCase) ->Dict: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: a_ = deprecated_arg[3:] setattr(self , __UpperCAmelCase , not kwargs.pop(__UpperCAmelCase)) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''') a_ = kwargs.pop("torchscript" , self.torchscript) a_ = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics) a_ = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level) super().__init__(**__UpperCAmelCase) a_ : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Trace the models using torchscript"""} ) a_ : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) a_ : str = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def UpperCAmelCase__ ( self) ->Tuple["torch.device", int]: requires_backends(self , ["torch"]) logger.info("PyTorch: setting up devices") if not self.cuda: a_ = torch.device("cpu") a_ = 0 elif is_torch_tpu_available(): a_ = xm.xla_device() a_ = 0 else: a_ = torch.device("cuda" if torch.cuda.is_available() else "cpu") a_ = torch.cuda.device_count() return device, n_gpu @property def UpperCAmelCase__ ( self) ->Any: return is_torch_tpu_available() and self.tpu @property def UpperCAmelCase__ ( self) ->int: requires_backends(self , ["torch"]) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCAmelCase__ ( self) ->"torch.device": requires_backends(self , ["torch"]) return self._setup_devices[0] @property def UpperCAmelCase__ ( self) ->Optional[int]: requires_backends(self , ["torch"]) return self._setup_devices[1] @property def UpperCAmelCase__ ( self) ->Optional[Any]: return self.n_gpu > 0
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase_ = numpy.array([0, 0]) UpperCamelCase_ = numpy.array([0.5, 0.8_66_02_54]) UpperCamelCase_ = numpy.array([1, 0]) UpperCamelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(UpperCAmelCase ): a_ = iteration_step(UpperCAmelCase ) return vectors def UpperCamelCase ( UpperCAmelCase ) ->list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->numpy.ndarray: """simple docstring""" a_ = numpy.radians(UpperCAmelCase ) a_ , a_ = numpy.cos(UpperCAmelCase ), numpy.sin(UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" a_ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*UpperCAmelCase ) plt.plot(UpperCAmelCase , UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , ) ->int: super().__init__() self.register_modules(transformer=__UpperCAmelCase , vae=__UpperCAmelCase , scheduler=__UpperCAmelCase) # create a imagenet -> id dictionary for easier use a_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(","): a_ = int(__UpperCAmelCase) a_ = dict(sorted(self.labels.items())) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[int]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = list(__UpperCAmelCase) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''') return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , __UpperCAmelCase , __UpperCAmelCase = 4.0 , __UpperCAmelCase = None , __UpperCAmelCase = 50 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , ) ->Union[ImagePipelineOutput, Tuple]: a_ = len(__UpperCAmelCase) a_ = self.transformer.config.sample_size a_ = self.transformer.config.in_channels a_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__UpperCAmelCase , device=self.device , dtype=self.transformer.dtype , ) a_ = torch.cat([latents] * 2) if guidance_scale > 1 else latents a_ = torch.tensor(__UpperCAmelCase , device=self.device).reshape(-1) a_ = torch.tensor([10_00] * batch_size , device=self.device) a_ = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__UpperCAmelCase) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: a_ = latent_model_input[: len(__UpperCAmelCase) // 2] a_ = torch.cat([half, half] , dim=0) a_ = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) a_ = t if not torch.is_tensor(__UpperCAmelCase): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a_ = latent_model_input.device.type == "mps" if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = torch.floataa if is_mps else torch.floataa else: a_ = torch.intaa if is_mps else torch.intaa a_ = torch.tensor([timesteps] , dtype=__UpperCAmelCase , device=latent_model_input.device) elif len(timesteps.shape) == 0: a_ = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a_ = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output a_ = self.transformer( __UpperCAmelCase , timestep=__UpperCAmelCase , class_labels=__UpperCAmelCase).sample # perform guidance if guidance_scale > 1: a_ , a_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a_ , a_ = torch.split(__UpperCAmelCase , len(__UpperCAmelCase) // 2 , dim=0) a_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a_ = torch.cat([half_eps, half_eps] , dim=0) a_ = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a_ , a_ = torch.split(__UpperCAmelCase , __UpperCAmelCase , dim=1) else: a_ = noise_pred # compute previous image: x_t -> x_t-1 a_ = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample if guidance_scale > 1: a_ , a_ = latent_model_input.chunk(2 , dim=0) else: a_ = latent_model_input a_ = 1 / self.vae.config.scaling_factor * latents a_ = self.vae.decode(__UpperCAmelCase).sample a_ = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a_ = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": a_ = self.numpy_to_pil(__UpperCAmelCase) if not return_dict: return (samples,) return ImagePipelineOutput(images=__UpperCAmelCase)
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
1
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCamelCase_ = get_logger(__name__) class snake_case : a_ : Union[str, Any] = """dummy_data""" a_ : Optional[int] = """datasets""" a_ : Optional[Any] = False def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ) ->Union[str, Any]: a_ = 0 a_ = dataset_name a_ = cache_dir a_ = use_local_dummy_data a_ = config # download_callbacks take a single url as input a_ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a_ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a_ = str(__UpperCAmelCase) # to be downloaded a_ = None a_ = None @property def UpperCAmelCase__ ( self) ->Union[str, Any]: if self._dummy_file is None: a_ = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase__ ( self) ->Any: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join("dummy" , self.version_name) @property def UpperCAmelCase__ ( self) ->Any: return os.path.join(self.dummy_data_folder , "dummy_data.zip") def UpperCAmelCase__ ( self) ->Dict: a_ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a_ = cached_path( __UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=__UpperCAmelCase , force_extract=__UpperCAmelCase) return os.path.join(__UpperCAmelCase , self.dummy_file_name) @property def UpperCAmelCase__ ( self) ->List[str]: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def UpperCAmelCase__ ( self) ->Any: if self._bucket_url is None: a_ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/")) return self._bucket_url @property def UpperCAmelCase__ ( self) ->int: # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1]) def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase) ->Any: if self.load_existing_dummy_data: # dummy data is downloaded and tested a_ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a_ = self.dummy_file_name # special case when data_url is a dict if isinstance(__UpperCAmelCase , __UpperCAmelCase): return self.create_dummy_data_dict(__UpperCAmelCase , __UpperCAmelCase) elif isinstance(__UpperCAmelCase , (list, tuple)): return self.create_dummy_data_list(__UpperCAmelCase , __UpperCAmelCase) else: return self.create_dummy_data_single(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase) ->List[Any]: return self.download_and_extract(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: return self.download_and_extract(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[Any]: return path def UpperCAmelCase__ ( self) ->List[Any]: return {} def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Tuple: a_ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__UpperCAmelCase , __UpperCAmelCase): for single_url in single_urls: download_callback(__UpperCAmelCase) else: a_ = single_urls download_callback(__UpperCAmelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase).name)) for x in single_urls] else: a_ = single_urls a_ = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase).name)) a_ = value # make sure that values are unique if all(isinstance(__UpperCAmelCase , __UpperCAmelCase) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique a_ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: a_ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a_ = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __UpperCAmelCase)) for url in data_url) a_ = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url) if data_url and (is_tf_records or is_pubmed_records): a_ = [data_url[0]] * len(__UpperCAmelCase) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a_ = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(__UpperCAmelCase) return dummy_data_list def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a_ = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(__UpperCAmelCase) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase__ ( self) ->Optional[Any]: pass def UpperCAmelCase__ ( self) ->int: pass def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: def _iter_archive_members(__UpperCAmelCase): # this preserves the order of the members inside the ZIP archive a_ = Path(self.dummy_file).parent a_ = path.relative_to(__UpperCAmelCase) with ZipFile(self.local_path_to_dummy_data) as zip_file: a_ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(__UpperCAmelCase) a_ = Path(__UpperCAmelCase) a_ = _iter_archive_members(__UpperCAmelCase) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(__UpperCAmelCase).as_posix(), file_path.open("rb") def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [paths] for path in paths: if os.path.isfile(__UpperCAmelCase): if os.path.basename(__UpperCAmelCase).startswith((".", "__")): return yield path else: for dirpath, dirnames, filenames in os.walk(__UpperCAmelCase): if os.path.basename(__UpperCAmelCase).startswith((".", "__")): continue dirnames.sort() for filename in sorted(__UpperCAmelCase): if filename.startswith((".", "__")): continue yield os.path.join(__UpperCAmelCase , __UpperCAmelCase)
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
1
"""simple docstring""" from __future__ import annotations import math def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" a_ = u for i in range(1 , UpperCAmelCase ): a_ = temp * (u - i) return temp def UpperCamelCase ( ) ->None: """simple docstring""" a_ = int(input("enter the numbers of values: " ) ) a_ = [] for _ in range(UpperCAmelCase ): y.append([] ) for i in range(UpperCAmelCase ): for j in range(UpperCAmelCase ): y[i].append(UpperCAmelCase ) a_ = 0 print("enter the values of parameters in a list: " ) a_ = list(map(UpperCAmelCase , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(UpperCAmelCase ): a_ = float(input() ) a_ = int(input("enter the value to interpolate: " ) ) a_ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCAmelCase ): for j in range(n - i ): a_ = y[j + 1][i - 1] - y[j][i - 1] a_ = y[0][0] for i in range(1 , UpperCAmelCase ): summ += (ucal(UpperCAmelCase , UpperCAmelCase ) * y[0][i]) / math.factorial(UpperCAmelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): a_ : Any = ["""note_seq"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Union[str, Any]: requires_backends(self , ["note_seq"]) @classmethod def UpperCAmelCase__ ( cls , *__UpperCAmelCase , **__UpperCAmelCase) ->List[Any]: requires_backends(cls , ["note_seq"]) @classmethod def UpperCAmelCase__ ( cls , *__UpperCAmelCase , **__UpperCAmelCase) ->Dict: requires_backends(cls , ["note_seq"])
303
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[int] = """luke""" def __init__( self , __UpperCAmelCase=5_02_67 , __UpperCAmelCase=50_00_00 , __UpperCAmelCase=7_68 , __UpperCAmelCase=2_56 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) ->Tuple: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = entity_vocab_size a_ = hidden_size a_ = entity_emb_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = use_entity_aware_attention a_ = classifier_dropout
303
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCamelCase_ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) UpperCamelCase_ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) UpperCamelCase_ = BeautifulSoup(res.text, 'html.parser') UpperCamelCase_ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
303
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = (UniPCMultistepScheduler,) a_ : Optional[Any] = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Tuple: a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCAmelCase) return config def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , **__UpperCAmelCase) ->Dict: a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**__UpperCAmelCase) a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a_ = scheduler_class.from_pretrained(__UpperCAmelCase) new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a_ = dummy_past_residuals[: new_scheduler.config.solver_order] a_ , a_ = sample, sample for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1): a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , **__UpperCAmelCase) ->Union[str, Any]: a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a_ = scheduler_class.from_pretrained(__UpperCAmelCase) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[: new_scheduler.config.solver_order] a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , __UpperCAmelCase=None , **__UpperCAmelCase) ->str: if scheduler is None: a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**__UpperCAmelCase) a_ = scheduler_class(**__UpperCAmelCase) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**__UpperCAmelCase) a_ = scheduler_class(**__UpperCAmelCase) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample return sample def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , __UpperCAmelCase) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**__UpperCAmelCase) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCAmelCase , "set_timesteps"): scheduler.set_timesteps(__UpperCAmelCase) elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.10] a_ = dummy_past_residuals[: scheduler.config.solver_order] a_ = scheduler.timesteps[5] a_ = scheduler.timesteps[6] a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def UpperCAmelCase__ ( self) ->List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults a_ = UniPCMultistepScheduler(**self.get_scheduler_config()) a_ = self.full_loop(scheduler=__UpperCAmelCase) a_ = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.2_464) < 1E-3 a_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) a_ = DEISMultistepScheduler.from_config(scheduler.config) a_ = DPMSolverMultistepScheduler.from_config(scheduler.config) a_ = UniPCMultistepScheduler.from_config(scheduler.config) a_ = self.full_loop(scheduler=__UpperCAmelCase) a_ = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.2_464) < 1E-3 def UpperCAmelCase__ ( self) ->str: for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: self.check_over_configs(thresholding=__UpperCAmelCase) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , ) a_ = self.full_loop( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , ) assert not torch.isnan(__UpperCAmelCase).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self) ->List[str]: self.check_over_configs(lower_order_final=__UpperCAmelCase) self.check_over_configs(lower_order_final=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = self.full_loop() a_ = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.2_464) < 1E-3 def UpperCAmelCase__ ( self) ->Any: a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.1_014) < 1E-3 def UpperCAmelCase__ ( self) ->Dict: a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0) a_ = scheduler_class(**__UpperCAmelCase) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a_ = model(__UpperCAmelCase , __UpperCAmelCase) a_ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Optional[Any]: for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**__UpperCAmelCase) a_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(scheduler.config.num_train_timesteps) assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps
303
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase_ = logging.getLogger(__name__) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=UpperCAmelCase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=UpperCAmelCase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=UpperCAmelCase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=UpperCAmelCase , default="data/dump" , help="The dump file prefix." ) a_ = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": a_ = BertTokenizer.from_pretrained(args.tokenizer_name ) a_ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` a_ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": a_ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) a_ = tokenizer.special_tokens_map["cls_token"] # `<s>` a_ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": a_ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) a_ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` a_ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: a_ = fp.readlines() logger.info("Start encoding" ) logger.info(F'''{len(UpperCAmelCase )} examples to process.''' ) a_ = [] a_ = 0 a_ = 10_000 a_ = time.time() for text in data: a_ = F'''{bos} {text.strip()} {sep}''' a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) rslt.append(UpperCAmelCase ) iter += 1 if iter % interval == 0: a_ = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) a_ = time.time() logger.info("Finished binarization" ) logger.info(F'''{len(UpperCAmelCase )} examples processed.''' ) a_ = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' a_ = tokenizer.vocab_size if vocab_size < (1 << 16): a_ = [np.uintaa(UpperCAmelCase ) for d in rslt] else: a_ = [np.intaa(UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(UpperCAmelCase , "wb" ) as handle: pickle.dump(rslt_ , UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" from __future__ import annotations UpperCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[list[list[int]], list[list[int]]]: """simple docstring""" a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase ) ) ] # the reference grid a_ = 1 a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase ) ) ] # the action grid a_ = init[0] a_ = init[1] a_ = 0 a_ = g + heuristic[x][y] # cost from starting cell to destination cell a_ = [[f, g, x, y]] a_ = False # flag that is set when search is complete a_ = False # flag set if we can't find expand while not found and not resign: if len(UpperCAmelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() a_ = cell.pop() a_ = next_cell[2] a_ = next_cell[3] a_ = next_cell[1] if x == goal[0] and y == goal[1]: a_ = True else: for i in range(len(UpperCAmelCase ) ): # to try out different valid actions a_ = x + DIRECTIONS[i][0] a_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: a_ = g + cost a_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) a_ = 1 a_ = i a_ = [] a_ = goal[0] a_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: a_ = x - DIRECTIONS[action[x][y]][0] a_ = y - DIRECTIONS[action[x][y]][1] a_ = xa a_ = ya invpath.append([x, y] ) a_ = [] for i in range(len(UpperCAmelCase ) ): path.append(invpath[len(UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase_ = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase_ = 1 # the cost map which pushes the path closer to the goal UpperCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase_ = 99 UpperCamelCase_ , UpperCamelCase_ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
303
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } UpperCamelCase_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } UpperCamelCase_ = '▁' # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[Any] = VOCAB_FILES_NAMES a_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[str] = """left""" a_ : Optional[Any] = XLNetTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , **__UpperCAmelCase , ) ->List[str]: # Mask token behave like a normal word, i.e. include the space before it a_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) a_ = 3 a_ = do_lower_case a_ = remove_space a_ = keep_accents a_ = vocab_file a_ = False if not self.vocab_file else True def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: a_ = [self.sep_token_id] a_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__UpperCAmelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return a_ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase): copyfile(self.vocab_file , __UpperCAmelCase) return (out_vocab_file,)
303
"""simple docstring""" import os import numpy import onnx def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = a.name a_ = b.name a_ = "" a_ = "" a_ = a == b a_ = name_a a_ = name_b return res def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = list(model.graph.initializer ) a_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a_ = inits[i].name a_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = os.path.dirname(UpperCAmelCase ) a_ = os.path.basename(UpperCAmelCase ) a_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) a_ = list(model.graph.initializer ) a_ = set() a_ = {} a_ = [] a_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) a_ = inits[j].data_type a_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase ) total_reduced_size += mem_size a_ = inits[i].name a_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: a_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = "optimized_" + model_file_name a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
303
1
"""simple docstring""" import argparse import os import re import packaging.version UpperCamelCase_ = 'examples/' UpperCamelCase_ = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase_ = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } UpperCamelCase_ = 'README.md' def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" with open(UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.read() a_ , a_ = REPLACE_PATTERNS[pattern] a_ = replace.replace("VERSION" , UpperCAmelCase ) a_ = re_pattern.sub(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" for folder, directories, fnames in os.walk(UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , pattern="examples" ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not patch: update_version_in_examples(UpperCAmelCase ) def UpperCamelCase ( ) ->int: """simple docstring""" a_ = "🤗 Transformers currently provides the following architectures" a_ = "1. Want to contribute a new model?" with open(UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() # Find the start of the list. a_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): a_ = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase ) def UpperCamelCase ( ) ->List[Any]: """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: a_ = f.read() a_ = REPLACE_PATTERNS["init"][0].search(UpperCAmelCase ).groups()[0] return packaging.version.parse(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase=False ) ->List[Any]: """simple docstring""" a_ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: a_ = default_version.base_version elif patch: a_ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: a_ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. a_ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(UpperCAmelCase ) == 0: a_ = default_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase , patch=UpperCAmelCase ) def UpperCamelCase ( ) ->int: """simple docstring""" a_ = get_version() a_ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' a_ = current_version.base_version # Check with the user we got that right. a_ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(UpperCAmelCase ) == 0: a_ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
303
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['ConvNextFeatureExtractor'] UpperCamelCase_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
303
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
1
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(SCREAMING_SNAKE_CASE_ ) , """Tatoeba directory does not exist.""" ) class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: a_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->Any: self.resolver.convert_models(["heb-eng"]) @slow def UpperCAmelCase__ ( self) ->str: a_ , a_ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__UpperCAmelCase) assert mmeta["long_pair"] == "heb-eng"
303
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
1
"""simple docstring""" def UpperCamelCase ( ) ->str: """simple docstring""" for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = 1 a_ = 2 while i * i <= n: a_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase ( ) ->Tuple: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(UpperCAmelCase ) > 500 ) if __name__ == "__main__": print(solution())
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['DeiTFeatureExtractor'] UpperCamelCase_ = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['LayoutLMv3FeatureExtractor'] UpperCamelCase_ = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase_ = logging.get_logger(__name__) class snake_case : a_ : str a_ : str = None @staticmethod def UpperCAmelCase__ ( ) ->Any: raise NotImplementedError def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->Any: raise NotImplementedError def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Union[str, Any]: raise NotImplementedError def UpperCAmelCase__ ( self) ->List[Any]: if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''') @classmethod def UpperCAmelCase__ ( cls) ->str: return F'''`pip install {cls.pip_package or cls.name}`''' class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """optuna""" @staticmethod def UpperCAmelCase__ ( ) ->Dict: return is_optuna_available() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->Optional[Any]: return run_hp_search_optuna(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]: return default_hp_space_optuna(__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """ray""" a_ : Tuple = """'ray[tune]'""" @staticmethod def UpperCAmelCase__ ( ) ->Any: return is_ray_available() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->Optional[Any]: return run_hp_search_ray(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[str]: return default_hp_space_ray(__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """sigopt""" @staticmethod def UpperCAmelCase__ ( ) ->str: return is_sigopt_available() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: return run_hp_search_sigopt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tuple: return default_hp_space_sigopt(__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = """wandb""" @staticmethod def UpperCAmelCase__ ( ) ->Any: return is_wandb_available() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->str: return run_hp_search_wandb(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->int: return default_hp_space_wandb(__UpperCAmelCase) UpperCamelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase ( ) ->str: """simple docstring""" a_ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(UpperCAmelCase ) > 0: a_ = available_backends[0].name if len(UpperCAmelCase ) > 1: logger.info( F'''{len(UpperCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
303
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCamelCase_ = False class snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion") pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg") a_ = torch.manual_seed(0) a_ = pipe( image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images a_ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) a_ = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1