code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __A ( __snake_case ):
'''simple docstring'''
lowerCAmelCase : List[str] = """vit_mae"""
def __init__( self : Dict ,_snake_case : str=768 ,_snake_case : Any=12 ,_snake_case : Optional[int]=12 ,_snake_case : str=3_072 ,_snake_case : Tuple="gelu" ,_snake_case : Optional[int]=0.0 ,_snake_case : Tuple=0.0 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : Dict=224 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=3 ,_snake_case : List[Any]=True ,_snake_case : Optional[int]=16 ,_snake_case : List[Any]=512 ,_snake_case : str=8 ,_snake_case : str=2_048 ,_snake_case : int=0.75 ,_snake_case : Tuple=False ,**_snake_case : List[str] ,) -> int:
"""simple docstring"""
super().__init__(**UpperCamelCase__ )
lowercase__ : int = hidden_size
lowercase__ : Tuple = num_hidden_layers
lowercase__ : str = num_attention_heads
lowercase__ : Optional[int] = intermediate_size
lowercase__ : Any = hidden_act
lowercase__ : Union[str, Any] = hidden_dropout_prob
lowercase__ : Optional[int] = attention_probs_dropout_prob
lowercase__ : str = initializer_range
lowercase__ : List[Any] = layer_norm_eps
lowercase__ : List[str] = image_size
lowercase__ : List[str] = patch_size
lowercase__ : Union[str, Any] = num_channels
lowercase__ : Dict = qkv_bias
lowercase__ : List[Any] = decoder_num_attention_heads
lowercase__ : str = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : List[Any] = decoder_intermediate_size
lowercase__ : Tuple = mask_ratio
lowercase__ : List[str] = norm_pix_loss
| 370
|
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"]
lowerCAmelCase : int = "ChineseCLIPImageProcessor"
lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any:
"""simple docstring"""
lowercase__ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' ,_snake_case ,)
lowercase__ : Tuple = kwargs.pop('''feature_extractor''' )
lowercase__ : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_snake_case ,_snake_case )
lowercase__ : List[Any] = self.image_processor
def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if images is not None:
lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if text is not None and images is not None:
lowercase__ : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case )
def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.tokenizer.model_input_names
lowercase__ : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,)
return self.image_processor_class
| 302
| 0
|
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
# TODO: upload to AWS
lowerCAmelCase_ = {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json'''
),
}
class __A ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = '''retribert'''
def __init__( self : int ,_snake_case : List[Any]=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : Any=8 ,_snake_case : List[str]=12 ,_snake_case : List[Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : List[str]=0.1 ,_snake_case : List[Any]=512 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.02 ,_snake_case : Tuple=1e-12 ,_snake_case : Union[str, Any]=True ,_snake_case : Tuple=128 ,_snake_case : Tuple=0 ,**_snake_case : List[str] ,) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=__snake_case ,**__snake_case )
lowercase__ : Tuple = vocab_size
lowercase__ : str = hidden_size
lowercase__ : Any = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = hidden_act
lowercase__ : Tuple = intermediate_size
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : Union[str, Any] = attention_probs_dropout_prob
lowercase__ : List[str] = max_position_embeddings
lowercase__ : int = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Any = layer_norm_eps
lowercase__ : Dict = share_encoders
lowercase__ : List[Any] = projection_dim
| 371
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowerCAmelCase_ = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = "maskformer"
lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"}
lowerCAmelCase : Optional[int] = ["resnet", "swin"]
lowerCAmelCase : str = ["detr"]
def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict:
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
lowercase__ : Any = SwinConfig(
image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,)
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[str] = backbone_config.pop('''model_type''' )
lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type]
lowercase__ : str = config_class.from_dict(_snake_case )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
lowercase__ : Union[str, Any] = DetrConfig()
else:
# verify that the decoder is supported
lowercase__ : Tuple = (
decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f"""Transformer Decoder {decoder_type} not supported, please use one of"""
f""" {",".join(self.decoders_supported )}""" )
if isinstance(_snake_case ,_snake_case ):
lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type]
lowercase__ : Optional[Any] = config_class.from_dict(_snake_case )
lowercase__ : List[Any] = backbone_config
lowercase__ : List[Any] = decoder_config
# main feature dimension for the model
lowercase__ : List[str] = fpn_feature_size
lowercase__ : int = mask_feature_size
# initializer
lowercase__ : str = init_std
lowercase__ : str = init_xavier_std
# Hungarian matcher && loss
lowercase__ : Optional[int] = cross_entropy_weight
lowercase__ : List[Any] = dice_weight
lowercase__ : List[str] = mask_weight
lowercase__ : str = use_auxiliary_loss
lowercase__ : Optional[int] = no_object_weight
lowercase__ : Optional[Any] = output_auxiliary_logits
lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads
lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers
super().__init__(**_snake_case )
@classmethod
def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return cls(
backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,)
def UpperCAmelCase ( self : str ) -> Dict[str, any]:
"""simple docstring"""
lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ )
lowercase__ : int = self.backbone_config.to_dict()
lowercase__ : List[Any] = self.decoder_config.to_dict()
lowercase__ : List[str] = self.__class__.model_type
return output
| 350
|
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,)
lowerCAmelCase : int = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __UpperCAmelCase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
lowercase__ : str = import_module('''tasks''' )
try:
lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels )
lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) )
lowercase__ : Optional[int] = len(__lowerCamelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , )
lowercase__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ : str = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]:
lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 )
lowercase__ , lowercase__ : Tuple = preds.shape
lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )]
lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )]
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__lowerCamelCase ) -> Dict:
lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
# Data collator
lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ : str = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ : int = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ : Optional[int] = trainer.evaluate()
lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__lowerCamelCase )
# Predict
if training_args.do_predict:
lowercase__ : Optional[int] = TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase )
lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return results
def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
lowerCAmelCase_ = False
class __A ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
lowercase__ : List[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
lowercase__ : List[Any] = torch.manual_seed(0 )
lowercase__ : Optional[int] = pipe.dual_guided(
prompt='''first prompt''' ,image=_snake_case ,text_to_image_strength=0.75 ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_snake_case )
lowercase__ : Dict = VersatileDiffusionPipeline.from_pretrained(_snake_case ,torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Union[str, Any] = generator.manual_seed(0 )
lowercase__ : Any = pipe.dual_guided(
prompt='''first prompt''' ,image=_snake_case ,text_to_image_strength=0.75 ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def UpperCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
lowercase__ : List[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Optional[int] = '''cyberpunk 2077'''
lowercase__ : Dict = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
lowercase__ : Union[str, Any] = torch.manual_seed(0 )
lowercase__ : Optional[Any] = pipe.dual_guided(
prompt=_snake_case ,image=_snake_case ,text_to_image_strength=0.75 ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ,).images
lowercase__ : List[str] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowercase__ : str = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
lowercase__ : List[Any] = '''A painting of a squirrel eating a burger '''
lowercase__ : Union[str, Any] = torch.manual_seed(0 )
lowercase__ : Optional[int] = pipe.text_to_image(
prompt=_snake_case ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ).images
lowercase__ : List[Any] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowercase__ : Any = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
lowercase__ : Optional[int] = pipe.image_variation(_snake_case ,generator=_snake_case ,output_type='''numpy''' ).images
lowercase__ : Optional[int] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowercase__ : Dict = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
| 351
|
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : Dict = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : List[str] = 16
elif accelerator.mixed_precision != "no":
lowercase__ : List[Any] = 8
else:
lowercase__ : Optional[int] = None
return tokenizer.pad(
__lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ : Dict = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
lowercase__ : Union[str, Any] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1":
lowercase__ : Any = 2
# Initialize accelerator
lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : List[Any] = config['''lr''']
lowercase__ : Union[str, Any] = int(config['''num_epochs'''] )
lowercase__ : List[str] = int(config['''seed'''] )
lowercase__ : Any = int(config['''batch_size'''] )
lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__lowerCamelCase )
def inner_training_loop(__lowerCamelCase ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : str = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase )
lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate scheduler
lowercase__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ : int = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.loss
accelerator.backward(__lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : Tuple = model(**__lowerCamelCase )
lowercase__ : Dict = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
lowercase__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ : Union[str, Any] = parser.parse_args()
lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
from math import loga
def __UpperCAmelCase ( __lowerCamelCase ) -> int:
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError('''Input value must be a \'int\' type''' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 352
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case )
lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' )
lowercase__ : Tuple = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
lowercase__ : Optional[int] = model.generate(**_snake_case )
lowercase__ : List[Any] = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
lowercase__ : int = model_reloaded.generate(**_snake_case )
self.assertTrue(torch.allclose(_snake_case ,_snake_case ) )
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : Union[str, Any] = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_snake_case ):
model.save_pretrained(_snake_case )
lowercase__ : int = model.reverse_bettertransformer()
model.save_pretrained(_snake_case )
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ):
def get_matched_characters(__lowerCamelCase , __lowerCamelCase ) -> str:
lowercase__ : List[str] = []
lowercase__ : Union[str, Any] = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
lowercase__ : Any = int(max(0 , i - limit ) )
lowercase__ : List[Any] = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(__lowerCamelCase )
lowercase__ : Tuple = f"""{_stra[0:_stra.index(__lowerCamelCase )]} {_stra[_stra.index(__lowerCamelCase ) + 1:]}"""
return "".join(__lowerCamelCase )
# matching characters
lowercase__ : str = get_matched_characters(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = get_matched_characters(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Union[str, Any] = len(__lowerCamelCase )
# transposition
lowercase__ : List[Any] = (
len([(ca, ca) for ca, ca in zip(__lowerCamelCase , __lowerCamelCase ) if ca != ca] ) // 2
)
if not match_count:
lowercase__ : Union[str, Any] = 0.0
else:
lowercase__ : Any = (
1
/ 3
* (
match_count / len(__lowerCamelCase )
+ match_count / len(__lowerCamelCase )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
lowercase__ : Union[str, Any] = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('hello', 'world'))
| 353
|
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
return flax_state_dict
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool:
return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : Optional[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
lowercase__ : List[str] = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
# convert pytorch tensor to numpy
lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : List[Any] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
lowercase__ : str = flax_model.params['''params''']
else:
lowercase__ : Optional[int] = flax_model.params
lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(__lowerCamelCase )
lowercase__ : int = {}
lowercase__ : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
lowercase__ : int = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : Tuple = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Any = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import torch
# Load the index
lowercase__ : Dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
lowercase__ : Optional[int] = torch.load(__lowerCamelCase )
lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : Dict = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Optional[Any] = flax_model.params['''params''']
lowercase__ : List[Any] = flatten_dict(__lowerCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
lowercase__ : Union[str, Any] = flax_model.params
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : Tuple = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : List[str] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Tuple = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : List[str] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
continue
if "var" in flax_key[-1]:
lowercase__ : str = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : List[str] = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(__lowerCamelCase , '''rb''' ) as state_f:
try:
lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values()
if any(__lowerCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
lowercase__ : Union[str, Any] = jax.tree_util.tree_map(
lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase )
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : List[str] = pt_model.state_dict()
lowercase__ : int = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
lowercase__ : List[str] = []
lowercase__ : Tuple = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix
lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict:
# conv layer
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict:
# linear layer
lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
lowercase__ : Dict = '''.'''.join(__lowerCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
lowercase__ : Optional[int] = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
lowercase__ : str = key.split('''.''' )
lowercase__ : Optional[Any] = None
if key_components[-3::2] == ["parametrizations", "original0"]:
lowercase__ : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
lowercase__ : str = key_components[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[int] = key_components[:-3] + [name]
lowercase__ : List[str] = '''.'''.join(__lowerCamelCase )
lowercase__ : List[Any] = key
if flax_key in special_pt_names:
lowercase__ : Any = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor
lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase )
# remove from missing keys
missing_keys.remove(__lowerCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCamelCase )
pt_model.load_state_dict(__lowerCamelCase )
# re-transform missing_keys to list
lowercase__ : Optional[Any] = list(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(__lowerCamelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
'''If your task is similar to the task the model of the checkpoint was trained on, '''
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 302
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {'vocab_file': 'sentencepiece.model'}
lowerCAmelCase_ = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
lowerCAmelCase_ = {
'google/rembert': 256,
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = VOCAB_FILES_NAMES
lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : List[str]=False ,_snake_case : Dict=True ,_snake_case : Dict=True ,_snake_case : Union[str, Any]="[CLS]" ,_snake_case : str="[SEP]" ,_snake_case : Tuple="[UNK]" ,_snake_case : Optional[int]="[SEP]" ,_snake_case : Union[str, Any]="[PAD]" ,_snake_case : Any="[CLS]" ,_snake_case : List[str]="[MASK]" ,**_snake_case : Dict ,) -> List[str]:
"""simple docstring"""
super().__init__(
do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,**_snake_case ,)
lowercase__ : Optional[Any] = do_lower_case
lowercase__ : List[Any] = remove_space
lowercase__ : List[Any] = keep_accents
lowercase__ : str = vocab_file
lowercase__ : Any = spm.SentencePieceProcessor()
self.sp_model.Load(_snake_case )
@property
def UpperCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return len(self.sp_model )
def UpperCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ : Optional[int] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : str = self.__dict__.copy()
lowercase__ : str = None
return state
def __setstate__( self : Optional[int] ,_snake_case : int ) -> List[str]:
"""simple docstring"""
lowercase__ : Dict = d
lowercase__ : Dict = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : Any=False ) -> int:
"""simple docstring"""
lowercase__ : Optional[int] = self.sp_model.EncodeAsPieces(_snake_case )
return pieces
def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.sp_model.PieceToId(_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ) -> List[str]:
"""simple docstring"""
return self.sp_model.IdToPiece(_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : Dict ) -> int:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.sp_model.decode_pieces(_snake_case )
return out_string
def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : Optional[Any] = [self.sep_token_id]
lowercase__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase ( self : str ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCAmelCase ( self : List[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : List[Any] = [self.sep_token_id]
lowercase__ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_snake_case ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_snake_case ) )
return
lowercase__ : Any = os.path.join(
_snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ):
copyfile(self.vocab_file ,_snake_case )
return (out_vocab_file,)
| 354
|
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = value_function
lowercase__ : Optional[int] = unet
lowercase__ : Tuple = scheduler
lowercase__ : Dict = env
lowercase__ : int = env.get_dataset()
lowercase__ : Dict = {}
for key in self.data.keys():
try:
lowercase__ : Optional[Any] = self.data[key].mean()
except: # noqa: E722
pass
lowercase__ : List[Any] = {}
for key in self.data.keys():
try:
lowercase__ : str = self.data[key].std()
except: # noqa: E722
pass
lowercase__ : Tuple = env.observation_space.shape[0]
lowercase__ : Optional[int] = env.action_space.shape[0]
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
if type(_snake_case ) is dict:
return {k: self.to_torch(_snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(_snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(_snake_case ,device=self.unet.device )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
for key, val in cond.items():
lowercase__ : List[Any] = val.clone()
return x_in
def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = x.shape[0]
lowercase__ : Dict = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long )
for _ in range(_snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample
lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0]
lowercase__ : List[str] = self.scheduler._get_variance(_snake_case )
lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance )
lowercase__ : Optional[int] = model_std * grad
lowercase__ : Optional[Any] = 0
lowercase__ : str = x.detach()
lowercase__ : Dict = x + scale * grad
lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 )
# TODO: verify deprecation of this kwarg
lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.to_torch(_snake_case )
return x, y
def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]:
"""simple docstring"""
lowercase__ : Any = self.normalize(_snake_case ,'''observations''' )
lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 )
lowercase__ : Dict = {0: self.to_torch(_snake_case )}
lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device )
lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : str = self.to_torch(_snake_case )
# run the diffusion process
lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case )
# sort output trajectories by value
lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze()
lowercase__ : str = x[sorted_idx]
lowercase__ : str = sorted_values[:, :, : self.action_dim]
lowercase__ : Optional[int] = actions.detach().cpu().numpy()
lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' )
# select the action with the highest value
if y is not None:
lowercase__ : str = 0
else:
# if we didn't run value guiding, select a random action
lowercase__ : str = np.random.randint(0 ,_snake_case )
lowercase__ : int = denorm_actions[selected_index, 0]
return denorm_actions
| 302
| 0
|
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __A ( A_ ,unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = AudioLDMPipeline
lowerCAmelCase : str = TEXT_TO_AUDIO_PARAMS
lowerCAmelCase : Union[str, Any] = TEXT_TO_AUDIO_BATCH_PARAMS
lowerCAmelCase : List[Any] = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
def UpperCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(32, 64) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=_snake_case ,)
lowercase__ : str = DDIMScheduler(
beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,)
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,)
torch.manual_seed(0 )
lowercase__ : int = ClapTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,projection_dim=32 ,)
lowercase__ : str = ClapTextModelWithProjection(_snake_case )
lowercase__ : Dict = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=77 )
lowercase__ : int = SpeechTaHifiGanConfig(
model_in_dim=8 ,sampling_rate=16_000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=_snake_case ,)
lowercase__ : Tuple = SpeechTaHifiGan(_snake_case )
lowercase__ : str = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''vocoder''': vocoder,
}
return components
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Any ,_snake_case : Union[str, Any]=0 ) -> Optional[int]:
"""simple docstring"""
if str(_snake_case ).startswith('''mps''' ):
lowercase__ : List[Any] = torch.manual_seed(_snake_case )
else:
lowercase__ : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowercase__ : Union[str, Any] = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
}
return inputs
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ : Any = self.get_dummy_components()
lowercase__ : Union[str, Any] = AudioLDMPipeline(**_snake_case )
lowercase__ : int = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Tuple = self.get_dummy_inputs(_snake_case )
lowercase__ : List[str] = audioldm_pipe(**_snake_case )
lowercase__ : List[Any] = output.audios[0]
assert audio.ndim == 1
assert len(_snake_case ) == 256
lowercase__ : Optional[Any] = audio[:10]
lowercase__ : Any = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : str = self.get_dummy_components()
lowercase__ : Dict = AudioLDMPipeline(**_snake_case )
lowercase__ : List[Any] = audioldm_pipe.to(_snake_case )
lowercase__ : Union[str, Any] = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Optional[int] = self.get_dummy_inputs(_snake_case )
lowercase__ : Union[str, Any] = 3 * [inputs['''prompt''']]
# forward
lowercase__ : Any = audioldm_pipe(**_snake_case )
lowercase__ : int = output.audios[0]
lowercase__ : Dict = self.get_dummy_inputs(_snake_case )
lowercase__ : Union[str, Any] = 3 * [inputs.pop('''prompt''' )]
lowercase__ : Any = audioldm_pipe.tokenizer(
_snake_case ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors='''pt''' ,)
lowercase__ : str = text_inputs['''input_ids'''].to(_snake_case )
lowercase__ : int = audioldm_pipe.text_encoder(
_snake_case ,)
lowercase__ : Dict = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
lowercase__ : Union[str, Any] = F.normalize(_snake_case ,dim=-1 )
lowercase__ : str = prompt_embeds
# forward
lowercase__ : Union[str, Any] = audioldm_pipe(**_snake_case )
lowercase__ : Union[str, Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[Any] = self.get_dummy_components()
lowercase__ : List[Any] = AudioLDMPipeline(**_snake_case )
lowercase__ : Optional[Any] = audioldm_pipe.to(_snake_case )
lowercase__ : List[str] = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Any = self.get_dummy_inputs(_snake_case )
lowercase__ : Optional[Any] = 3 * ['''this is a negative prompt''']
lowercase__ : Any = negative_prompt
lowercase__ : Optional[Any] = 3 * [inputs['''prompt''']]
# forward
lowercase__ : Optional[int] = audioldm_pipe(**_snake_case )
lowercase__ : str = output.audios[0]
lowercase__ : List[str] = self.get_dummy_inputs(_snake_case )
lowercase__ : List[str] = 3 * [inputs.pop('''prompt''' )]
lowercase__ : Union[str, Any] = []
for p in [prompt, negative_prompt]:
lowercase__ : str = audioldm_pipe.tokenizer(
_snake_case ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors='''pt''' ,)
lowercase__ : Optional[Any] = text_inputs['''input_ids'''].to(_snake_case )
lowercase__ : Optional[int] = audioldm_pipe.text_encoder(
_snake_case ,)
lowercase__ : int = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
lowercase__ : List[Any] = F.normalize(_snake_case ,dim=-1 )
embeds.append(_snake_case )
lowercase__ : int = embeds
# forward
lowercase__ : int = audioldm_pipe(**_snake_case )
lowercase__ : List[Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def UpperCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
lowercase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ : Optional[Any] = self.get_dummy_components()
lowercase__ : Optional[int] = PNDMScheduler(skip_prk_steps=_snake_case )
lowercase__ : int = AudioLDMPipeline(**_snake_case )
lowercase__ : List[Any] = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : List[str] = self.get_dummy_inputs(_snake_case )
lowercase__ : Dict = '''egg cracking'''
lowercase__ : Dict = audioldm_pipe(**_snake_case ,negative_prompt=_snake_case )
lowercase__ : Optional[int] = output.audios[0]
assert audio.ndim == 1
assert len(_snake_case ) == 256
lowercase__ : Tuple = audio[:10]
lowercase__ : Union[str, Any] = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def UpperCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ : List[str] = self.get_dummy_components()
lowercase__ : Optional[Any] = PNDMScheduler(skip_prk_steps=_snake_case )
lowercase__ : Optional[int] = AudioLDMPipeline(**_snake_case )
lowercase__ : List[str] = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Optional[int] = '''A hammer hitting a wooden surface'''
# test num_waveforms_per_prompt=1 (default)
lowercase__ : List[Any] = audioldm_pipe(_snake_case ,num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
lowercase__ : List[Any] = 2
lowercase__ : List[str] = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
lowercase__ : List[Any] = 2
lowercase__ : Dict = audioldm_pipe(_snake_case ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
lowercase__ : List[Any] = 2
lowercase__ : Union[str, Any] = audioldm_pipe(
[prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def UpperCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
lowercase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ : Tuple = self.get_dummy_components()
lowercase__ : Union[str, Any] = AudioLDMPipeline(**_snake_case )
lowercase__ : Any = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Tuple = audioldm_pipe.vocoder.config.sampling_rate
lowercase__ : Dict = self.get_dummy_inputs(_snake_case )
lowercase__ : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 ,**_snake_case )
lowercase__ : Union[str, Any] = output.audios[0]
assert audio.ndim == 1
assert len(_snake_case ) / vocoder_sampling_rate == 0.016
lowercase__ : Optional[int] = audioldm_pipe(audio_length_in_s=0.032 ,**_snake_case )
lowercase__ : str = output.audios[0]
assert audio.ndim == 1
assert len(_snake_case ) / vocoder_sampling_rate == 0.032
def UpperCAmelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
lowercase__ : List[Any] = self.get_dummy_components()
lowercase__ : Any = AudioLDMPipeline(**_snake_case )
lowercase__ : int = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Union[str, Any] = ['''hey''']
lowercase__ : int = audioldm_pipe(_snake_case ,num_inference_steps=1 )
lowercase__ : Any = output.audios.shape
assert audio_shape == (1, 256)
lowercase__ : List[str] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
lowercase__ : int = SpeechTaHifiGan(_snake_case ).to(_snake_case )
lowercase__ : Union[str, Any] = audioldm_pipe(_snake_case ,num_inference_steps=1 )
lowercase__ : Optional[Any] = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def UpperCAmelCase ( self : Any ) -> str:
"""simple docstring"""
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case )
def UpperCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def UpperCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case )
@slow
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ,_snake_case : str="cpu" ,_snake_case : Any=torch.floataa ,_snake_case : int=0 ) -> Optional[int]:
"""simple docstring"""
lowercase__ : int = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowercase__ : Any = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) )
lowercase__ : Optional[Any] = torch.from_numpy(_snake_case ).to(device=_snake_case ,dtype=_snake_case )
lowercase__ : List[str] = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 2.5,
}
return inputs
def UpperCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
lowercase__ : Any = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
lowercase__ : Optional[int] = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Tuple = self.get_inputs(_snake_case )
lowercase__ : Dict = 25
lowercase__ : int = audioldm_pipe(**_snake_case ).audios[0]
assert audio.ndim == 1
assert len(_snake_case ) == 81_920
lowercase__ : int = audio[77_230:77_240]
lowercase__ : int = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
lowercase__ : Tuple = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def UpperCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
lowercase__ : Union[str, Any] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
lowercase__ : Optional[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
lowercase__ : int = audioldm_pipe.to(_snake_case )
audioldm_pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Dict = self.get_inputs(_snake_case )
lowercase__ : List[Any] = audioldm_pipe(**_snake_case ).audios[0]
assert audio.ndim == 1
assert len(_snake_case ) == 81_920
lowercase__ : Optional[int] = audio[27_780:27_790]
lowercase__ : List[str] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
lowercase__ : Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 355
|
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ,id='''sequence''' ),
'''references''': datasets.Value('''string''' ,id='''sequence''' ),
} ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any:
"""simple docstring"""
lowercase__ : Any = compute_mauve(
p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,)
return out
| 302
| 0
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __A ( metaclass=A_ ):
'''simple docstring'''
lowerCAmelCase : str = ["keras_nlp"]
def __init__( self : int ,*_snake_case : str ,**_snake_case : Any ) -> int:
"""simple docstring"""
requires_backends(self ,['''keras_nlp'''] )
| 356
|
"""simple docstring"""
import math
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
lowercase__ : Tuple = 0
lowercase__ : Tuple = 0
while num > 0:
lowercase__ : int = num % 8
lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"""0o{int(__lowerCamelCase )}"""
def __UpperCAmelCase ( ) -> None:
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(2_16 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(5_12 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = (EulerDiscreteScheduler,)
lowerCAmelCase : Any = 1_0
def UpperCAmelCase ( self : Optional[int] ,**_snake_case : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : int = {
'''num_train_timesteps''': 1_100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**_snake_case )
return config
def UpperCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_snake_case ,beta_end=_snake_case )
def UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_snake_case )
def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case )
def UpperCAmelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
lowercase__ : Optional[Any] = self.scheduler_classes[0]
lowercase__ : List[str] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps )
lowercase__ : List[str] = torch.manual_seed(0 )
lowercase__ : int = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase__ : Union[str, Any] = sample.to(_snake_case )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ : Any = scheduler.scale_model_input(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = model(_snake_case ,_snake_case )
lowercase__ : List[str] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ : Dict = output.prev_sample
lowercase__ : List[Any] = torch.sum(torch.abs(_snake_case ) )
lowercase__ : Union[str, Any] = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def UpperCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowercase__ : List[str] = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps )
lowercase__ : Tuple = torch.manual_seed(0 )
lowercase__ : int = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase__ : Optional[Any] = sample.to(_snake_case )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ : Dict = scheduler.scale_model_input(_snake_case ,_snake_case )
lowercase__ : Dict = model(_snake_case ,_snake_case )
lowercase__ : str = scheduler.step(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ : Union[str, Any] = output.prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(_snake_case ) )
lowercase__ : Dict = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3
def UpperCAmelCase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Optional[Any] = self.get_scheduler_config()
lowercase__ : Any = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps ,device=_snake_case )
lowercase__ : str = torch.manual_seed(0 )
lowercase__ : List[Any] = self.dummy_model()
lowercase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
lowercase__ : Union[str, Any] = sample.to(_snake_case )
for t in scheduler.timesteps:
lowercase__ : Optional[int] = scheduler.scale_model_input(_snake_case ,_snake_case )
lowercase__ : str = model(_snake_case ,_snake_case )
lowercase__ : List[Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ : List[Any] = output.prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(_snake_case ) )
lowercase__ : str = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def UpperCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**_snake_case ,use_karras_sigmas=_snake_case )
scheduler.set_timesteps(self.num_inference_steps ,device=_snake_case )
lowercase__ : str = torch.manual_seed(0 )
lowercase__ : Union[str, Any] = self.dummy_model()
lowercase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
lowercase__ : str = sample.to(_snake_case )
for t in scheduler.timesteps:
lowercase__ : Dict = scheduler.scale_model_input(_snake_case ,_snake_case )
lowercase__ : Tuple = model(_snake_case ,_snake_case )
lowercase__ : int = scheduler.step(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ : str = output.prev_sample
lowercase__ : Any = torch.sum(torch.abs(_snake_case ) )
lowercase__ : Optional[Any] = torch.mean(torch.abs(_snake_case ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
| 357
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
lowerCAmelCase_ = [
'openmmlab/upernet-convnext-tiny',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
lowerCAmelCase_ = 'UperNetConfig'
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Convad(
in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,)
lowercase__ : Tuple = nn.BatchNormad(_snake_case )
lowercase__ : List[str] = nn.ReLU()
def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.conv(_snake_case )
lowercase__ : List[str] = self.batch_norm(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = [
nn.AdaptiveAvgPoolad(_snake_case ),
UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Any = input
for layer in self.layers:
lowercase__ : int = layer(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = pool_scales
lowercase__ : Dict = align_corners
lowercase__ : Optional[Any] = in_channels
lowercase__ : Optional[Any] = channels
lowercase__ : int = []
for i, pool_scale in enumerate(_snake_case ):
lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case )
self.blocks.append(_snake_case )
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]:
"""simple docstring"""
lowercase__ : int = []
for ppm in self.blocks:
lowercase__ : Any = ppm(_snake_case )
lowercase__ : int = nn.functional.interpolate(
_snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
ppm_outs.append(_snake_case )
return ppm_outs
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ : str = config
lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6)
lowercase__ : Optional[Any] = in_channels
lowercase__ : Any = config.hidden_size
lowercase__ : Optional[Any] = False
lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
# PSP Module
lowercase__ : Dict = UperNetPyramidPoolingModule(
self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,)
lowercase__ : str = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
# FPN Module
lowercase__ : Any = nn.ModuleList()
lowercase__ : Union[str, Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 )
lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 )
self.lateral_convs.append(_snake_case )
self.fpn_convs.append(_snake_case )
lowercase__ : int = UperNetConvModule(
len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
def UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str:
"""simple docstring"""
lowercase__ : Dict = inputs[-1]
lowercase__ : Optional[int] = [x]
psp_outs.extend(self.psp_modules(_snake_case ) )
lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 )
lowercase__ : List[str] = self.bottleneck(_snake_case )
return output
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(_snake_case ) )
# build top-down path
lowercase__ : List[Any] = len(_snake_case )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:]
lowercase__ : int = laterals[i - 1] + nn.functional.interpolate(
laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners )
# build outputs
lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Any = nn.functional.interpolate(
fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
lowercase__ : Any = torch.cat(_snake_case ,dim=1 )
lowercase__ : Any = self.fpn_bottleneck(_snake_case )
lowercase__ : str = self.classifier(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = config
lowercase__ : Dict = config.auxiliary_in_channels
lowercase__ : Optional[int] = config.auxiliary_channels
lowercase__ : List[Any] = config.auxiliary_num_convs
lowercase__ : List[Any] = config.auxiliary_concat_input
lowercase__ : str = in_index
lowercase__ : Any = (kernel_size // 2) * dilation
lowercase__ : Optional[Any] = []
convs.append(
UperNetConvModule(
self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
if self.num_convs == 0:
lowercase__ : List[str] = nn.Identity()
else:
lowercase__ : Dict = nn.Sequential(*_snake_case )
if self.concat_input:
lowercase__ : int = UperNetConvModule(
self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 )
lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
def UpperCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : str = encoder_hidden_states[self.in_index]
lowercase__ : List[str] = self.convs(_snake_case )
if self.concat_input:
lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) )
lowercase__ : Dict = self.classifier(_snake_case )
return output
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Any = UperNetConfig
lowerCAmelCase : str = "pixel_values"
lowerCAmelCase : Dict = True
def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[Any] = value
lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : int = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels )
lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]:
"""simple docstring"""
lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs(
_snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case )
lowercase__ : Optional[int] = outputs.feature_maps
lowercase__ : Tuple = self.decode_head(_snake_case )
lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : List[str] = None
if self.auxiliary_head is not None:
lowercase__ : str = self.auxiliary_head(_snake_case )
lowercase__ : Dict = nn.functional.interpolate(
_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : Any = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
lowercase__ : Tuple = (logits,) + outputs[1:]
else:
lowercase__ : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
| 302
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Any = "vivit"
def __init__( self : Dict ,_snake_case : List[Any]=224 ,_snake_case : List[Any]=32 ,_snake_case : Tuple=[2, 16, 16] ,_snake_case : Any=3 ,_snake_case : List[str]=768 ,_snake_case : Optional[Any]=12 ,_snake_case : Any=12 ,_snake_case : Dict=3_072 ,_snake_case : str="gelu_fast" ,_snake_case : Any=0.0 ,_snake_case : Tuple=0.0 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : Optional[Any]=1e-06 ,_snake_case : Any=True ,**_snake_case : Any ,) -> Optional[int]:
"""simple docstring"""
lowercase__ : List[str] = hidden_size
lowercase__ : Any = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : Optional[Any] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : Any = attention_probs_dropout_prob
lowercase__ : Optional[Any] = initializer_range
lowercase__ : Any = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Any = num_frames
lowercase__ : Dict = tubelet_size
lowercase__ : int = num_channels
lowercase__ : str = qkv_bias
super().__init__(**_snake_case )
| 358
|
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCAmelCase_ = _symbol_database.Default()
lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
lowerCAmelCase_ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCAmelCase_ = None
lowerCAmelCase_ = B'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCAmelCase_ = 45
lowerCAmelCase_ = 1_581
lowerCAmelCase_ = 1_517
lowerCAmelCase_ = 1_570
lowerCAmelCase_ = 1_584
lowerCAmelCase_ = 1_793
lowerCAmelCase_ = 1_795
lowerCAmelCase_ = 1_916
lowerCAmelCase_ = 1_864
lowerCAmelCase_ = 1_905
lowerCAmelCase_ = 1_919
lowerCAmelCase_ = 2_429
lowerCAmelCase_ = 2_208
lowerCAmelCase_ = 2_418
lowerCAmelCase_ = 2_323
lowerCAmelCase_ = 2_407
# @@protoc_insertion_point(module_scope)
| 302
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
lowerCAmelCase_ = None
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase_ = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
},
'tokenizer_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json',
},
}
lowerCAmelCase_ = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
lowerCAmelCase_ = '▁'
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES
lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : List[str] = AlbertTokenizer
def __init__( self : Dict ,_snake_case : Dict=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=True ,_snake_case : Optional[Any]=False ,_snake_case : Any="[CLS]" ,_snake_case : int="[SEP]" ,_snake_case : List[str]="<unk>" ,_snake_case : Any="[SEP]" ,_snake_case : Union[str, Any]="<pad>" ,_snake_case : Optional[int]="[CLS]" ,_snake_case : Optional[int]="[MASK]" ,**_snake_case : Optional[Any] ,) -> str:
"""simple docstring"""
lowercase__ : Optional[int] = (
AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ,normalized=_snake_case )
if isinstance(_snake_case ,_snake_case )
else mask_token
)
super().__init__(
_snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,**_snake_case ,)
lowercase__ : List[Any] = do_lower_case
lowercase__ : Tuple = remove_space
lowercase__ : Optional[int] = keep_accents
lowercase__ : int = vocab_file
lowercase__ : List[Any] = False if not self.vocab_file else True
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : Tuple = [self.sep_token_id]
lowercase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase ( self : str ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : List[Any] = [self.sep_token_id]
lowercase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_snake_case ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowercase__ : List[str] = os.path.join(
_snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ):
copyfile(self.vocab_file ,_snake_case )
return (out_vocab_file,)
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 360
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = '''The dog is cute and lives in the garden house'''
lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] )
lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
lowercase__ : Tuple = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state''']
self.assertEqual(output.shape ,_snake_case )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
| 302
| 0
|
"""simple docstring"""
from statistics import mean
import numpy as np
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list:
lowercase__ : str = 0
# Number of processes finished
lowercase__ : List[Any] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
lowercase__ : int = [0] * no_of_process
# List to include calculation results
lowercase__ : Dict = [0] * no_of_process
# Sort by arrival time.
lowercase__ : str = [burst_time[i] for i in np.argsort(__lowerCamelCase )]
lowercase__ : Tuple = [process_name[i] for i in np.argsort(__lowerCamelCase )]
arrival_time.sort()
while no_of_process > finished_process_count:
lowercase__ : Optional[Any] = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
lowercase__ : Tuple = arrival_time[i]
lowercase__ : Tuple = 0
# Index showing the location of the process being performed
lowercase__ : Any = 0
# Saves the current response ratio.
lowercase__ : List[str] = 0
for i in range(0 , __lowerCamelCase ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
lowercase__ : int = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
lowercase__ : List[Any] = temp
lowercase__ : Union[str, Any] = i
# Calculate the turn around time
lowercase__ : Optional[Any] = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
lowercase__ : Union[str, Any] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list:
lowercase__ : Optional[int] = [0] * no_of_process
for i in range(0 , __lowerCamelCase ):
lowercase__ : str = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
lowerCAmelCase_ = 5
lowerCAmelCase_ = ['A', 'B', 'C', 'D', 'E']
lowerCAmelCase_ = [1, 2, 3, 4, 5]
lowerCAmelCase_ = [1, 2, 3, 4, 5]
lowerCAmelCase_ = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
lowerCAmelCase_ = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time')
for i in range(0, no_of_process):
print(
F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'''
F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}'''
)
print(F'''average waiting time : {mean(waiting_time):.5f}''')
print(F'''average turn around time : {mean(turn_around_time):.5f}''')
| 361
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = '#'
class __A :
'''simple docstring'''
def __init__( self : str ) -> None:
"""simple docstring"""
lowercase__ : dict = {}
def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None:
"""simple docstring"""
lowercase__ : str = self._trie
for char in text:
if char not in trie:
lowercase__ : Union[str, Any] = {}
lowercase__ : Optional[Any] = trie[char]
lowercase__ : Dict = True
def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list:
"""simple docstring"""
lowercase__ : Optional[Any] = self._trie
for char in prefix:
if char in trie:
lowercase__ : Union[str, Any] = trie[char]
else:
return []
return self._elements(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple:
"""simple docstring"""
lowercase__ : str = []
for c, v in d.items():
lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )]
result.extend(_snake_case )
return tuple(_snake_case )
lowerCAmelCase_ = Trie()
lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def __UpperCAmelCase ( __lowerCamelCase ) -> tuple:
lowercase__ : List[Any] = trie.find_word(__lowerCamelCase )
return tuple(string + word for word in suffixes )
def __UpperCAmelCase ( ) -> None:
print(autocomplete_using_trie('''de''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
import numpy as np
def __UpperCAmelCase ( __lowerCamelCase ) -> np.array:
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362
|
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase_ = logging.get_logger(__name__)
# General docstring
lowerCAmelCase_ = 'RegNetConfig'
# Base docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = [1, 1_088, 7, 7]
# Image classification docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = 'tabby, tabby cat'
lowerCAmelCase_ = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = nn.Convad(
_snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,)
lowercase__ : List[Any] = nn.BatchNormad(_snake_case )
lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.convolution(_snake_case )
lowercase__ : Tuple = self.normalization(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = RegNetConvLayer(
config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act )
lowercase__ : str = config.num_channels
def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str:
"""simple docstring"""
lowercase__ : Union[str, Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
lowercase__ : Optional[int] = self.embedder(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any:
"""simple docstring"""
super().__init__()
lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case )
lowercase__ : Any = nn.BatchNormad(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.convolution(_snake_case )
lowercase__ : Optional[int] = self.normalization(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) )
lowercase__ : Dict = nn.Sequential(
nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,)
def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.pooler(_snake_case )
lowercase__ : Union[str, Any] = self.attention(_snake_case )
lowercase__ : List[str] = hidden_state * attention
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = in_channels != out_channels or stride != 1
lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width )
lowercase__ : str = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : Optional[int] = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : str = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ : Tuple = hidden_state
lowercase__ : Union[str, Any] = self.layer(_snake_case )
lowercase__ : List[Any] = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : Optional[int] = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = in_channels != out_channels or stride != 1
lowercase__ : List[str] = max(1 ,out_channels // config.groups_width )
lowercase__ : Tuple = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : str = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
lowercase__ : str = hidden_state
lowercase__ : Optional[Any] = self.layer(_snake_case )
lowercase__ : int = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : str = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer
lowercase__ : Optional[Any] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,)
def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.layers(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : str = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) )
lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ):
self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowercase__ : int = hidden_states + (hidden_state,)
lowercase__ : Any = stage_module(_snake_case )
if output_hidden_states:
lowercase__ : Optional[int] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case )
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : int = RegNetConfig
lowerCAmelCase : List[Any] = "regnet"
lowerCAmelCase : Optional[int] = "pixel_values"
lowerCAmelCase : Union[str, Any] = True
def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' )
elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight ,1 )
nn.init.constant_(module.bias ,0 )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : str = value
lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Any = config
lowercase__ : List[str] = RegNetEmbeddings(_snake_case )
lowercase__ : Any = RegNetEncoder(_snake_case )
lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
lowercase__ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Union[str, Any] = self.embedder(_snake_case )
lowercase__ : List[Any] = self.encoder(
_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : str = encoder_outputs[0]
lowercase__ : Optional[int] = self.pooler(_snake_case )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : int ,_snake_case : Tuple ) -> Any:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Optional[Any] = config.num_labels
lowercase__ : int = RegNetModel(_snake_case )
# classification head
lowercase__ : str = nn.Sequential(
nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1]
lowercase__ : Union[str, Any] = self.classifier(_snake_case )
lowercase__ : Optional[int] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowercase__ : List[Any] = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowercase__ : Dict = '''single_label_classification'''
else:
lowercase__ : Optional[int] = '''multi_label_classification'''
if self.config.problem_type == "regression":
lowercase__ : Union[str, Any] = MSELoss()
if self.num_labels == 1:
lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() )
else:
lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case )
elif self.config.problem_type == "single_label_classification":
lowercase__ : Tuple = CrossEntropyLoss()
lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowercase__ : Any = BCEWithLogitsLoss()
lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case )
if not return_dict:
lowercase__ : Tuple = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : dict[str, list[str]] ,_snake_case : str ) -> None:
"""simple docstring"""
lowercase__ : Any = graph
# mapping node to its parent in resulting breadth first tree
lowercase__ : dict[str, str | None] = {}
lowercase__ : List[Any] = source_vertex
def UpperCAmelCase ( self : Any ) -> None:
"""simple docstring"""
lowercase__ : List[Any] = {self.source_vertex}
lowercase__ : Tuple = None
lowercase__ : Optional[int] = [self.source_vertex] # first in first out queue
while queue:
lowercase__ : Any = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(_snake_case )
lowercase__ : List[Any] = vertex
queue.append(_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : str ) -> str:
"""simple docstring"""
if target_vertex == self.source_vertex:
return self.source_vertex
lowercase__ : List[Any] = self.parent.get(_snake_case )
if target_vertex_parent is None:
lowercase__ : List[str] = (
f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}"""
)
raise ValueError(_snake_case )
return self.shortest_path(_snake_case ) + f"""->{target_vertex}"""
if __name__ == "__main__":
lowerCAmelCase_ = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 363
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = 1.6021E-19 # units = C
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]:
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif conductivity < 0:
raise ValueError('''Conductivity cannot be negative''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative''' )
elif mobility < 0:
raise ValueError('''mobility cannot be negative''' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase = 10 , __lowerCamelCase = 22 ) -> int:
lowercase__ : Optional[int] = range(1 , __lowerCamelCase )
lowercase__ : Tuple = range(1 , __lowerCamelCase )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(F'''{solution(10, 22) = }''')
| 364
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = ["pixel_values"]
def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case )
lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' )
lowercase__ : Tuple = do_resize
lowercase__ : List[Any] = do_rescale
lowercase__ : Any = do_normalize
lowercase__ : List[str] = do_center_crop
lowercase__ : Optional[Any] = crop_size
lowercase__ : Union[str, Any] = size
lowercase__ : Any = resample
lowercase__ : int = rescale_factor
lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : List[str] = get_size_dict(_snake_case )
if "shortest_edge" in size:
lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
lowercase__ : int = (size['''height'''], size['''width'''])
else:
raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" )
return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : Optional[Any] = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray:
"""simple docstring"""
return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature:
"""simple docstring"""
lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize
lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size
lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case )
lowercase__ : Tuple = resample if resample is not None else self.resample
lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__ : List[str] = image_std if image_std is not None else self.image_std
lowercase__ : Optional[int] = size if size is not None else self.size
lowercase__ : int = get_size_dict(_snake_case )
if not is_batched(_snake_case ):
lowercase__ : Optional[Any] = [images]
if not valid_images(_snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
lowercase__ : str = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images]
if do_center_crop:
lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images]
if do_rescale:
lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images]
if do_normalize:
lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images]
lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images]
lowercase__ : Any = {'''pixel_values''': images}
return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
| 302
| 0
|
"""simple docstring"""
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def __UpperCAmelCase ( __lowerCamelCase ) -> Dict:
lowercase__ : Union[str, Any] = botoa.client('''iam''' )
lowercase__ : List[str] = {
'''Version''': '''2012-10-17''',
'''Statement''': [
{'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=__lowerCamelCase , AssumeRolePolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) )
lowercase__ : List[Any] = {
'''Version''': '''2012-10-17''',
'''Statement''': [
{
'''Effect''': '''Allow''',
'''Action''': [
'''sagemaker:*''',
'''ecr:GetDownloadUrlForLayer''',
'''ecr:BatchGetImage''',
'''ecr:BatchCheckLayerAvailability''',
'''ecr:GetAuthorizationToken''',
'''cloudwatch:PutMetricData''',
'''cloudwatch:GetMetricData''',
'''cloudwatch:GetMetricStatistics''',
'''cloudwatch:ListMetrics''',
'''logs:CreateLogGroup''',
'''logs:CreateLogStream''',
'''logs:DescribeLogStreams''',
'''logs:PutLogEvents''',
'''logs:GetLogEvents''',
'''s3:CreateBucket''',
'''s3:ListBucket''',
'''s3:GetBucketLocation''',
'''s3:GetObject''',
'''s3:PutObject''',
],
'''Resource''': '''*''',
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=__lowerCamelCase , PolicyName=f"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"""role {role_name} already exists. Using existing one""" )
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]:
lowercase__ : Any = botoa.client('''iam''' )
return iam_client.get_role(RoleName=__lowerCamelCase )["Role"]["Arn"]
def __UpperCAmelCase ( ) -> Union[str, Any]:
lowercase__ : Tuple = _ask_options(
'''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , __lowerCamelCase , )
lowercase__ : Any = None
if credentials_configuration == 0:
lowercase__ : Tuple = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' )
lowercase__ : Optional[int] = aws_profile
else:
print(
'''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,'''
'''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' )
lowercase__ : Dict = _ask_field('''AWS Access Key ID: ''' )
lowercase__ : Union[str, Any] = aws_access_key_id
lowercase__ : Any = _ask_field('''AWS Secret Access Key: ''' )
lowercase__ : int = aws_secret_access_key
lowercase__ : int = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' )
lowercase__ : Any = aws_region
lowercase__ : List[str] = _ask_options(
'''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , __lowerCamelCase , )
if role_management == 0:
lowercase__ : Union[str, Any] = _ask_field('''Enter your IAM role name: ''' )
else:
lowercase__ : Union[str, Any] = '''accelerate_sagemaker_execution_role'''
print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" )
_create_iam_role_for_sagemaker(__lowerCamelCase )
lowercase__ : Optional[Any] = _ask_field(
'''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , )
lowercase__ : Optional[int] = None
if is_custom_docker_image:
lowercase__ : Optional[Any] = _ask_field('''Enter your Docker image: ''' , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() )
lowercase__ : str = _ask_field(
'''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , )
lowercase__ : Union[str, Any] = None
if is_sagemaker_inputs_enabled:
lowercase__ : Tuple = _ask_field(
'''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , )
lowercase__ : List[str] = _ask_field(
'''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , )
lowercase__ : Optional[Any] = None
if is_sagemaker_metrics_enabled:
lowercase__ : List[str] = _ask_field(
'''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , )
lowercase__ : Dict = _ask_options(
'''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , )
lowercase__ : Optional[int] = {}
lowercase__ : Tuple = _ask_field(
'''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , )
if use_dynamo:
lowercase__ : List[Any] = '''dynamo_'''
lowercase__ : Optional[Any] = _ask_options(
'''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
lowercase__ : Union[str, Any] = _ask_field(
'''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , )
if use_custom_options:
lowercase__ : Tuple = _ask_options(
'''Which mode do you want to use?''' , __lowerCamelCase , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(__lowerCamelCase )] , default='''default''' , )
lowercase__ : List[str] = _ask_field(
'''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , )
lowercase__ : Dict = _ask_field(
'''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , )
lowercase__ : Tuple = '''Which EC2 instance type you want to use for your training?'''
if distributed_type != SageMakerDistributedType.NO:
lowercase__ : Dict = _ask_options(
__lowerCamelCase , __lowerCamelCase , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__lowerCamelCase )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
lowercase__ : Any = _ask_field(__lowerCamelCase , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , default='''ml.p3.2xlarge''' )
lowercase__ : List[str] = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
lowercase__ : Dict = _ask_field(
'''How many machines do you want use? [1]: ''' , __lowerCamelCase , default=1 , )
lowercase__ : Union[str, Any] = _ask_options(
'''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
'''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' )
return SageMakerConfig(
image_uri=__lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__lowerCamelCase , use_cpu=__lowerCamelCase , dynamo_config=__lowerCamelCase , eca_instance_type=__lowerCamelCase , profile=__lowerCamelCase , region=__lowerCamelCase , iam_role_name=__lowerCamelCase , mixed_precision=__lowerCamelCase , num_machines=__lowerCamelCase , sagemaker_inputs_file=__lowerCamelCase , sagemaker_metrics_file=__lowerCamelCase , )
| 365
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 302
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 366
|
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None:
lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCamelCase , torch.Tensor ):
raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' )
lowercase__ : List[Any] = v.half()
if save_path is None: # overwrite src_path
lowercase__ : Any = src_path
torch.save(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 302
| 0
|
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class __A ( A_ ):
'''simple docstring'''
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = SMALL_MODEL_IDENTIFIER
lowercase__ : Dict = '''pt'''
lowercase__ : Optional[int] = '''tf'''
def UpperCAmelCase ( self : str ,_snake_case : Tuple ) -> Dict:
"""simple docstring"""
lowercase__ : List[Any] = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ : Dict = TFAutoModel.from_pretrained(self.test_model ,from_pt=_snake_case )
model_tf.save_pretrained(_snake_case )
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Optional[int] = '''mock_framework'''
# Framework provided - return whatever the user provides
lowercase__ : Dict = FeaturesManager.determine_framework(self.test_model ,_snake_case )
self.assertEqual(_snake_case ,_snake_case )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_snake_case )
lowercase__ : Optional[Any] = FeaturesManager.determine_framework(_snake_case ,_snake_case )
self.assertEqual(_snake_case ,_snake_case )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_snake_case )
lowercase__ : Any = FeaturesManager.determine_framework(_snake_case ,_snake_case )
self.assertEqual(_snake_case ,_snake_case )
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_snake_case )
lowercase__ : Optional[int] = FeaturesManager.determine_framework(_snake_case )
self.assertEqual(_snake_case ,self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_snake_case )
lowercase__ : List[str] = FeaturesManager.determine_framework(_snake_case )
self.assertEqual(_snake_case ,self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_snake_case ):
lowercase__ : Dict = FeaturesManager.determine_framework(_snake_case )
def UpperCAmelCase ( self : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ : Dict = MagicMock(return_value=_snake_case )
with patch('''transformers.onnx.features.is_tf_available''' ,_snake_case ):
lowercase__ : int = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_snake_case ,self.framework_pt )
# PyTorch not in environment -> use TensorFlow
lowercase__ : Dict = MagicMock(return_value=_snake_case )
with patch('''transformers.onnx.features.is_torch_available''' ,_snake_case ):
lowercase__ : Dict = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_snake_case ,self.framework_tf )
# Both in environment -> use PyTorch
lowercase__ : Optional[Any] = MagicMock(return_value=_snake_case )
lowercase__ : Optional[int] = MagicMock(return_value=_snake_case )
with patch('''transformers.onnx.features.is_tf_available''' ,_snake_case ), patch(
'''transformers.onnx.features.is_torch_available''' ,_snake_case ):
lowercase__ : Any = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_snake_case ,self.framework_pt )
# Both not in environment -> raise error
lowercase__ : List[Any] = MagicMock(return_value=_snake_case )
lowercase__ : str = MagicMock(return_value=_snake_case )
with patch('''transformers.onnx.features.is_tf_available''' ,_snake_case ), patch(
'''transformers.onnx.features.is_torch_available''' ,_snake_case ):
with self.assertRaises(_snake_case ):
lowercase__ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
| 367
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : UNetaDModel
lowerCAmelCase : ScoreSdeVeScheduler
def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_snake_case ,scheduler=_snake_case )
@torch.no_grad()
def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.unet.config.sample_size
lowercase__ : Dict = (batch_size, 3, img_size, img_size)
lowercase__ : Tuple = self.unet
lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma
lowercase__ : Union[str, Any] = sample.to(self.device )
self.scheduler.set_timesteps(_snake_case )
self.scheduler.set_sigmas(_snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample
lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample
# prediction step
lowercase__ : str = model(_snake_case ,_snake_case ).sample
lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean
lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 )
lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
lowercase__ : Any = self.numpy_to_pil(_snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_snake_case )
| 302
| 0
|
"""simple docstring"""
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
lowerCAmelCase_ = parse(importlib.metadata.version('torch'))
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" )
lowercase__ : str = STR_OPERATION_TO_FUNC[operation]
if isinstance(__lowerCamelCase , __lowerCamelCase ):
lowercase__ : Union[str, Any] = parse(importlib.metadata.version(__lowerCamelCase ) )
return operation(__lowerCamelCase , parse(__lowerCamelCase ) )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
return compare_versions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 368
|
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowerCAmelCase_ = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = "maskformer"
lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"}
lowerCAmelCase : Optional[int] = ["resnet", "swin"]
lowerCAmelCase : str = ["detr"]
def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict:
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
lowercase__ : Any = SwinConfig(
image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,)
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[str] = backbone_config.pop('''model_type''' )
lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type]
lowercase__ : str = config_class.from_dict(_snake_case )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
lowercase__ : Union[str, Any] = DetrConfig()
else:
# verify that the decoder is supported
lowercase__ : Tuple = (
decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f"""Transformer Decoder {decoder_type} not supported, please use one of"""
f""" {",".join(self.decoders_supported )}""" )
if isinstance(_snake_case ,_snake_case ):
lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type]
lowercase__ : Optional[Any] = config_class.from_dict(_snake_case )
lowercase__ : List[Any] = backbone_config
lowercase__ : List[Any] = decoder_config
# main feature dimension for the model
lowercase__ : List[str] = fpn_feature_size
lowercase__ : int = mask_feature_size
# initializer
lowercase__ : str = init_std
lowercase__ : str = init_xavier_std
# Hungarian matcher && loss
lowercase__ : Optional[int] = cross_entropy_weight
lowercase__ : List[Any] = dice_weight
lowercase__ : List[str] = mask_weight
lowercase__ : str = use_auxiliary_loss
lowercase__ : Optional[int] = no_object_weight
lowercase__ : Optional[Any] = output_auxiliary_logits
lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads
lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers
super().__init__(**_snake_case )
@classmethod
def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return cls(
backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,)
def UpperCAmelCase ( self : str ) -> Dict[str, any]:
"""simple docstring"""
lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ )
lowercase__ : int = self.backbone_config.to_dict()
lowercase__ : List[Any] = self.decoder_config.to_dict()
lowercase__ : List[str] = self.__class__.model_type
return output
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
lowerCAmelCase_ = TypeVar('T')
class __A ( Generic[T] ):
'''simple docstring'''
def __init__( self : str ,_snake_case : bool = True ) -> None:
"""simple docstring"""
lowercase__ : dict[T, list[T]] = {} # dictionary of lists
lowercase__ : Dict = directed
def UpperCAmelCase ( self : Any ,_snake_case : T ,_snake_case : T ) -> GraphAdjacencyList[T]:
"""simple docstring"""
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_snake_case )
self.adj_list[destination_vertex].append(_snake_case )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_snake_case )
lowercase__ : Dict = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(_snake_case )
lowercase__ : Union[str, Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
lowercase__ : List[Any] = [destination_vertex]
lowercase__ : Optional[int] = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_snake_case )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_snake_case )
lowercase__ : Optional[int] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
lowercase__ : Optional[int] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
lowercase__ : List[str] = [destination_vertex]
lowercase__ : str = []
return self
def __repr__( self : Optional[Any] ) -> str:
"""simple docstring"""
return pformat(self.adj_list )
| 369
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]:
lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowercase__ : Dict = [3, 3, 3, 3]
lowercase__ : str = [5, 5, 5, 5]
elif "fl4" in model_name:
lowercase__ : List[str] = [4, 4, 4, 4]
lowercase__ : Any = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
if "lrf" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
else:
lowercase__ : Optional[Any] = [2, 2, 2, 2]
if "tiny" in model_name:
lowercase__ : Optional[int] = 96
elif "small" in model_name:
lowercase__ : Union[str, Any] = 96
elif "base" in model_name:
lowercase__ : Tuple = 1_28
elif "large" in model_name:
lowercase__ : Any = 1_92
elif "xlarge" in model_name:
lowercase__ : Any = 2_56
elif "huge" in model_name:
lowercase__ : Union[str, Any] = 3_52
# set label information
lowercase__ : List[Any] = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowercase__ : Optional[int] = '''imagenet-22k-id2label.json'''
else:
lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json'''
lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()}
lowercase__ : int = FocalNetConfig(
embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , )
return config
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
if "patch_embed.proj" in name:
lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
lowercase__ : Dict = '''encoder.''' + name
if "encoder.layers" in name:
lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' )
if "downsample.proj" in name:
lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' )
if "blocks" in name:
lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' )
if name == "norm.weight":
lowercase__ : Dict = '''layernorm.weight'''
if name == "norm.bias":
lowercase__ : Dict = '''layernorm.bias'''
if "head" in name:
lowercase__ : Dict = name.replace('''head''' , '''classifier''' )
else:
lowercase__ : List[Any] = '''focalnet.''' + name
return name
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]:
# fmt: off
lowercase__ : Any = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowercase__ : Optional[int] = model_name_to_url[model_name]
print('''Checkpoint URL: ''' , __lowerCamelCase )
lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowercase__ : int = state_dict.pop(__lowerCamelCase )
lowercase__ : Any = val
lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase )
lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase )
model.eval()
# load state dict
model.load_state_dict(__lowerCamelCase )
# verify conversion
lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase__ : int = BitImageProcessor(
do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , )
lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' )
lowercase__ : List[str] = transforms.Compose(
[
transforms.Resize(2_56 ),
transforms.CenterCrop(2_24 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 )
lowercase__ : Optional[Any] = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(f"""{model_name}""" )
processor.push_to_hub(f"""{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='focalnet-tiny',
type=str,
help='Name of the FocalNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub.',
)
lowerCAmelCase_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
"""simple docstring"""
from math import factorial, pi
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 30 ) -> float:
if not isinstance(__lowerCamelCase , (int, float) ):
raise ValueError('''maclaurin_sin() requires either an int or float for theta''' )
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0:
raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' )
lowercase__ : Union[str, Any] = float(__lowerCamelCase )
lowercase__ : Any = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__lowerCamelCase ) )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 30 ) -> float:
if not isinstance(__lowerCamelCase , (int, float) ):
raise ValueError('''maclaurin_cos() requires either an int or float for theta''' )
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0:
raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' )
lowercase__ : int = float(__lowerCamelCase )
lowercase__ : Tuple = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__lowerCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 370
|
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"]
lowerCAmelCase : int = "ChineseCLIPImageProcessor"
lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any:
"""simple docstring"""
lowercase__ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' ,_snake_case ,)
lowercase__ : Tuple = kwargs.pop('''feature_extractor''' )
lowercase__ : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_snake_case ,_snake_case )
lowercase__ : List[Any] = self.image_processor
def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if images is not None:
lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if text is not None and images is not None:
lowercase__ : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case )
def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.tokenizer.model_input_names
lowercase__ : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,)
return self.image_processor_class
| 302
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json',
'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[str] = "mobilenet_v1"
def __init__( self : Tuple ,_snake_case : Dict=3 ,_snake_case : List[str]=224 ,_snake_case : Union[str, Any]=1.0 ,_snake_case : int=8 ,_snake_case : Any="relu6" ,_snake_case : Optional[int]=True ,_snake_case : List[Any]=0.999 ,_snake_case : List[str]=0.02 ,_snake_case : str=0.001 ,**_snake_case : Optional[int] ,) -> int:
"""simple docstring"""
super().__init__(**_snake_case )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
lowercase__ : Tuple = num_channels
lowercase__ : int = image_size
lowercase__ : Optional[int] = depth_multiplier
lowercase__ : List[Any] = min_depth
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = tf_padding
lowercase__ : List[str] = classifier_dropout_prob
lowercase__ : Dict = initializer_range
lowercase__ : Union[str, Any] = layer_norm_eps
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = version.parse("1.11" )
@property
def UpperCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def UpperCAmelCase ( self : int ) -> float:
"""simple docstring"""
return 1e-4
| 371
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
lowerCAmelCase : Dict = "CIDAS/clipseg-rd64-refined"
lowerCAmelCase : Tuple = "image_segmenter"
lowerCAmelCase : Union[str, Any] = CLIPSegForImageSegmentation
lowerCAmelCase : Dict = ["image", "text"]
lowerCAmelCase : Union[str, Any] = ["image"]
def __init__( self : Union[str, Any] ,*_snake_case : Optional[Any] ,**_snake_case : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self ,['''vision'''] )
super().__init__(*_snake_case ,**_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : "Image" ,_snake_case : str ) -> Union[str, Any]:
"""simple docstring"""
return self.pre_processor(text=[label] ,images=[image] ,padding=_snake_case ,return_tensors='''pt''' )
def UpperCAmelCase ( self : Any ,_snake_case : Any ) -> str:
"""simple docstring"""
with torch.no_grad():
lowercase__ : int = self.model(**_snake_case ).logits
return logits
def UpperCAmelCase ( self : int ,_snake_case : Optional[Any] ) -> str:
"""simple docstring"""
lowercase__ : Tuple = outputs.cpu().detach().numpy()
lowercase__ : Optional[int] = 0
lowercase__ : int = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 350
|
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,)
lowerCAmelCase : int = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __UpperCAmelCase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
lowercase__ : str = import_module('''tasks''' )
try:
lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels )
lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) )
lowercase__ : Optional[int] = len(__lowerCamelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , )
lowercase__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ : str = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]:
lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 )
lowercase__ , lowercase__ : Tuple = preds.shape
lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )]
lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )]
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__lowerCamelCase ) -> Dict:
lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
# Data collator
lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ : str = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ : int = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ : Optional[int] = trainer.evaluate()
lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__lowerCamelCase )
# Predict
if training_args.do_predict:
lowercase__ : Optional[int] = TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase )
lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return results
def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
lowerCAmelCase_ = get_tests_dir('fixtures')
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
lowercase__ : Tuple = mock.Mock()
lowercase__ : Union[str, Any] = 500
lowercase__ : Tuple = {}
lowercase__ : List[Any] = HTTPError
lowercase__ : List[Any] = {}
# Download this model to make sure it's in the cache.
lowercase__ : str = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' ,return_value=_snake_case ) as mock_head:
lowercase__ : int = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
lowercase__ : int = ViTImageProcessor.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' )
def UpperCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
with self.assertRaises(_snake_case ):
# config is in subfolder, the following should not work without specifying the subfolder
lowercase__ : List[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' )
lowercase__ : List[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/stable-diffusion-all-variants''' ,subfolder='''feature_extractor''' )
self.assertIsNotNone(_snake_case )
@is_staging_test
class __A ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCAmelCase ( cls : Dict ) -> List[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = TOKEN
HfFolder.save_token(_snake_case )
@classmethod
def UpperCAmelCase ( cls : int ) -> Optional[Any]:
"""simple docstring"""
try:
delete_repo(token=cls._token ,repo_id='''test-image-processor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='''valid_org/test-image-processor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id='''test-dynamic-image-processor''' )
except HTTPError:
pass
def UpperCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
lowercase__ : Optional[int] = ViTImageProcessor.from_pretrained(_snake_case )
image_processor.push_to_hub('''test-image-processor''' ,use_auth_token=self._token )
lowercase__ : List[str] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) )
# Reset repo
delete_repo(token=self._token ,repo_id='''test-image-processor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
_snake_case ,repo_id='''test-image-processor''' ,push_to_hub=_snake_case ,use_auth_token=self._token )
lowercase__ : str = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) )
def UpperCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
lowercase__ : Optional[int] = ViTImageProcessor.from_pretrained(_snake_case )
image_processor.push_to_hub('''valid_org/test-image-processor''' ,use_auth_token=self._token )
lowercase__ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) )
# Reset repo
delete_repo(token=self._token ,repo_id='''valid_org/test-image-processor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
_snake_case ,repo_id='''valid_org/test-image-processor-org''' ,push_to_hub=_snake_case ,use_auth_token=self._token )
lowercase__ : int = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) )
def UpperCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
CustomImageProcessor.register_for_auto_class()
lowercase__ : Optional[Any] = CustomImageProcessor.from_pretrained(_snake_case )
image_processor.push_to_hub('''test-dynamic-image-processor''' ,use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map ,{'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} ,)
lowercase__ : Dict = AutoImageProcessor.from_pretrained(
f"""{USER}/test-dynamic-image-processor""" ,trust_remote_code=_snake_case )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__ ,'''CustomImageProcessor''' )
| 351
|
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : Dict = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : List[str] = 16
elif accelerator.mixed_precision != "no":
lowercase__ : List[Any] = 8
else:
lowercase__ : Optional[int] = None
return tokenizer.pad(
__lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ : Dict = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
lowercase__ : Union[str, Any] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1":
lowercase__ : Any = 2
# Initialize accelerator
lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : List[Any] = config['''lr''']
lowercase__ : Union[str, Any] = int(config['''num_epochs'''] )
lowercase__ : List[str] = int(config['''seed'''] )
lowercase__ : Any = int(config['''batch_size'''] )
lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__lowerCamelCase )
def inner_training_loop(__lowerCamelCase ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : str = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase )
lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate scheduler
lowercase__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ : int = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.loss
accelerator.backward(__lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : Tuple = model(**__lowerCamelCase )
lowercase__ : Dict = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
lowercase__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ : Union[str, Any] = parser.parse_args()
lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
'configuration_upernet': ['UperNetConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'UperNetForSemanticSegmentation',
'UperNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 352
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case )
lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' )
lowercase__ : Tuple = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
lowercase__ : Optional[int] = model.generate(**_snake_case )
lowercase__ : List[Any] = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
lowercase__ : int = model_reloaded.generate(**_snake_case )
self.assertTrue(torch.allclose(_snake_case ,_snake_case ) )
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : Union[str, Any] = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_snake_case ):
model.save_pretrained(_snake_case )
lowercase__ : int = model.reverse_bettertransformer()
model.save_pretrained(_snake_case )
| 302
| 0
|
"""simple docstring"""
import math
def __UpperCAmelCase ( __lowerCamelCase ):
lowercase__ : Tuple = 0
lowercase__ : Tuple = 0
while num > 0:
lowercase__ : int = num % 8
lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"""0o{int(__lowerCamelCase )}"""
def __UpperCAmelCase ( ):
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(2_16 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(5_12 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 353
|
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
return flax_state_dict
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool:
return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : Optional[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
lowercase__ : List[str] = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
# convert pytorch tensor to numpy
lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : List[Any] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
lowercase__ : str = flax_model.params['''params''']
else:
lowercase__ : Optional[int] = flax_model.params
lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(__lowerCamelCase )
lowercase__ : int = {}
lowercase__ : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
lowercase__ : int = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : Tuple = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Any = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import torch
# Load the index
lowercase__ : Dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
lowercase__ : Optional[int] = torch.load(__lowerCamelCase )
lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : Dict = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Optional[Any] = flax_model.params['''params''']
lowercase__ : List[Any] = flatten_dict(__lowerCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
lowercase__ : Union[str, Any] = flax_model.params
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : Tuple = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : List[str] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Tuple = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : List[str] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
continue
if "var" in flax_key[-1]:
lowercase__ : str = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : List[str] = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(__lowerCamelCase , '''rb''' ) as state_f:
try:
lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values()
if any(__lowerCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
lowercase__ : Union[str, Any] = jax.tree_util.tree_map(
lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase )
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : List[str] = pt_model.state_dict()
lowercase__ : int = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
lowercase__ : List[str] = []
lowercase__ : Tuple = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix
lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict:
# conv layer
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict:
# linear layer
lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
lowercase__ : Dict = '''.'''.join(__lowerCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
lowercase__ : Optional[int] = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
lowercase__ : str = key.split('''.''' )
lowercase__ : Optional[Any] = None
if key_components[-3::2] == ["parametrizations", "original0"]:
lowercase__ : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
lowercase__ : str = key_components[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[int] = key_components[:-3] + [name]
lowercase__ : List[str] = '''.'''.join(__lowerCamelCase )
lowercase__ : List[Any] = key
if flax_key in special_pt_names:
lowercase__ : Any = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor
lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase )
# remove from missing keys
missing_keys.remove(__lowerCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCamelCase )
pt_model.load_state_dict(__lowerCamelCase )
# re-transform missing_keys to list
lowercase__ : Optional[Any] = list(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(__lowerCamelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
'''If your task is similar to the task the model of the checkpoint was trained on, '''
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
def count_of_possible_combinations(__lowerCamelCase ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
def count_of_possible_combinations_with_dp_array(
__lowerCamelCase , __lowerCamelCase ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
lowercase__ : Dict = sum(
count_of_possible_combinations_with_dp_array(target - item , __lowerCamelCase )
for item in array )
lowercase__ : Optional[int] = answer
return answer
lowercase__ : str = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
lowercase__ : int = [0] * (target + 1)
lowercase__ : Dict = 1
for i in range(1 , target + 1 ):
for j in range(__lowerCamelCase ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ = 3
lowerCAmelCase_ = 5
lowerCAmelCase_ = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 354
|
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = value_function
lowercase__ : Optional[int] = unet
lowercase__ : Tuple = scheduler
lowercase__ : Dict = env
lowercase__ : int = env.get_dataset()
lowercase__ : Dict = {}
for key in self.data.keys():
try:
lowercase__ : Optional[Any] = self.data[key].mean()
except: # noqa: E722
pass
lowercase__ : List[Any] = {}
for key in self.data.keys():
try:
lowercase__ : str = self.data[key].std()
except: # noqa: E722
pass
lowercase__ : Tuple = env.observation_space.shape[0]
lowercase__ : Optional[int] = env.action_space.shape[0]
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
if type(_snake_case ) is dict:
return {k: self.to_torch(_snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(_snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(_snake_case ,device=self.unet.device )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
for key, val in cond.items():
lowercase__ : List[Any] = val.clone()
return x_in
def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = x.shape[0]
lowercase__ : Dict = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long )
for _ in range(_snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample
lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0]
lowercase__ : List[str] = self.scheduler._get_variance(_snake_case )
lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance )
lowercase__ : Optional[int] = model_std * grad
lowercase__ : Optional[Any] = 0
lowercase__ : str = x.detach()
lowercase__ : Dict = x + scale * grad
lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 )
# TODO: verify deprecation of this kwarg
lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.to_torch(_snake_case )
return x, y
def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]:
"""simple docstring"""
lowercase__ : Any = self.normalize(_snake_case ,'''observations''' )
lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 )
lowercase__ : Dict = {0: self.to_torch(_snake_case )}
lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device )
lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : str = self.to_torch(_snake_case )
# run the diffusion process
lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case )
# sort output trajectories by value
lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze()
lowercase__ : str = x[sorted_idx]
lowercase__ : str = sorted_values[:, :, : self.action_dim]
lowercase__ : Optional[int] = actions.detach().cpu().numpy()
lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' )
# select the action with the highest value
if y is not None:
lowercase__ : str = 0
else:
# if we didn't run value guiding, select a random action
lowercase__ : str = np.random.randint(0 ,_snake_case )
lowercase__ : int = denorm_actions[selected_index, 0]
return denorm_actions
| 302
| 0
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCAmelCase_ = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : int = "albert"
def __init__( self : Optional[int] ,_snake_case : List[str]=30_000 ,_snake_case : Tuple=128 ,_snake_case : str=4_096 ,_snake_case : Optional[Any]=12 ,_snake_case : int=1 ,_snake_case : Tuple=64 ,_snake_case : str=16_384 ,_snake_case : Union[str, Any]=1 ,_snake_case : str="gelu_new" ,_snake_case : Optional[Any]=0 ,_snake_case : str=0 ,_snake_case : Dict=512 ,_snake_case : Optional[int]=2 ,_snake_case : Tuple=0.02 ,_snake_case : List[Any]=1e-12 ,_snake_case : List[str]=0.1 ,_snake_case : Optional[int]="absolute" ,_snake_case : Union[str, Any]=0 ,_snake_case : Any=2 ,_snake_case : str=3 ,**_snake_case : Tuple ,) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case )
lowercase__ : Tuple = vocab_size
lowercase__ : Dict = embedding_size
lowercase__ : str = hidden_size
lowercase__ : Dict = num_hidden_layers
lowercase__ : int = num_hidden_groups
lowercase__ : Tuple = num_attention_heads
lowercase__ : str = inner_group_num
lowercase__ : Union[str, Any] = hidden_act
lowercase__ : List[str] = intermediate_size
lowercase__ : int = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Optional[Any] = max_position_embeddings
lowercase__ : int = type_vocab_size
lowercase__ : int = initializer_range
lowercase__ : List[Any] = layer_norm_eps
lowercase__ : List[str] = classifier_dropout_prob
lowercase__ : Any = position_embedding_type
class __A ( A_ ):
'''simple docstring'''
@property
def UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
lowercase__ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase__ : List[str] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 355
|
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ,id='''sequence''' ),
'''references''': datasets.Value('''string''' ,id='''sequence''' ),
} ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any:
"""simple docstring"""
lowercase__ : Any = compute_mauve(
p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,)
return out
| 302
| 0
|
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ : Union[str, Any] = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,)
lowerCAmelCase : int = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __UpperCAmelCase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
lowercase__ : str = import_module('''tasks''' )
try:
lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels )
lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) )
lowercase__ : Optional[int] = len(__lowerCamelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , )
lowercase__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ : str = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]:
lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 )
lowercase__ : Tuple = preds.shape
lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )]
lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )]
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__lowerCamelCase ) -> Dict:
lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
# Data collator
lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ : str = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ : int = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ : Optional[int] = trainer.evaluate()
lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__lowerCamelCase )
# Predict
if training_args.do_predict:
lowercase__ : Optional[int] = TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase )
lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return results
def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 356
|
"""simple docstring"""
import math
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
lowercase__ : Tuple = 0
lowercase__ : Tuple = 0
while num > 0:
lowercase__ : int = num % 8
lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"""0o{int(__lowerCamelCase )}"""
def __UpperCAmelCase ( ) -> None:
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(2_16 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(5_12 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ,id='''sequence''' ),
'''references''': datasets.Value('''string''' ,id='''sequence''' ),
} ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any:
"""simple docstring"""
lowercase__ : Any = compute_mauve(
p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,)
return out
| 357
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
lowerCAmelCase_ = [
'openmmlab/upernet-convnext-tiny',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
lowerCAmelCase_ = 'UperNetConfig'
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Convad(
in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,)
lowercase__ : Tuple = nn.BatchNormad(_snake_case )
lowercase__ : List[str] = nn.ReLU()
def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.conv(_snake_case )
lowercase__ : List[str] = self.batch_norm(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = [
nn.AdaptiveAvgPoolad(_snake_case ),
UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Any = input
for layer in self.layers:
lowercase__ : int = layer(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = pool_scales
lowercase__ : Dict = align_corners
lowercase__ : Optional[Any] = in_channels
lowercase__ : Optional[Any] = channels
lowercase__ : int = []
for i, pool_scale in enumerate(_snake_case ):
lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case )
self.blocks.append(_snake_case )
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]:
"""simple docstring"""
lowercase__ : int = []
for ppm in self.blocks:
lowercase__ : Any = ppm(_snake_case )
lowercase__ : int = nn.functional.interpolate(
_snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
ppm_outs.append(_snake_case )
return ppm_outs
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ : str = config
lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6)
lowercase__ : Optional[Any] = in_channels
lowercase__ : Any = config.hidden_size
lowercase__ : Optional[Any] = False
lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
# PSP Module
lowercase__ : Dict = UperNetPyramidPoolingModule(
self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,)
lowercase__ : str = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
# FPN Module
lowercase__ : Any = nn.ModuleList()
lowercase__ : Union[str, Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 )
lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 )
self.lateral_convs.append(_snake_case )
self.fpn_convs.append(_snake_case )
lowercase__ : int = UperNetConvModule(
len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
def UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str:
"""simple docstring"""
lowercase__ : Dict = inputs[-1]
lowercase__ : Optional[int] = [x]
psp_outs.extend(self.psp_modules(_snake_case ) )
lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 )
lowercase__ : List[str] = self.bottleneck(_snake_case )
return output
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(_snake_case ) )
# build top-down path
lowercase__ : List[Any] = len(_snake_case )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:]
lowercase__ : int = laterals[i - 1] + nn.functional.interpolate(
laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners )
# build outputs
lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Any = nn.functional.interpolate(
fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
lowercase__ : Any = torch.cat(_snake_case ,dim=1 )
lowercase__ : Any = self.fpn_bottleneck(_snake_case )
lowercase__ : str = self.classifier(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = config
lowercase__ : Dict = config.auxiliary_in_channels
lowercase__ : Optional[int] = config.auxiliary_channels
lowercase__ : List[Any] = config.auxiliary_num_convs
lowercase__ : List[Any] = config.auxiliary_concat_input
lowercase__ : str = in_index
lowercase__ : Any = (kernel_size // 2) * dilation
lowercase__ : Optional[Any] = []
convs.append(
UperNetConvModule(
self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
if self.num_convs == 0:
lowercase__ : List[str] = nn.Identity()
else:
lowercase__ : Dict = nn.Sequential(*_snake_case )
if self.concat_input:
lowercase__ : int = UperNetConvModule(
self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 )
lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
def UpperCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : str = encoder_hidden_states[self.in_index]
lowercase__ : List[str] = self.convs(_snake_case )
if self.concat_input:
lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) )
lowercase__ : Dict = self.classifier(_snake_case )
return output
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Any = UperNetConfig
lowerCAmelCase : str = "pixel_values"
lowerCAmelCase : Dict = True
def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[Any] = value
lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : int = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels )
lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]:
"""simple docstring"""
lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs(
_snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case )
lowercase__ : Optional[int] = outputs.feature_maps
lowercase__ : Tuple = self.decode_head(_snake_case )
lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : List[str] = None
if self.auxiliary_head is not None:
lowercase__ : str = self.auxiliary_head(_snake_case )
lowercase__ : Dict = nn.functional.interpolate(
_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : Any = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
lowercase__ : Tuple = (logits,) + outputs[1:]
else:
lowercase__ : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
| 302
| 0
|
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : Dict = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : List[str] = 16
elif accelerator.mixed_precision != "no":
lowercase__ : List[Any] = 8
else:
lowercase__ : Optional[int] = None
return tokenizer.pad(
__lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ : Dict = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
lowercase__ : Union[str, Any] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1":
lowercase__ : Any = 2
# Initialize accelerator
lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : List[Any] = config['''lr''']
lowercase__ : Union[str, Any] = int(config['''num_epochs'''] )
lowercase__ : List[str] = int(config['''seed'''] )
lowercase__ : Any = int(config['''batch_size'''] )
lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__lowerCamelCase )
def inner_training_loop(__lowerCamelCase ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : str = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase )
lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate scheduler
lowercase__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ : str = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ : int = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.loss
accelerator.backward(__lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : Tuple = model(**__lowerCamelCase )
lowercase__ : Dict = outputs.logits.argmax(dim=-1 )
lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
lowercase__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ : Union[str, Any] = parser.parse_args()
lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 358
|
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCAmelCase_ = _symbol_database.Default()
lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
lowerCAmelCase_ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCAmelCase_ = None
lowerCAmelCase_ = B'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCAmelCase_ = 45
lowerCAmelCase_ = 1_581
lowerCAmelCase_ = 1_517
lowerCAmelCase_ = 1_570
lowerCAmelCase_ = 1_584
lowerCAmelCase_ = 1_793
lowerCAmelCase_ = 1_795
lowerCAmelCase_ = 1_916
lowerCAmelCase_ = 1_864
lowerCAmelCase_ = 1_905
lowerCAmelCase_ = 1_919
lowerCAmelCase_ = 2_429
lowerCAmelCase_ = 2_208
lowerCAmelCase_ = 2_418
lowerCAmelCase_ = 2_323
lowerCAmelCase_ = 2_407
# @@protoc_insertion_point(module_scope)
| 302
| 0
|
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowerCAmelCase_ = logging.get_logger(__name__)
# General docstring
lowerCAmelCase_ = 'ResNetConfig'
# Base docstring
lowerCAmelCase_ = 'microsoft/resnet-50'
lowerCAmelCase_ = [1, 2_048, 7, 7]
# Image classification docstring
lowerCAmelCase_ = 'microsoft/resnet-50'
lowerCAmelCase_ = 'tiger cat'
lowerCAmelCase_ = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : str = "relu" ) -> Any:
"""simple docstring"""
super().__init__()
lowercase__ : str = nn.Convad(
_snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,bias=_snake_case )
lowercase__ : Tuple = nn.BatchNormad(_snake_case )
lowercase__ : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCAmelCase ( self : Tuple ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : List[Any] = self.convolution(_snake_case )
lowercase__ : Union[str, Any] = self.normalization(_snake_case )
lowercase__ : int = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : ResNetConfig ) -> int:
"""simple docstring"""
super().__init__()
lowercase__ : Dict = ResNetConvLayer(
config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act )
lowercase__ : int = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 )
lowercase__ : Union[str, Any] = config.num_channels
def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : str = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
lowercase__ : Optional[Any] = self.embedder(_snake_case )
lowercase__ : int = self.pooler(_snake_case )
return embedding
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case )
lowercase__ : Dict = nn.BatchNormad(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : Any = self.convolution(_snake_case )
lowercase__ : Optional[Any] = self.normalization(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ,_snake_case : str = "relu" ) -> Any:
"""simple docstring"""
super().__init__()
lowercase__ : str = in_channels != out_channels or stride != 1
lowercase__ : Optional[int] = (
ResNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : Dict = nn.Sequential(
ResNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ) ,ResNetConvLayer(_snake_case ,_snake_case ,activation=_snake_case ) ,)
lowercase__ : List[str] = ACTaFN[activation]
def UpperCAmelCase ( self : List[str] ,_snake_case : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[str] = hidden_state
lowercase__ : List[str] = self.layer(_snake_case )
lowercase__ : Union[str, Any] = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : Dict = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ,_snake_case : str = "relu" ,_snake_case : int = 4 ) -> Tuple:
"""simple docstring"""
super().__init__()
lowercase__ : int = in_channels != out_channels or stride != 1
lowercase__ : List[Any] = out_channels // reduction
lowercase__ : Optional[int] = (
ResNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : Union[str, Any] = nn.Sequential(
ResNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ) ,ResNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ) ,ResNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : str = ACTaFN[activation]
def UpperCAmelCase ( self : Tuple ,_snake_case : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = hidden_state
lowercase__ : List[Any] = self.layer(_snake_case )
lowercase__ : Tuple = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : List[Any] = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : str ,_snake_case : ResNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Dict = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
lowercase__ : int = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(_snake_case ,_snake_case ,stride=_snake_case ,activation=config.hidden_act ) ,*[layer(_snake_case ,_snake_case ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : Optional[int] = input
for layer in self.layers:
lowercase__ : str = layer(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : ResNetConfig ) -> Tuple:
"""simple docstring"""
super().__init__()
lowercase__ : int = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
_snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) )
lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ):
self.stages.append(ResNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) )
def UpperCAmelCase ( self : List[Any] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
lowercase__ : List[str] = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowercase__ : Optional[Any] = hidden_states + (hidden_state,)
lowercase__ : List[Any] = stage_module(_snake_case )
if output_hidden_states:
lowercase__ : Optional[Any] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=_snake_case ,hidden_states=_snake_case ,)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = ResNetConfig
lowerCAmelCase : Union[str, Any] = "resnet"
lowerCAmelCase : str = "pixel_values"
lowerCAmelCase : List[Any] = True
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ) -> Tuple:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' )
elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight ,1 )
nn.init.constant_(module.bias ,0 )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : List[Any]=False ) -> str:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : Tuple = value
lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare ResNet model outputting raw features without any specific head on top." ,A_ ,)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : Dict ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Dict = config
lowercase__ : List[str] = ResNetEmbeddings(_snake_case )
lowercase__ : str = ResNetEncoder(_snake_case )
lowercase__ : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCAmelCase ( self : Tuple ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
lowercase__ : Optional[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : int = self.embedder(_snake_case )
lowercase__ : int = self.encoder(
_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : Optional[int] = encoder_outputs[0]
lowercase__ : List[Any] = self.pooler(_snake_case )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,)
@add_start_docstrings(
"\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : int ) -> Dict:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : int = config.num_labels
lowercase__ : List[Any] = ResNetModel(_snake_case )
# classification head
lowercase__ : Optional[Any] = nn.Sequential(
nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCAmelCase ( self : str ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Any = self.resnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : List[Any] = outputs.pooler_output if return_dict else outputs[1]
lowercase__ : str = self.classifier(_snake_case )
lowercase__ : Dict = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowercase__ : Optional[int] = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowercase__ : Optional[Any] = '''single_label_classification'''
else:
lowercase__ : List[str] = '''multi_label_classification'''
if self.config.problem_type == "regression":
lowercase__ : str = MSELoss()
if self.num_labels == 1:
lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() )
else:
lowercase__ : str = loss_fct(_snake_case ,_snake_case )
elif self.config.problem_type == "single_label_classification":
lowercase__ : Optional[int] = CrossEntropyLoss()
lowercase__ : Optional[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowercase__ : Any = BCEWithLogitsLoss()
lowercase__ : Any = loss_fct(_snake_case ,_snake_case )
if not return_dict:
lowercase__ : List[str] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
@add_start_docstrings(
"\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,A_ ,)
class __A ( A_ ,A_ ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : Tuple ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
super()._init_backbone(_snake_case )
lowercase__ : List[str] = [config.embedding_size] + config.hidden_sizes
lowercase__ : List[Any] = ResNetEmbeddings(_snake_case )
lowercase__ : List[str] = ResNetEncoder(_snake_case )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase ( self : str ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BackboneOutput:
"""simple docstring"""
lowercase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Dict = self.embedder(_snake_case )
lowercase__ : Union[str, Any] = self.encoder(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : int = outputs.hidden_states
lowercase__ : Tuple = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
lowercase__ : List[str] = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=_snake_case ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=_snake_case ,)
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __A ( unittest.TestCase ):
'''simple docstring'''
@property
def UpperCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ : Tuple = UNetaDModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') ,up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') ,)
return model
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
lowercase__ : Dict = self.dummy_uncond_unet
lowercase__ : Any = ScoreSdeVeScheduler()
lowercase__ : List[str] = ScoreSdeVePipeline(unet=_snake_case ,scheduler=_snake_case )
sde_ve.to(_snake_case )
sde_ve.set_progress_bar_config(disable=_snake_case )
lowercase__ : List[str] = torch.manual_seed(0 )
lowercase__ : Optional[int] = sde_ve(num_inference_steps=2 ,output_type='''numpy''' ,generator=_snake_case ).images
lowercase__ : Optional[Any] = torch.manual_seed(0 )
lowercase__ : str = sde_ve(num_inference_steps=2 ,output_type='''numpy''' ,generator=_snake_case ,return_dict=_snake_case )[
0
]
lowercase__ : Tuple = image[0, -3:, -3:, -1]
lowercase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowercase__ : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
lowercase__ : List[str] = '''google/ncsnpp-church-256'''
lowercase__ : List[str] = UNetaDModel.from_pretrained(_snake_case )
lowercase__ : Optional[Any] = ScoreSdeVeScheduler.from_pretrained(_snake_case )
lowercase__ : List[Any] = ScoreSdeVePipeline(unet=_snake_case ,scheduler=_snake_case )
sde_ve.to(_snake_case )
sde_ve.set_progress_bar_config(disable=_snake_case )
lowercase__ : List[str] = torch.manual_seed(0 )
lowercase__ : Any = sde_ve(num_inference_steps=10 ,output_type='''numpy''' ,generator=_snake_case ).images
lowercase__ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowercase__ : Tuple = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 360
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = '''The dog is cute and lives in the garden house'''
lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] )
lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
lowercase__ : Tuple = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state''']
self.assertEqual(output.shape ,_snake_case )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
lowercase__ : Any = len(__lowerCamelCase ), len(grid[0] )
if (
min(__lowerCamelCase , __lowerCamelCase ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
lowercase__ : int = 0
count += depth_first_search(__lowerCamelCase , row + 1 , __lowerCamelCase , __lowerCamelCase )
count += depth_first_search(__lowerCamelCase , row - 1 , __lowerCamelCase , __lowerCamelCase )
count += depth_first_search(__lowerCamelCase , __lowerCamelCase , col + 1 , __lowerCamelCase )
count += depth_first_search(__lowerCamelCase , __lowerCamelCase , col - 1 , __lowerCamelCase )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = '#'
class __A :
'''simple docstring'''
def __init__( self : str ) -> None:
"""simple docstring"""
lowercase__ : dict = {}
def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None:
"""simple docstring"""
lowercase__ : str = self._trie
for char in text:
if char not in trie:
lowercase__ : Union[str, Any] = {}
lowercase__ : Optional[Any] = trie[char]
lowercase__ : Dict = True
def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list:
"""simple docstring"""
lowercase__ : Optional[Any] = self._trie
for char in prefix:
if char in trie:
lowercase__ : Union[str, Any] = trie[char]
else:
return []
return self._elements(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple:
"""simple docstring"""
lowercase__ : str = []
for c, v in d.items():
lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )]
result.extend(_snake_case )
return tuple(_snake_case )
lowerCAmelCase_ = Trie()
lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def __UpperCAmelCase ( __lowerCamelCase ) -> tuple:
lowercase__ : List[Any] = trie.find_word(__lowerCamelCase )
return tuple(string + word for word in suffixes )
def __UpperCAmelCase ( ) -> None:
print(autocomplete_using_trie('''de''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[int] ,*_snake_case : Union[str, Any] ,**_snake_case : Dict ) -> None:
"""simple docstring"""
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' ,_snake_case ,)
super().__init__(*_snake_case ,**_snake_case )
| 362
|
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase_ = logging.get_logger(__name__)
# General docstring
lowerCAmelCase_ = 'RegNetConfig'
# Base docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = [1, 1_088, 7, 7]
# Image classification docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = 'tabby, tabby cat'
lowerCAmelCase_ = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = nn.Convad(
_snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,)
lowercase__ : List[Any] = nn.BatchNormad(_snake_case )
lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.convolution(_snake_case )
lowercase__ : Tuple = self.normalization(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = RegNetConvLayer(
config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act )
lowercase__ : str = config.num_channels
def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str:
"""simple docstring"""
lowercase__ : Union[str, Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
lowercase__ : Optional[int] = self.embedder(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any:
"""simple docstring"""
super().__init__()
lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case )
lowercase__ : Any = nn.BatchNormad(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.convolution(_snake_case )
lowercase__ : Optional[int] = self.normalization(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) )
lowercase__ : Dict = nn.Sequential(
nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,)
def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.pooler(_snake_case )
lowercase__ : Union[str, Any] = self.attention(_snake_case )
lowercase__ : List[str] = hidden_state * attention
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = in_channels != out_channels or stride != 1
lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width )
lowercase__ : str = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : Optional[int] = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : str = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ : Tuple = hidden_state
lowercase__ : Union[str, Any] = self.layer(_snake_case )
lowercase__ : List[Any] = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : Optional[int] = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = in_channels != out_channels or stride != 1
lowercase__ : List[str] = max(1 ,out_channels // config.groups_width )
lowercase__ : Tuple = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : str = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
lowercase__ : str = hidden_state
lowercase__ : Optional[Any] = self.layer(_snake_case )
lowercase__ : int = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : str = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer
lowercase__ : Optional[Any] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,)
def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.layers(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : str = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) )
lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ):
self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowercase__ : int = hidden_states + (hidden_state,)
lowercase__ : Any = stage_module(_snake_case )
if output_hidden_states:
lowercase__ : Optional[int] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case )
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : int = RegNetConfig
lowerCAmelCase : List[Any] = "regnet"
lowerCAmelCase : Optional[int] = "pixel_values"
lowerCAmelCase : Union[str, Any] = True
def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' )
elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight ,1 )
nn.init.constant_(module.bias ,0 )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : str = value
lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Any = config
lowercase__ : List[str] = RegNetEmbeddings(_snake_case )
lowercase__ : Any = RegNetEncoder(_snake_case )
lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
lowercase__ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Union[str, Any] = self.embedder(_snake_case )
lowercase__ : List[Any] = self.encoder(
_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : str = encoder_outputs[0]
lowercase__ : Optional[int] = self.pooler(_snake_case )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : int ,_snake_case : Tuple ) -> Any:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Optional[Any] = config.num_labels
lowercase__ : int = RegNetModel(_snake_case )
# classification head
lowercase__ : str = nn.Sequential(
nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1]
lowercase__ : Union[str, Any] = self.classifier(_snake_case )
lowercase__ : Optional[int] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowercase__ : List[Any] = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowercase__ : Dict = '''single_label_classification'''
else:
lowercase__ : Optional[int] = '''multi_label_classification'''
if self.config.problem_type == "regression":
lowercase__ : Union[str, Any] = MSELoss()
if self.num_labels == 1:
lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() )
else:
lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case )
elif self.config.problem_type == "single_label_classification":
lowercase__ : Tuple = CrossEntropyLoss()
lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowercase__ : Any = BCEWithLogitsLoss()
lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case )
if not return_dict:
lowercase__ : Tuple = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
| 302
| 0
|
"""simple docstring"""
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]:
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def __UpperCAmelCase ( ) -> Tuple:
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def __UpperCAmelCase ( ) -> Dict:
lowercase__ : int = '''mock-s3-bucket'''
lowercase__ : List[str] = f"""s3://{mock_bucket}"""
lowercase__ : int = extract_path_from_uri(__lowerCamelCase )
assert dataset_path.startswith('''s3://''' ) is False
lowercase__ : List[Any] = '''./local/path'''
lowercase__ : Tuple = extract_path_from_uri(__lowerCamelCase )
assert dataset_path == new_dataset_path
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]:
lowercase__ : Any = is_remote_filesystem(__lowerCamelCase )
assert is_remote is True
lowercase__ : Any = fsspec.filesystem('''file''' )
lowercase__ : Dict = is_remote_filesystem(__lowerCamelCase )
assert is_remote is False
@pytest.mark.parametrize('''compression_fs_class''' , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
lowercase__ : List[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file}
lowercase__ : Union[str, Any] = input_paths[compression_fs_class.protocol]
if input_path is None:
lowercase__ : Tuple = f"""for '{compression_fs_class.protocol}' compression protocol, """
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__lowerCamelCase )
lowercase__ : str = fsspec.filesystem(compression_fs_class.protocol , fo=__lowerCamelCase )
assert isinstance(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Any = os.path.basename(__lowerCamelCase )
lowercase__ : Any = expected_filename[: expected_filename.rindex('''.''' )]
assert fs.glob('''*''' ) == [expected_filename]
with fs.open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f, open(__lowerCamelCase , encoding='''utf-8''' ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
lowercase__ : str = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path}
lowercase__ : List[str] = compressed_file_paths[protocol]
lowercase__ : Optional[int] = '''dataset.jsonl'''
lowercase__ : int = f"""{protocol}://{member_file_path}::{compressed_file_path}"""
lowercase__ : str = fsspec.get_fs_token_paths(__lowerCamelCase )
assert fs.isfile(__lowerCamelCase )
assert not fs.isfile('''non_existing_''' + member_file_path )
@pytest.mark.integration
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : Dict = hf_api.dataset_info(__lowerCamelCase , token=__lowerCamelCase )
lowercase__ : List[str] = HfFileSystem(repo_info=__lowerCamelCase , token=__lowerCamelCase )
assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"]
assert hffs.isdir('''data''' )
assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' )
with open(__lowerCamelCase ) as f:
assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read()
def __UpperCAmelCase ( ) -> Any:
lowercase__ : List[str] = '''bz2'''
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(__lowerCamelCase , __lowerCamelCase , clobber=__lowerCamelCase )
with pytest.warns(__lowerCamelCase ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(__lowerCamelCase ) == 1
assert (
str(warning_info[0].message )
== f"""A filesystem protocol was already set for {protocol} and will be overwritten."""
)
| 363
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = 1.6021E-19 # units = C
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]:
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif conductivity < 0:
raise ValueError('''Conductivity cannot be negative''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative''' )
elif mobility < 0:
raise ValueError('''mobility cannot be negative''' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 302
| 0
|
"""simple docstring"""
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
lowercase__ : Optional[int] = tmp_path / '''cache'''
lowercase__ : List[Any] = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ : Tuple = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
lowercase__ : str = tmp_path / '''cache'''
lowercase__ : Tuple = {'''text''': '''string'''}
lowercase__ : Optional[int] = features.copy() if features else default_expected_features
lowercase__ : List[Any] = (
Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ : int = TextDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : Any = tmp_path / '''cache'''
lowercase__ : int = {'''text''': '''string'''}
lowercase__ : Tuple = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , split=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
if issubclass(__lowerCamelCase , __lowerCamelCase ):
lowercase__ : Dict = text_path
elif issubclass(__lowerCamelCase , __lowerCamelCase ):
lowercase__ : Tuple = [text_path]
lowercase__ : List[str] = tmp_path / '''cache'''
lowercase__ : List[str] = {'''text''': '''string'''}
lowercase__ : List[Any] = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=("train",) ) -> List[str]:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
for split in splits:
lowercase__ : Dict = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
lowercase__ : List[Any] = tmp_path / '''cache'''
lowercase__ : List[str] = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ : Optional[int] = TextDatasetReader({'''train''': text_path} , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read()
_check_text_datasetdict(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
lowercase__ : List[str] = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
lowercase__ : str = {'''text''': '''string'''}
lowercase__ : Dict = features.copy() if features else default_expected_features
lowercase__ : Any = (
Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ : Optional[Any] = TextDatasetReader({'''train''': text_path} , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_datasetdict(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
if split:
lowercase__ : Any = {split: text_path}
else:
lowercase__ : Dict = '''train'''
lowercase__ : Optional[int] = {'''train''': text_path, '''test''': text_path}
lowercase__ : Any = tmp_path / '''cache'''
lowercase__ : Union[str, Any] = {'''text''': '''string'''}
lowercase__ : Optional[Any] = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_datasetdict(__lowerCamelCase , __lowerCamelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 364
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = ["pixel_values"]
def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case )
lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' )
lowercase__ : Tuple = do_resize
lowercase__ : List[Any] = do_rescale
lowercase__ : Any = do_normalize
lowercase__ : List[str] = do_center_crop
lowercase__ : Optional[Any] = crop_size
lowercase__ : Union[str, Any] = size
lowercase__ : Any = resample
lowercase__ : int = rescale_factor
lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : List[str] = get_size_dict(_snake_case )
if "shortest_edge" in size:
lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
lowercase__ : int = (size['''height'''], size['''width'''])
else:
raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" )
return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : Optional[Any] = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray:
"""simple docstring"""
return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature:
"""simple docstring"""
lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize
lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size
lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case )
lowercase__ : Tuple = resample if resample is not None else self.resample
lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__ : List[str] = image_std if image_std is not None else self.image_std
lowercase__ : Optional[int] = size if size is not None else self.size
lowercase__ : int = get_size_dict(_snake_case )
if not is_batched(_snake_case ):
lowercase__ : Optional[Any] = [images]
if not valid_images(_snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
lowercase__ : str = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images]
if do_center_crop:
lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images]
if do_rescale:
lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images]
if do_normalize:
lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images]
lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images]
lowercase__ : Any = {'''pixel_values''': images}
return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
| 302
| 0
|
"""simple docstring"""
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def __UpperCAmelCase ( ) -> List[str]:
lowercase__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('''--model_ckpt''' , type=__lowerCamelCase , default='''microsoft/unixcoder-base-nine''' )
parser.add_argument('''--num_epochs''' , type=__lowerCamelCase , default=5 )
parser.add_argument('''--batch_size''' , type=__lowerCamelCase , default=6 )
parser.add_argument('''--gradient_accumulation_steps''' , type=__lowerCamelCase , default=1 )
parser.add_argument('''--freeze''' , type=__lowerCamelCase , default=__lowerCamelCase )
parser.add_argument('''--learning_rate''' , type=__lowerCamelCase , default=5E-4 )
parser.add_argument('''--seed''' , type=__lowerCamelCase , default=0 )
parser.add_argument('''--lr_scheduler_type''' , type=__lowerCamelCase , default='''cosine''' )
parser.add_argument('''--num_warmup_steps''' , type=__lowerCamelCase , default=10 )
parser.add_argument('''--weight_decay''' , type=__lowerCamelCase , default=0.0_1 )
parser.add_argument('''--output_dir''' , type=__lowerCamelCase , default='''./results''' )
return parser.parse_args()
lowerCAmelCase_ = load('accuracy')
def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]:
lowercase__ : Tuple = eval_pred
lowercase__ : int = np.argmax(__lowerCamelCase , axis=1 )
return metric.compute(predictions=__lowerCamelCase , references=__lowerCamelCase )
class __A ( A_ ):
'''simple docstring'''
def __init__( self : List[Any] ,_snake_case : Dict ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : List[str] = trainer
def UpperCAmelCase ( self : Dict ,_snake_case : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,**_snake_case : List[str] ) -> List[str]:
"""simple docstring"""
if control.should_evaluate:
lowercase__ : str = deepcopy(_snake_case )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset ,metric_key_prefix='''train''' )
return control_copy
def __UpperCAmelCase ( ) -> int:
lowercase__ : str = get_args()
set_seed(args.seed )
lowercase__ : Dict = load_dataset('''codeparrot/codecomplex''' , split='''train''' )
lowercase__ : Optional[int] = dataset.train_test_split(test_size=0.2 )
lowercase__ : Union[str, Any] = train_test['''test'''].train_test_split(test_size=0.5 )
lowercase__ : int = DatasetDict(
{
'''train''': train_test['''train'''],
'''test''': test_validation['''train'''],
'''valid''': test_validation['''test'''],
} )
print('''Loading tokenizer and model''' )
lowercase__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt )
lowercase__ : Dict = tokenizer.eos_token
lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
lowercase__ : Tuple = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
lowercase__ : int = False
lowercase__ : Optional[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) )
def tokenize(__lowerCamelCase ):
lowercase__ : Tuple = tokenizer(example['''src'''] , truncation=__lowerCamelCase , max_length=10_24 )
lowercase__ : Tuple = labels.straint(example['''complexity'''] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
lowercase__ : List[Any] = train_test_validation.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=train_test_validation['''train'''].column_names , )
lowercase__ : List[str] = DataCollatorWithPadding(tokenizer=__lowerCamelCase )
lowercase__ : Optional[Any] = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , )
lowercase__ : Any = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , compute_metrics=__lowerCamelCase , )
print('''Training...''' )
trainer.add_callback(CustomCallback(__lowerCamelCase ) )
trainer.train()
if __name__ == "__main__":
main()
| 365
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 302
| 0
|
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
lowerCAmelCase_ = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
lowerCAmelCase_ = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
lowerCAmelCase_ = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ,id='''sequence''' ),
'''references''': datasets.Value('''string''' ,id='''sequence''' ),
} ) ,codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] ,reference_urls=[
'''https://en.wikipedia.org/wiki/ROUGE_(metric)''',
'''https://github.com/google-research/google-research/tree/master/rouge''',
] ,)
def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : int=None ,_snake_case : Optional[Any]=True ,_snake_case : Tuple=False ) -> List[str]:
"""simple docstring"""
if rouge_types is None:
lowercase__ : Tuple = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum''']
lowercase__ : str = rouge_scorer.RougeScorer(rouge_types=_snake_case ,use_stemmer=_snake_case )
if use_aggregator:
lowercase__ : Optional[int] = scoring.BootstrapAggregator()
else:
lowercase__ : Any = []
for ref, pred in zip(_snake_case ,_snake_case ):
lowercase__ : str = scorer.score(_snake_case ,_snake_case )
if use_aggregator:
aggregator.add_scores(_snake_case )
else:
scores.append(_snake_case )
if use_aggregator:
lowercase__ : Optional[int] = aggregator.aggregate()
else:
lowercase__ : Dict = {}
for key in scores[0]:
lowercase__ : Optional[int] = [score[key] for score in scores]
return result
| 366
|
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None:
lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCamelCase , torch.Tensor ):
raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' )
lowercase__ : List[Any] = v.half()
if save_path is None: # overwrite src_path
lowercase__ : Any = src_path
torch.save(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 302
| 0
|
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
lowerCAmelCase_ = 'scheduler_config.json'
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[str] = 1
lowerCAmelCase : int = 2
lowerCAmelCase : Dict = 3
lowerCAmelCase : int = 4
lowerCAmelCase : Tuple = 5
@dataclass
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : jnp.ndarray
class __A :
'''simple docstring'''
lowerCAmelCase : Optional[Any] = SCHEDULER_CONFIG_NAME
lowerCAmelCase : Optional[int] = ["dtype"]
lowerCAmelCase : Tuple = []
lowerCAmelCase : str = True
@classmethod
def UpperCAmelCase ( cls : List[str] ,_snake_case : Dict[str, Any] = None ,_snake_case : Optional[str] = None ,_snake_case : List[str]=False ,**_snake_case : Union[str, Any] ,) -> Dict:
"""simple docstring"""
lowercase__ : int = cls.load_config(
pretrained_model_name_or_path=_snake_case ,subfolder=_snake_case ,return_unused_kwargs=_snake_case ,**_snake_case ,)
lowercase__ : Optional[Any] = cls.from_config(_snake_case ,return_unused_kwargs=_snake_case ,**_snake_case )
if hasattr(_snake_case ,'''create_state''' ) and getattr(_snake_case ,'''has_state''' ,_snake_case ):
lowercase__ : Any = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, os.PathLike] ,_snake_case : bool = False ,**_snake_case : Tuple ) -> int:
"""simple docstring"""
self.save_config(save_directory=_snake_case ,push_to_hub=_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return self._get_compatibles()
@classmethod
def UpperCAmelCase ( cls : Union[str, Any] ) -> Dict:
"""simple docstring"""
lowercase__ : str = list(set([cls.__name__] + cls._compatibles ) )
lowercase__ : int = importlib.import_module(__name__.split('''.''' )[0] )
lowercase__ : Optional[int] = [
getattr(_snake_case ,_snake_case ) for c in compatible_classes_str if hasattr(_snake_case ,_snake_case )
]
return compatible_classes
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> jnp.ndarray:
assert len(__lowerCamelCase ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ) -> jnp.ndarray:
def alpha_bar(__lowerCamelCase ):
return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
lowercase__ : Dict = []
for i in range(__lowerCamelCase ):
lowercase__ : Union[str, Any] = i / num_diffusion_timesteps
lowercase__ : int = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) )
return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase )
@flax.struct.dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : jnp.ndarray
lowerCAmelCase : jnp.ndarray
lowerCAmelCase : jnp.ndarray
@classmethod
def UpperCAmelCase ( cls : int ,_snake_case : Union[str, Any] ) -> int:
"""simple docstring"""
lowercase__ : Union[str, Any] = scheduler.config
if config.trained_betas is not None:
lowercase__ : Optional[Any] = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
lowercase__ : List[str] = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
lowercase__ : List[Any] = (
jnp.linspace(
config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
lowercase__ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype )
else:
raise NotImplementedError(
f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" )
lowercase__ : Union[str, Any] = 1.0 - betas
lowercase__ : Tuple = jnp.cumprod(_snake_case ,axis=0 )
return cls(
alphas=_snake_case ,betas=_snake_case ,alphas_cumprod=_snake_case ,)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
lowercase__ : Union[str, Any] = state.alphas_cumprod
lowercase__ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5
lowercase__ : int = sqrt_alpha_prod.flatten()
lowercase__ : Any = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape )
lowercase__ : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5
lowercase__ : Tuple = sqrt_one_minus_alpha_prod.flatten()
lowercase__ : Any = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
lowercase__ : Optional[Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowercase__ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
lowercase__ : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 367
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : UNetaDModel
lowerCAmelCase : ScoreSdeVeScheduler
def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_snake_case ,scheduler=_snake_case )
@torch.no_grad()
def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.unet.config.sample_size
lowercase__ : Dict = (batch_size, 3, img_size, img_size)
lowercase__ : Tuple = self.unet
lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma
lowercase__ : Union[str, Any] = sample.to(self.device )
self.scheduler.set_timesteps(_snake_case )
self.scheduler.set_sigmas(_snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample
lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample
# prediction step
lowercase__ : str = model(_snake_case ,_snake_case ).sample
lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean
lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 )
lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
lowercase__ : Any = self.numpy_to_pil(_snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_snake_case )
| 302
| 0
|
"""simple docstring"""
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __UpperCAmelCase ( *__lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase=True , __lowerCamelCase=2 ) -> Optional[Any]:
from .. import __version__
lowercase__ : int = take_from
lowercase__ : Optional[int] = ()
if not isinstance(args[0] , __lowerCamelCase ):
lowercase__ : Optional[int] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__lowerCamelCase ).base_version ) >= version.parse(__lowerCamelCase ):
raise ValueError(
f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
f""" version {__version__} is >= {version_name}""" )
lowercase__ : Dict = None
if isinstance(__lowerCamelCase , __lowerCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__lowerCamelCase ),)
lowercase__ : Optional[int] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(__lowerCamelCase , __lowerCamelCase ):
values += (getattr(__lowerCamelCase , __lowerCamelCase ),)
lowercase__ : List[str] = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
lowercase__ : List[str] = f"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
lowercase__ : Tuple = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message , __lowerCamelCase , stacklevel=__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) > 0:
lowercase__ : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1]
lowercase__ : int = call_frame.filename
lowercase__ : Optional[int] = call_frame.lineno
lowercase__ : Tuple = call_frame.function
lowercase__ : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(__lowerCamelCase ) == 0:
return
elif len(__lowerCamelCase ) == 1:
return values[0]
return values
| 368
|
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowerCAmelCase_ = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = "maskformer"
lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"}
lowerCAmelCase : Optional[int] = ["resnet", "swin"]
lowerCAmelCase : str = ["detr"]
def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict:
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
lowercase__ : Any = SwinConfig(
image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,)
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[str] = backbone_config.pop('''model_type''' )
lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type]
lowercase__ : str = config_class.from_dict(_snake_case )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
lowercase__ : Union[str, Any] = DetrConfig()
else:
# verify that the decoder is supported
lowercase__ : Tuple = (
decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f"""Transformer Decoder {decoder_type} not supported, please use one of"""
f""" {",".join(self.decoders_supported )}""" )
if isinstance(_snake_case ,_snake_case ):
lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type]
lowercase__ : Optional[Any] = config_class.from_dict(_snake_case )
lowercase__ : List[Any] = backbone_config
lowercase__ : List[Any] = decoder_config
# main feature dimension for the model
lowercase__ : List[str] = fpn_feature_size
lowercase__ : int = mask_feature_size
# initializer
lowercase__ : str = init_std
lowercase__ : str = init_xavier_std
# Hungarian matcher && loss
lowercase__ : Optional[int] = cross_entropy_weight
lowercase__ : List[Any] = dice_weight
lowercase__ : List[str] = mask_weight
lowercase__ : str = use_auxiliary_loss
lowercase__ : Optional[int] = no_object_weight
lowercase__ : Optional[Any] = output_auxiliary_logits
lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads
lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers
super().__init__(**_snake_case )
@classmethod
def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return cls(
backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,)
def UpperCAmelCase ( self : str ) -> Dict[str, any]:
"""simple docstring"""
lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ )
lowercase__ : int = self.backbone_config.to_dict()
lowercase__ : List[Any] = self.decoder_config.to_dict()
lowercase__ : List[str] = self.__class__.model_type
return output
| 302
| 0
|
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__)
@dataclass
class __A ( datasets.BuilderConfig ):
'''simple docstring'''
lowerCAmelCase : int = 1_0_0_0_0
lowerCAmelCase : Optional[List[str]] = None
lowerCAmelCase : Optional[datasets.Features] = None
class __A ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
lowerCAmelCase : Dict = ParquetConfig
def UpperCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
lowercase__ : Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_snake_case ,(str, list, tuple) ):
lowercase__ : Union[str, Any] = data_files
if isinstance(_snake_case ,_snake_case ):
lowercase__ : str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowercase__ : Optional[Any] = [dl_manager.iter_files(_snake_case ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'''files''': files} )]
lowercase__ : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[str] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowercase__ : List[Any] = [dl_manager.iter_files(_snake_case ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(_snake_case ):
with open(_snake_case ,'''rb''' ) as f:
lowercase__ : Any = datasets.Features.from_arrow_schema(pq.read_schema(_snake_case ) )
break
splits.append(datasets.SplitGenerator(name=_snake_case ,gen_kwargs={'''files''': files} ) )
return splits
def UpperCAmelCase ( self : int ,_snake_case : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowercase__ : Any = table_cast(_snake_case ,self.info.features.arrow_schema )
return pa_table
def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[str] ) -> int:
"""simple docstring"""
lowercase__ : Optional[Any] = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(_snake_case ) ):
with open(_snake_case ,'''rb''' ) as f:
lowercase__ : Union[str, Any] = pq.ParquetFile(_snake_case )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size ,columns=self.config.columns ) ):
lowercase__ : Any = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"""{file_idx}_{batch_idx}""", self._cast_table(_snake_case )
except ValueError as e:
logger.error(f"""Failed to read file '{file}' with error {type(_snake_case )}: {e}""" )
raise
| 369
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]:
lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowercase__ : Dict = [3, 3, 3, 3]
lowercase__ : str = [5, 5, 5, 5]
elif "fl4" in model_name:
lowercase__ : List[str] = [4, 4, 4, 4]
lowercase__ : Any = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
if "lrf" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
else:
lowercase__ : Optional[Any] = [2, 2, 2, 2]
if "tiny" in model_name:
lowercase__ : Optional[int] = 96
elif "small" in model_name:
lowercase__ : Union[str, Any] = 96
elif "base" in model_name:
lowercase__ : Tuple = 1_28
elif "large" in model_name:
lowercase__ : Any = 1_92
elif "xlarge" in model_name:
lowercase__ : Any = 2_56
elif "huge" in model_name:
lowercase__ : Union[str, Any] = 3_52
# set label information
lowercase__ : List[Any] = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowercase__ : Optional[int] = '''imagenet-22k-id2label.json'''
else:
lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json'''
lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()}
lowercase__ : int = FocalNetConfig(
embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , )
return config
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
if "patch_embed.proj" in name:
lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
lowercase__ : Dict = '''encoder.''' + name
if "encoder.layers" in name:
lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' )
if "downsample.proj" in name:
lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' )
if "blocks" in name:
lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' )
if name == "norm.weight":
lowercase__ : Dict = '''layernorm.weight'''
if name == "norm.bias":
lowercase__ : Dict = '''layernorm.bias'''
if "head" in name:
lowercase__ : Dict = name.replace('''head''' , '''classifier''' )
else:
lowercase__ : List[Any] = '''focalnet.''' + name
return name
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]:
# fmt: off
lowercase__ : Any = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowercase__ : Optional[int] = model_name_to_url[model_name]
print('''Checkpoint URL: ''' , __lowerCamelCase )
lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowercase__ : int = state_dict.pop(__lowerCamelCase )
lowercase__ : Any = val
lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase )
lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase )
model.eval()
# load state dict
model.load_state_dict(__lowerCamelCase )
# verify conversion
lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase__ : int = BitImageProcessor(
do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , )
lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' )
lowercase__ : List[str] = transforms.Compose(
[
transforms.Resize(2_56 ),
transforms.CenterCrop(2_24 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 )
lowercase__ : Optional[Any] = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(f"""{model_name}""" )
processor.push_to_hub(f"""{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='focalnet-tiny',
type=str,
help='Name of the FocalNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub.',
)
lowerCAmelCase_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {'vocab_file': 'spiece.model'}
lowerCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : Tuple ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=True ,_snake_case : int=False ,_snake_case : Union[str, Any]="<s>" ,_snake_case : Tuple="</s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : List[str]="<sep>" ,_snake_case : List[str]="<pad>" ,_snake_case : str="<cls>" ,_snake_case : str="<mask>" ,_snake_case : Any=["<eop>", "<eod>"] ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : Optional[int] ,) -> None:
"""simple docstring"""
lowercase__ : str = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token
lowercase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,additional_special_tokens=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,)
lowercase__ : Union[str, Any] = 3
lowercase__ : Union[str, Any] = do_lower_case
lowercase__ : Optional[Any] = remove_space
lowercase__ : List[str] = keep_accents
lowercase__ : str = vocab_file
lowercase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
'''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. '''
'''See https://pypi.org/project/jieba/ for installation.''' )
lowercase__ : Optional[int] = jieba
lowercase__ : List[str] = str.maketrans(''' \n''' ,'''\u2582\u2583''' )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def UpperCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
return len(self.sp_model )
def UpperCAmelCase ( self : Any ) -> int:
"""simple docstring"""
lowercase__ : Any = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : int ) -> Dict:
"""simple docstring"""
lowercase__ : Optional[int] = self.__dict__.copy()
lowercase__ : str = None
return state
def __setstate__( self : str ,_snake_case : Dict ) -> Dict:
"""simple docstring"""
lowercase__ : Optional[int] = d
# for backward compatibility
if not hasattr(self ,'''sp_model_kwargs''' ):
lowercase__ : Union[str, Any] = {}
lowercase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
if self.remove_space:
lowercase__ : int = ''' '''.join(inputs.strip().split() )
else:
lowercase__ : str = inputs
lowercase__ : Optional[int] = outputs.replace('''``''' ,'''"''' ).replace('''\'\'''' ,'''"''' )
if not self.keep_accents:
lowercase__ : Tuple = unicodedata.normalize('''NFKD''' ,_snake_case )
lowercase__ : Union[str, Any] = ''''''.join([c for c in outputs if not unicodedata.combining(_snake_case )] )
if self.do_lower_case:
lowercase__ : Tuple = outputs.lower()
return outputs
def UpperCAmelCase ( self : Dict ,_snake_case : str ) -> List[str]:
"""simple docstring"""
lowercase__ : str = self.preprocess_text(_snake_case )
lowercase__ : Any = self.sp_model.encode(_snake_case ,out_type=_snake_case )
lowercase__ : Union[str, Any] = []
for piece in pieces:
if len(_snake_case ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowercase__ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case ,'''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowercase__ : Optional[int] = cur_pieces[1:]
else:
lowercase__ : Union[str, Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_snake_case )
else:
new_pieces.append(_snake_case )
return new_pieces
def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.sp_model.PieceToId(_snake_case )
def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ) -> int:
"""simple docstring"""
return self.sp_model.IdToPiece(_snake_case )
def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip()
return out_string
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : Tuple = [self.sep_token_id]
lowercase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case )
if token_ids_a is not None:
return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1, 1]
return ([0] * len(_snake_case )) + [1, 1]
def UpperCAmelCase ( self : Tuple ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : Optional[Any] = [self.sep_token_id]
lowercase__ : Any = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_snake_case ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowercase__ : Tuple = os.path.join(
_snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(_snake_case ,'''wb''' ) as fi:
lowercase__ : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (out_vocab_file,)
def UpperCAmelCase ( self : int ,*_snake_case : int ,**_snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
lowercase__ : Optional[Any] = super()._decode(*_snake_case ,**_snake_case )
lowercase__ : str = text.replace(''' ''' ,'''''' ).replace('''\u2582''' ,''' ''' ).replace('''\u2583''' ,'''\n''' )
return text
| 370
|
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"]
lowerCAmelCase : int = "ChineseCLIPImageProcessor"
lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any:
"""simple docstring"""
lowercase__ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' ,_snake_case ,)
lowercase__ : Tuple = kwargs.pop('''feature_extractor''' )
lowercase__ : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_snake_case ,_snake_case )
lowercase__ : List[Any] = self.image_processor
def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if images is not None:
lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if text is not None and images is not None:
lowercase__ : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case )
def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.tokenizer.model_input_names
lowercase__ : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,)
return self.image_processor_class
| 302
| 0
|
"""simple docstring"""
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
lowercase__ : Dict = 0
@slow
def UpperCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(_snake_case ) ,0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
lowercase__ : Tuple = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,(GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(_snake_case ) ,0 )
def UpperCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
lowercase__ : int = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size ,12 )
def UpperCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case ,(RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size ,20 )
def UpperCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
# Check that tokenizer_type ≠ model_type
lowercase__ : str = AutoTokenizer.from_pretrained(_snake_case ,config=_snake_case )
self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size ,12 )
def UpperCAmelCase ( self : int ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_snake_case ,'''vocab.txt''' ) )
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''bert''' ,use_fast=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_snake_case ,'''vocab.json''' ) )
shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_snake_case ,'''merges.txt''' ) )
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''gpt2''' ,use_fast=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@require_tokenizers
def UpperCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_snake_case ,'''vocab.txt''' ) )
lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''bert''' )
self.assertIsInstance(_snake_case ,_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_snake_case ,'''vocab.json''' ) )
shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_snake_case ,'''merges.txt''' ) )
lowercase__ : str = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''gpt2''' )
self.assertIsInstance(_snake_case ,_snake_case )
def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
with pytest.raises(_snake_case ):
AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' )
@require_tokenizers
def UpperCAmelCase ( self : str ) -> str:
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
lowercase__ : Tuple = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' )
self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) )
if isinstance(_snake_case ,_snake_case ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_snake_case )
else:
self.assertEqual(tokenizer.do_lower_case ,_snake_case )
self.assertEqual(tokenizer.model_max_length ,512 )
@require_tokenizers
def UpperCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
_snake_case ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,):
lowercase__ : Tuple = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' )
def UpperCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Any = TOKENIZER_MAPPING.values()
lowercase__ : Union[str, Any] = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(_snake_case )
@require_tokenizers
def UpperCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_snake_case ) ,_snake_case )
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_snake_case )
@require_tokenizers
def UpperCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_snake_case )
lowercase__ : str = '''Hello, world. How are you?'''
lowercase__ : Union[str, Any] = tokenizer.tokenize(_snake_case )
self.assertEqual('''[UNK]''' ,tokens[0] )
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_snake_case )
lowercase__ : Union[str, Any] = tokenizer.tokenize(_snake_case )
self.assertEqual('''[UNK]''' ,tokens[0] )
@require_tokenizers
def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' )
self.assertEqual(type(_snake_case ) ,_snake_case )
self.assertEqual(tokenizer.model_max_length ,512 )
self.assertEqual(tokenizer.vocab_size ,30_000 )
self.assertEqual(tokenizer.unk_token ,'''[UNK]''' )
self.assertEqual(tokenizer.padding_side ,'''right''' )
self.assertEqual(tokenizer.truncation_side ,'''right''' )
def UpperCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
lowercase__ : Tuple = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case )
lowercase__ : int = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case ,tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size ,12 )
def UpperCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''ctrl''' )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(_snake_case ,_snake_case )
def UpperCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
lowercase__ : Optional[Any] = get_tokenizer_config('''bert-base-cased''' )
lowercase__ : Union[str, Any] = config.pop('''_commit_hash''' ,_snake_case )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(_snake_case ,{'''do_lower_case''': False} )
# This model does not have a tokenizer_config so we get back an empty dict.
lowercase__ : List[Any] = get_tokenizer_config(_snake_case )
self.assertDictEqual(_snake_case ,{} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case )
lowercase__ : str = get_tokenizer_config(_snake_case )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' )
def UpperCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
try:
AutoConfig.register('''custom''' ,_snake_case )
AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_snake_case ):
AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case )
lowercase__ : Optional[Any] = CustomTokenizer.from_pretrained(_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case )
lowercase__ : str = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def UpperCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
try:
AutoConfig.register('''custom''' ,_snake_case )
# Can register in two steps
AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) )
AutoTokenizer.register(_snake_case ,fast_tokenizer_class=_snake_case )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
_snake_case ,slow_tokenizer_class=_snake_case ,fast_tokenizer_class=_snake_case )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_snake_case ):
AutoTokenizer.register(_snake_case ,fast_tokenizer_class=_snake_case )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ : str = BertTokenizerFast.from_pretrained(_snake_case )
bert_tokenizer.save_pretrained(_snake_case )
lowercase__ : Optional[Any] = CustomTokenizerFast.from_pretrained(_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case )
lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case ,use_fast=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
with self.assertRaises(_snake_case ):
lowercase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_snake_case ):
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case )
lowercase__ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case )
lowercase__ : Any = AutoTokenizer.from_pretrained(_snake_case ,trust_remote_code=_snake_case )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' )
self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' )
# Test we can also load the slow version
lowercase__ : Any = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ,use_fast=_snake_case )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_snake_case )
lowercase__ : Dict = AutoTokenizer.from_pretrained(_snake_case ,trust_remote_code=_snake_case ,use_fast=_snake_case )
self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' )
self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' )
@require_tokenizers
def UpperCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Tuple = False
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = NewTokenizer
lowerCAmelCase : Optional[Any] = False
try:
AutoConfig.register('''custom''' ,_snake_case )
AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case )
AutoTokenizer.register(_snake_case ,fast_tokenizer_class=_snake_case )
# If remote code is not set, the default is to use local
lowercase__ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' )
self.assertFalse(tokenizer.special_attribute_present )
lowercase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_snake_case )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' )
self.assertFalse(tokenizer.special_attribute_present )
lowercase__ : str = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ,use_fast=_snake_case )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
lowercase__ : List[str] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' )
self.assertTrue(tokenizer.special_attribute_present )
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ,use_fast=_snake_case )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ : List[str] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_snake_case )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' )
# Test we can also load the slow version
lowercase__ : Tuple = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_snake_case ,use_fast=_snake_case )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' )
def UpperCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
_snake_case ,'''bert-base is not a local folder and is not a valid model identifier''' ):
lowercase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' )
def UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
_snake_case ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ,revision='''aaaaaa''' )
def UpperCAmelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
with RequestCounter() as counter:
lowercase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(counter.get_request_count ,0 )
self.assertEqual(counter.head_request_count ,1 )
self.assertEqual(counter.other_request_count ,0 )
| 371
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase ) -> Dict:
lowercase__ : List[str] = 1
lowercase__ : Union[str, Any] = 2
while i * i <= n:
lowercase__ : int = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : Dict = 1
lowercase__ : Optional[Any] = 1
while True:
i += 1
t_num += i
if count_divisors(__lowerCamelCase ) > 5_00:
break
return t_num
if __name__ == "__main__":
print(solution())
| 350
|
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,)
lowerCAmelCase : int = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __UpperCAmelCase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
lowercase__ : str = import_module('''tasks''' )
try:
lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels )
lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) )
lowercase__ : Optional[int] = len(__lowerCamelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , )
lowercase__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ : str = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]:
lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 )
lowercase__ , lowercase__ : Tuple = preds.shape
lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )]
lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )]
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__lowerCamelCase ) -> Dict:
lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
# Data collator
lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ : str = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ : int = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ : Optional[int] = trainer.evaluate()
lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__lowerCamelCase )
# Predict
if training_args.do_predict:
lowercase__ : Optional[int] = TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase )
lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return results
def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __A ( A_ ,unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : Dict = KandinskyVaaPriorPipeline
lowerCAmelCase : Any = ["prompt"]
lowerCAmelCase : Optional[Any] = ["prompt", "negative_prompt"]
lowerCAmelCase : Optional[int] = [
"num_images_per_prompt",
"generator",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
lowerCAmelCase : Union[str, Any] = False
@property
def UpperCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return 32
@property
def UpperCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return self.time_input_dim
@property
def UpperCAmelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def UpperCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
return 100
@property
def UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
lowercase__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def UpperCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ : int = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,)
return CLIPTextModelWithProjection(_snake_case )
@property
def UpperCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ : List[Any] = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
lowercase__ : Dict = PriorTransformer(**_snake_case )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
lowercase__ : List[str] = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def UpperCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size ,image_size=224 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=14 ,)
lowercase__ : Optional[Any] = CLIPVisionModelWithProjection(_snake_case )
return model
@property
def UpperCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
lowercase__ : Union[str, Any] = CLIPImageProcessor(
crop_size=224 ,do_center_crop=_snake_case ,do_normalize=_snake_case ,do_resize=_snake_case ,image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] ,image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,resample=3 ,size=224 ,)
return image_processor
def UpperCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
lowercase__ : int = self.dummy_prior
lowercase__ : Union[str, Any] = self.dummy_image_encoder
lowercase__ : Optional[int] = self.dummy_text_encoder
lowercase__ : Optional[Any] = self.dummy_tokenizer
lowercase__ : Union[str, Any] = self.dummy_image_processor
lowercase__ : Tuple = UnCLIPScheduler(
variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1_000 ,clip_sample=_snake_case ,clip_sample_range=10.0 ,)
lowercase__ : Dict = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Tuple=0 ) -> int:
"""simple docstring"""
if str(_snake_case ).startswith('''mps''' ):
lowercase__ : Optional[int] = torch.manual_seed(_snake_case )
else:
lowercase__ : Any = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowercase__ : Tuple = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def UpperCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = '''cpu'''
lowercase__ : Optional[Any] = self.get_dummy_components()
lowercase__ : List[Any] = self.pipeline_class(**_snake_case )
lowercase__ : Union[str, Any] = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Optional[int] = pipe(**self.get_dummy_inputs(_snake_case ) )
lowercase__ : Any = output.image_embeds
lowercase__ : List[str] = pipe(
**self.get_dummy_inputs(_snake_case ) ,return_dict=_snake_case ,)[0]
lowercase__ : str = image[0, -10:]
lowercase__ : int = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
lowercase__ : int = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCAmelCase ( self : int ) -> Any:
"""simple docstring"""
lowercase__ : int = torch_device == '''cpu'''
lowercase__ : Any = True
lowercase__ : str = False
self._test_inference_batch_single_identical(
test_max_difference=_snake_case ,relax_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,)
@skip_mps
def UpperCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ : Tuple = torch_device == '''cpu'''
lowercase__ : Optional[int] = False
self._test_attention_slicing_forward_pass(
test_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,)
| 351
|
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : Dict = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : List[str] = 16
elif accelerator.mixed_precision != "no":
lowercase__ : List[Any] = 8
else:
lowercase__ : Optional[int] = None
return tokenizer.pad(
__lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ : Dict = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
lowercase__ : Union[str, Any] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1":
lowercase__ : Any = 2
# Initialize accelerator
lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : List[Any] = config['''lr''']
lowercase__ : Union[str, Any] = int(config['''num_epochs'''] )
lowercase__ : List[str] = int(config['''seed'''] )
lowercase__ : Any = int(config['''batch_size'''] )
lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__lowerCamelCase )
def inner_training_loop(__lowerCamelCase ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : str = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase )
lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate scheduler
lowercase__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ : int = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.loss
accelerator.backward(__lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : Tuple = model(**__lowerCamelCase )
lowercase__ : Dict = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
lowercase__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ : Union[str, Any] = parser.parse_args()
lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase ) -> int:
lowercase__ : Union[str, Any] = [0] * len(__lowerCamelCase )
lowercase__ : List[str] = []
lowercase__ : Any = [1] * len(__lowerCamelCase )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__lowerCamelCase ) ):
if indegree[i] == 0:
queue.append(__lowerCamelCase )
while queue:
lowercase__ : Tuple = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
lowercase__ : Optional[Any] = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(__lowerCamelCase )
print(max(__lowerCamelCase ) )
# Adjacency list of Graph
lowerCAmelCase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 352
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case )
lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' )
lowercase__ : Tuple = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
lowercase__ : Optional[int] = model.generate(**_snake_case )
lowercase__ : List[Any] = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
lowercase__ : int = model_reloaded.generate(**_snake_case )
self.assertTrue(torch.allclose(_snake_case ,_snake_case ) )
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : Union[str, Any] = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_snake_case ):
model.save_pretrained(_snake_case )
lowercase__ : int = model.reverse_bettertransformer()
model.save_pretrained(_snake_case )
| 302
| 0
|
"""simple docstring"""
lowerCAmelCase_ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowerCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}]
lowerCAmelCase_ = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 353
|
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
return flax_state_dict
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool:
return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : Optional[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
lowercase__ : List[str] = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
# convert pytorch tensor to numpy
lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : List[Any] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
lowercase__ : str = flax_model.params['''params''']
else:
lowercase__ : Optional[int] = flax_model.params
lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(__lowerCamelCase )
lowercase__ : int = {}
lowercase__ : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
lowercase__ : int = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : Tuple = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Any = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import torch
# Load the index
lowercase__ : Dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
lowercase__ : Optional[int] = torch.load(__lowerCamelCase )
lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : Dict = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Optional[Any] = flax_model.params['''params''']
lowercase__ : List[Any] = flatten_dict(__lowerCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
lowercase__ : Union[str, Any] = flax_model.params
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : Tuple = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : List[str] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Tuple = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : List[str] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
continue
if "var" in flax_key[-1]:
lowercase__ : str = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : List[str] = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(__lowerCamelCase , '''rb''' ) as state_f:
try:
lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values()
if any(__lowerCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
lowercase__ : Union[str, Any] = jax.tree_util.tree_map(
lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase )
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : List[str] = pt_model.state_dict()
lowercase__ : int = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
lowercase__ : List[str] = []
lowercase__ : Tuple = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix
lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict:
# conv layer
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict:
# linear layer
lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
lowercase__ : Dict = '''.'''.join(__lowerCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
lowercase__ : Optional[int] = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
lowercase__ : str = key.split('''.''' )
lowercase__ : Optional[Any] = None
if key_components[-3::2] == ["parametrizations", "original0"]:
lowercase__ : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
lowercase__ : str = key_components[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[int] = key_components[:-3] + [name]
lowercase__ : List[str] = '''.'''.join(__lowerCamelCase )
lowercase__ : List[Any] = key
if flax_key in special_pt_names:
lowercase__ : Any = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor
lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase )
# remove from missing keys
missing_keys.remove(__lowerCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCamelCase )
pt_model.load_state_dict(__lowerCamelCase )
# re-transform missing_keys to list
lowercase__ : Optional[Any] = list(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(__lowerCamelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
'''If your task is similar to the task the model of the checkpoint was trained on, '''
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 302
| 0
|
"""simple docstring"""
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
# Initialise PyTorch model
lowercase__ : Dict = AlbertConfig.from_json_file(__lowerCamelCase )
print(f"""Building PyTorch model from configuration: {config}""" )
lowercase__ : str = AlbertForPreTraining(__lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_albert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , __lowerCamelCase )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--albert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained ALBERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 354
|
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = value_function
lowercase__ : Optional[int] = unet
lowercase__ : Tuple = scheduler
lowercase__ : Dict = env
lowercase__ : int = env.get_dataset()
lowercase__ : Dict = {}
for key in self.data.keys():
try:
lowercase__ : Optional[Any] = self.data[key].mean()
except: # noqa: E722
pass
lowercase__ : List[Any] = {}
for key in self.data.keys():
try:
lowercase__ : str = self.data[key].std()
except: # noqa: E722
pass
lowercase__ : Tuple = env.observation_space.shape[0]
lowercase__ : Optional[int] = env.action_space.shape[0]
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
if type(_snake_case ) is dict:
return {k: self.to_torch(_snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(_snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(_snake_case ,device=self.unet.device )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
for key, val in cond.items():
lowercase__ : List[Any] = val.clone()
return x_in
def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = x.shape[0]
lowercase__ : Dict = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long )
for _ in range(_snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample
lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0]
lowercase__ : List[str] = self.scheduler._get_variance(_snake_case )
lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance )
lowercase__ : Optional[int] = model_std * grad
lowercase__ : Optional[Any] = 0
lowercase__ : str = x.detach()
lowercase__ : Dict = x + scale * grad
lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 )
# TODO: verify deprecation of this kwarg
lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.to_torch(_snake_case )
return x, y
def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]:
"""simple docstring"""
lowercase__ : Any = self.normalize(_snake_case ,'''observations''' )
lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 )
lowercase__ : Dict = {0: self.to_torch(_snake_case )}
lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device )
lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : str = self.to_torch(_snake_case )
# run the diffusion process
lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case )
# sort output trajectories by value
lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze()
lowercase__ : str = x[sorted_idx]
lowercase__ : str = sorted_values[:, :, : self.action_dim]
lowercase__ : Optional[int] = actions.detach().cpu().numpy()
lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' )
# select the action with the highest value
if y is not None:
lowercase__ : str = 0
else:
# if we didn't run value guiding, select a random action
lowercase__ : str = np.random.randint(0 ,_snake_case )
lowercase__ : int = denorm_actions[selected_index, 0]
return denorm_actions
| 302
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json',
}
class __A ( A_ ,A_ ):
'''simple docstring'''
lowerCAmelCase : Any = "focalnet"
def __init__( self : Union[str, Any] ,_snake_case : Tuple=224 ,_snake_case : Optional[Any]=4 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=96 ,_snake_case : Dict=False ,_snake_case : Optional[int]=[192, 384, 768, 768] ,_snake_case : List[str]=[2, 2, 6, 2] ,_snake_case : Any=[2, 2, 2, 2] ,_snake_case : Tuple=[3, 3, 3, 3] ,_snake_case : int="gelu" ,_snake_case : Optional[Any]=4.0 ,_snake_case : Any=0.0 ,_snake_case : Optional[Any]=0.1 ,_snake_case : int=False ,_snake_case : List[Any]=1e-4 ,_snake_case : str=False ,_snake_case : Tuple=False ,_snake_case : Optional[int]=False ,_snake_case : List[str]=0.02 ,_snake_case : Tuple=1e-5 ,_snake_case : str=32 ,_snake_case : List[Any]=None ,_snake_case : List[Any]=None ,**_snake_case : List[Any] ,) -> Tuple:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : int = image_size
lowercase__ : str = patch_size
lowercase__ : Tuple = num_channels
lowercase__ : List[Any] = embed_dim
lowercase__ : Dict = use_conv_embed
lowercase__ : Tuple = hidden_sizes
lowercase__ : Dict = depths
lowercase__ : Dict = focal_levels
lowercase__ : str = focal_windows
lowercase__ : Any = hidden_act
lowercase__ : Optional[int] = mlp_ratio
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : Tuple = drop_path_rate
lowercase__ : Union[str, Any] = use_layerscale
lowercase__ : Tuple = layerscale_value
lowercase__ : Optional[int] = use_post_layernorm
lowercase__ : Dict = use_post_layernorm_in_modulation
lowercase__ : int = normalize_modulator
lowercase__ : Optional[int] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : List[Any] = encoder_stride
lowercase__ : Union[str, Any] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )]
lowercase__ : Optional[Any] = get_aligned_output_features_output_indices(
out_features=_snake_case ,out_indices=_snake_case ,stage_names=self.stage_names )
| 355
|
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ,id='''sequence''' ),
'''references''': datasets.Value('''string''' ,id='''sequence''' ),
} ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any:
"""simple docstring"""
lowercase__ : Any = compute_mauve(
p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,)
return out
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ : Optional[Any] = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : int = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : str = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 356
|
"""simple docstring"""
import math
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
lowercase__ : Tuple = 0
lowercase__ : Tuple = 0
while num > 0:
lowercase__ : int = num % 8
lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"""0o{int(__lowerCamelCase )}"""
def __UpperCAmelCase ( ) -> None:
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(2_16 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(5_12 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json',
# See all ViT models at https://huggingface.co/models?filter=vit
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Any = "vit"
def __init__( self : List[str] ,_snake_case : str=768 ,_snake_case : Optional[Any]=12 ,_snake_case : Dict=12 ,_snake_case : Dict=3_072 ,_snake_case : int="gelu" ,_snake_case : Optional[int]=0.0 ,_snake_case : List[str]=0.0 ,_snake_case : str=0.02 ,_snake_case : Optional[Any]=1e-12 ,_snake_case : Optional[Any]=224 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=3 ,_snake_case : Optional[int]=True ,_snake_case : Any=16 ,**_snake_case : Optional[int] ,) -> Any:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Dict = num_hidden_layers
lowercase__ : Dict = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : Dict = hidden_act
lowercase__ : str = hidden_dropout_prob
lowercase__ : Optional[int] = attention_probs_dropout_prob
lowercase__ : Optional[Any] = initializer_range
lowercase__ : Tuple = layer_norm_eps
lowercase__ : Tuple = image_size
lowercase__ : str = patch_size
lowercase__ : str = num_channels
lowercase__ : Optional[int] = qkv_bias
lowercase__ : Tuple = encoder_stride
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Dict = version.parse("1.11" )
@property
def UpperCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def UpperCAmelCase ( self : Union[str, Any] ) -> float:
"""simple docstring"""
return 1e-4
| 357
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
lowerCAmelCase_ = [
'openmmlab/upernet-convnext-tiny',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
lowerCAmelCase_ = 'UperNetConfig'
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Convad(
in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,)
lowercase__ : Tuple = nn.BatchNormad(_snake_case )
lowercase__ : List[str] = nn.ReLU()
def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.conv(_snake_case )
lowercase__ : List[str] = self.batch_norm(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = [
nn.AdaptiveAvgPoolad(_snake_case ),
UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Any = input
for layer in self.layers:
lowercase__ : int = layer(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = pool_scales
lowercase__ : Dict = align_corners
lowercase__ : Optional[Any] = in_channels
lowercase__ : Optional[Any] = channels
lowercase__ : int = []
for i, pool_scale in enumerate(_snake_case ):
lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case )
self.blocks.append(_snake_case )
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]:
"""simple docstring"""
lowercase__ : int = []
for ppm in self.blocks:
lowercase__ : Any = ppm(_snake_case )
lowercase__ : int = nn.functional.interpolate(
_snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
ppm_outs.append(_snake_case )
return ppm_outs
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ : str = config
lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6)
lowercase__ : Optional[Any] = in_channels
lowercase__ : Any = config.hidden_size
lowercase__ : Optional[Any] = False
lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
# PSP Module
lowercase__ : Dict = UperNetPyramidPoolingModule(
self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,)
lowercase__ : str = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
# FPN Module
lowercase__ : Any = nn.ModuleList()
lowercase__ : Union[str, Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 )
lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 )
self.lateral_convs.append(_snake_case )
self.fpn_convs.append(_snake_case )
lowercase__ : int = UperNetConvModule(
len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
def UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str:
"""simple docstring"""
lowercase__ : Dict = inputs[-1]
lowercase__ : Optional[int] = [x]
psp_outs.extend(self.psp_modules(_snake_case ) )
lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 )
lowercase__ : List[str] = self.bottleneck(_snake_case )
return output
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(_snake_case ) )
# build top-down path
lowercase__ : List[Any] = len(_snake_case )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:]
lowercase__ : int = laterals[i - 1] + nn.functional.interpolate(
laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners )
# build outputs
lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Any = nn.functional.interpolate(
fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
lowercase__ : Any = torch.cat(_snake_case ,dim=1 )
lowercase__ : Any = self.fpn_bottleneck(_snake_case )
lowercase__ : str = self.classifier(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = config
lowercase__ : Dict = config.auxiliary_in_channels
lowercase__ : Optional[int] = config.auxiliary_channels
lowercase__ : List[Any] = config.auxiliary_num_convs
lowercase__ : List[Any] = config.auxiliary_concat_input
lowercase__ : str = in_index
lowercase__ : Any = (kernel_size // 2) * dilation
lowercase__ : Optional[Any] = []
convs.append(
UperNetConvModule(
self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
if self.num_convs == 0:
lowercase__ : List[str] = nn.Identity()
else:
lowercase__ : Dict = nn.Sequential(*_snake_case )
if self.concat_input:
lowercase__ : int = UperNetConvModule(
self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 )
lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
def UpperCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : str = encoder_hidden_states[self.in_index]
lowercase__ : List[str] = self.convs(_snake_case )
if self.concat_input:
lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) )
lowercase__ : Dict = self.classifier(_snake_case )
return output
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Any = UperNetConfig
lowerCAmelCase : str = "pixel_values"
lowerCAmelCase : Dict = True
def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[Any] = value
lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : int = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels )
lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]:
"""simple docstring"""
lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs(
_snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case )
lowercase__ : Optional[int] = outputs.feature_maps
lowercase__ : Tuple = self.decode_head(_snake_case )
lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : List[str] = None
if self.auxiliary_head is not None:
lowercase__ : str = self.auxiliary_head(_snake_case )
lowercase__ : Dict = nn.functional.interpolate(
_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : Any = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
lowercase__ : Tuple = (logits,) + outputs[1:]
else:
lowercase__ : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
| 302
| 0
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = ["pixel_values"]
def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case )
lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' )
lowercase__ : Tuple = do_resize
lowercase__ : List[Any] = do_rescale
lowercase__ : Any = do_normalize
lowercase__ : List[str] = do_center_crop
lowercase__ : Optional[Any] = crop_size
lowercase__ : Union[str, Any] = size
lowercase__ : Any = resample
lowercase__ : int = rescale_factor
lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : List[str] = get_size_dict(_snake_case )
if "shortest_edge" in size:
lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
lowercase__ : int = (size['''height'''], size['''width'''])
else:
raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" )
return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : Optional[Any] = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray:
"""simple docstring"""
return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature:
"""simple docstring"""
lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize
lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size
lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case )
lowercase__ : Tuple = resample if resample is not None else self.resample
lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__ : List[str] = image_std if image_std is not None else self.image_std
lowercase__ : Optional[int] = size if size is not None else self.size
lowercase__ : int = get_size_dict(_snake_case )
if not is_batched(_snake_case ):
lowercase__ : Optional[Any] = [images]
if not valid_images(_snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
lowercase__ : str = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images]
if do_center_crop:
lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images]
if do_rescale:
lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images]
if do_normalize:
lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images]
lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images]
lowercase__ : Any = {'''pixel_values''': images}
return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
| 358
|
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCAmelCase_ = _symbol_database.Default()
lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
lowerCAmelCase_ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCAmelCase_ = None
lowerCAmelCase_ = B'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCAmelCase_ = 45
lowerCAmelCase_ = 1_581
lowerCAmelCase_ = 1_517
lowerCAmelCase_ = 1_570
lowerCAmelCase_ = 1_584
lowerCAmelCase_ = 1_793
lowerCAmelCase_ = 1_795
lowerCAmelCase_ = 1_916
lowerCAmelCase_ = 1_864
lowerCAmelCase_ = 1_905
lowerCAmelCase_ = 1_919
lowerCAmelCase_ = 2_429
lowerCAmelCase_ = 2_208
lowerCAmelCase_ = 2_418
lowerCAmelCase_ = 2_323
lowerCAmelCase_ = 2_407
# @@protoc_insertion_point(module_scope)
| 302
| 0
|
"""simple docstring"""
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
# Initialise PyTorch model
lowercase__ : Tuple = RemBertConfig.from_json_file(__lowerCamelCase )
print('''Building PyTorch model from configuration: {}'''.format(str(__lowerCamelCase ) ) )
lowercase__ : Optional[int] = RemBertModel(__lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Save pytorch-model
print('''Save PyTorch model to {}'''.format(__lowerCamelCase ) )
torch.save(model.state_dict() , __lowerCamelCase )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--rembert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained RemBERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
lowerCAmelCase_ = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
from timeit import timeit
lowerCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def __UpperCAmelCase ( __lowerCamelCase ) -> bool:
lowercase__ : Dict = 0
lowercase__ : List[Any] = len(__lowerCamelCase ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def __UpperCAmelCase ( __lowerCamelCase ) -> bool:
lowercase__ : Any = len(__lowerCamelCase ) // 2
lowercase__ : Any = len(__lowerCamelCase )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(__lowerCamelCase ) )
def __UpperCAmelCase ( __lowerCamelCase ) -> bool:
if len(__lowerCamelCase ) <= 2:
return True
if s[0] == s[len(__lowerCamelCase ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def __UpperCAmelCase ( __lowerCamelCase ) -> bool:
return s == s[::-1]
def __UpperCAmelCase ( __lowerCamelCase ) -> None:
lowercase__ : List[Any] = f"""all({name}(key) is value for key, value in test_data.items())"""
lowercase__ : Union[str, Any] = f"""from __main__ import test_data, {name}"""
lowercase__ : Any = 50_00_00
lowercase__ : Dict = timeit(stmt=__lowerCamelCase , setup=__lowerCamelCase , number=__lowerCamelCase )
print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(F'''{key:21} {value}''')
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 360
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = '''The dog is cute and lives in the garden house'''
lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] )
lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
lowercase__ : Tuple = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state''']
self.assertEqual(output.shape ,_snake_case )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
lowercase__ : Optional[Any] = (boundary[1] - boundary[0]) / steps
lowercase__ : List[str] = boundary[0]
lowercase__ : Tuple = boundary[1]
lowercase__ : Dict = make_points(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowercase__ : Any = 0.0
y += (h / 2.0) * f(__lowerCamelCase )
for i in x_i:
# print(i)
y += h * f(__lowerCamelCase )
y += (h / 2.0) * f(__lowerCamelCase )
return y
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
lowercase__ : List[str] = a + h
while x < (b - h):
yield x
lowercase__ : Tuple = x + h
def __UpperCAmelCase ( __lowerCamelCase ) -> str: # enter your function here
lowercase__ : Optional[Any] = (x - 0) * (x - 0)
return y
def __UpperCAmelCase ( ) -> Any:
lowercase__ : Union[str, Any] = 0.0 # Lower bound of integration
lowercase__ : Optional[int] = 1.0 # Upper bound of integration
lowercase__ : str = 10.0 # define number of steps or resolution
lowercase__ : Optional[Any] = [a, b] # define boundary of integration
lowercase__ : Optional[Any] = method_a(__lowerCamelCase , __lowerCamelCase )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 361
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = '#'
class __A :
'''simple docstring'''
def __init__( self : str ) -> None:
"""simple docstring"""
lowercase__ : dict = {}
def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None:
"""simple docstring"""
lowercase__ : str = self._trie
for char in text:
if char not in trie:
lowercase__ : Union[str, Any] = {}
lowercase__ : Optional[Any] = trie[char]
lowercase__ : Dict = True
def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list:
"""simple docstring"""
lowercase__ : Optional[Any] = self._trie
for char in prefix:
if char in trie:
lowercase__ : Union[str, Any] = trie[char]
else:
return []
return self._elements(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple:
"""simple docstring"""
lowercase__ : str = []
for c, v in d.items():
lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )]
result.extend(_snake_case )
return tuple(_snake_case )
lowerCAmelCase_ = Trie()
lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def __UpperCAmelCase ( __lowerCamelCase ) -> tuple:
lowercase__ : List[Any] = trie.find_word(__lowerCamelCase )
return tuple(string + word for word in suffixes )
def __UpperCAmelCase ( ) -> None:
print(autocomplete_using_trie('''de''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase_ = {
'configuration_owlvit': [
'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'OwlViTConfig',
'OwlViTOnnxConfig',
'OwlViTTextConfig',
'OwlViTVisionConfig',
],
'processing_owlvit': ['OwlViTProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['OwlViTFeatureExtractor']
lowerCAmelCase_ = ['OwlViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OwlViTModel',
'OwlViTPreTrainedModel',
'OwlViTTextModel',
'OwlViTVisionModel',
'OwlViTForObjectDetection',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 362
|
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase_ = logging.get_logger(__name__)
# General docstring
lowerCAmelCase_ = 'RegNetConfig'
# Base docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = [1, 1_088, 7, 7]
# Image classification docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = 'tabby, tabby cat'
lowerCAmelCase_ = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = nn.Convad(
_snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,)
lowercase__ : List[Any] = nn.BatchNormad(_snake_case )
lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.convolution(_snake_case )
lowercase__ : Tuple = self.normalization(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = RegNetConvLayer(
config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act )
lowercase__ : str = config.num_channels
def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str:
"""simple docstring"""
lowercase__ : Union[str, Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
lowercase__ : Optional[int] = self.embedder(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any:
"""simple docstring"""
super().__init__()
lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case )
lowercase__ : Any = nn.BatchNormad(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.convolution(_snake_case )
lowercase__ : Optional[int] = self.normalization(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) )
lowercase__ : Dict = nn.Sequential(
nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,)
def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.pooler(_snake_case )
lowercase__ : Union[str, Any] = self.attention(_snake_case )
lowercase__ : List[str] = hidden_state * attention
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = in_channels != out_channels or stride != 1
lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width )
lowercase__ : str = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : Optional[int] = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : str = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ : Tuple = hidden_state
lowercase__ : Union[str, Any] = self.layer(_snake_case )
lowercase__ : List[Any] = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : Optional[int] = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = in_channels != out_channels or stride != 1
lowercase__ : List[str] = max(1 ,out_channels // config.groups_width )
lowercase__ : Tuple = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : str = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
lowercase__ : str = hidden_state
lowercase__ : Optional[Any] = self.layer(_snake_case )
lowercase__ : int = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : str = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer
lowercase__ : Optional[Any] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,)
def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.layers(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : str = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) )
lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ):
self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowercase__ : int = hidden_states + (hidden_state,)
lowercase__ : Any = stage_module(_snake_case )
if output_hidden_states:
lowercase__ : Optional[int] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case )
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : int = RegNetConfig
lowerCAmelCase : List[Any] = "regnet"
lowerCAmelCase : Optional[int] = "pixel_values"
lowerCAmelCase : Union[str, Any] = True
def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' )
elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight ,1 )
nn.init.constant_(module.bias ,0 )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : str = value
lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Any = config
lowercase__ : List[str] = RegNetEmbeddings(_snake_case )
lowercase__ : Any = RegNetEncoder(_snake_case )
lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
lowercase__ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Union[str, Any] = self.embedder(_snake_case )
lowercase__ : List[Any] = self.encoder(
_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : str = encoder_outputs[0]
lowercase__ : Optional[int] = self.pooler(_snake_case )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : int ,_snake_case : Tuple ) -> Any:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Optional[Any] = config.num_labels
lowercase__ : int = RegNetModel(_snake_case )
# classification head
lowercase__ : str = nn.Sequential(
nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1]
lowercase__ : Union[str, Any] = self.classifier(_snake_case )
lowercase__ : Optional[int] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowercase__ : List[Any] = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowercase__ : Dict = '''single_label_classification'''
else:
lowercase__ : Optional[int] = '''multi_label_classification'''
if self.config.problem_type == "regression":
lowercase__ : Union[str, Any] = MSELoss()
if self.num_labels == 1:
lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() )
else:
lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case )
elif self.config.problem_type == "single_label_classification":
lowercase__ : Tuple = CrossEntropyLoss()
lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowercase__ : Any = BCEWithLogitsLoss()
lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case )
if not return_dict:
lowercase__ : Tuple = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
| 302
| 0
|
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : int = "time_series_transformer"
lowerCAmelCase : Optional[Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : List[str] ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,_snake_case : str = "student_t" ,_snake_case : str = "nll" ,_snake_case : int = 1 ,_snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] ,_snake_case : Optional[Union[str, bool]] = "mean" ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : Optional[List[int]] = None ,_snake_case : Optional[List[int]] = None ,_snake_case : int = 32 ,_snake_case : int = 32 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : bool = True ,_snake_case : str = "gelu" ,_snake_case : int = 64 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : int = 100 ,_snake_case : float = 0.02 ,_snake_case : Optional[int]=True ,**_snake_case : Any ,) -> str:
"""simple docstring"""
lowercase__ : Union[str, Any] = prediction_length
lowercase__ : Any = context_length or prediction_length
lowercase__ : Union[str, Any] = distribution_output
lowercase__ : Optional[Any] = loss
lowercase__ : Optional[int] = input_size
lowercase__ : Union[str, Any] = num_time_features
lowercase__ : Any = lags_sequence
lowercase__ : Union[str, Any] = scaling
lowercase__ : Union[str, Any] = num_dynamic_real_features
lowercase__ : List[str] = num_static_real_features
lowercase__ : Optional[int] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(_snake_case ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ : Tuple = cardinality
else:
lowercase__ : Optional[int] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(_snake_case ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ : int = embedding_dimension
else:
lowercase__ : List[str] = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality]
lowercase__ : Dict = num_parallel_samples
# Transformer architecture configuration
lowercase__ : List[Any] = input_size * len(_snake_case ) + self._number_of_features
lowercase__ : List[str] = d_model
lowercase__ : str = encoder_attention_heads
lowercase__ : str = decoder_attention_heads
lowercase__ : List[str] = encoder_ffn_dim
lowercase__ : int = decoder_ffn_dim
lowercase__ : Dict = encoder_layers
lowercase__ : Optional[Any] = decoder_layers
lowercase__ : int = dropout
lowercase__ : str = attention_dropout
lowercase__ : Any = activation_dropout
lowercase__ : str = encoder_layerdrop
lowercase__ : List[str] = decoder_layerdrop
lowercase__ : Tuple = activation_function
lowercase__ : Any = init_std
lowercase__ : Union[str, Any] = use_cache
super().__init__(is_encoder_decoder=_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : Any ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 363
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = 1.6021E-19 # units = C
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]:
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif conductivity < 0:
raise ValueError('''Conductivity cannot be negative''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative''' )
elif mobility < 0:
raise ValueError('''mobility cannot be negative''' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 302
| 0
|
"""simple docstring"""
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = val
lowercase__ : List[str] = None
lowercase__ : Dict = None
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Tuple:
"""simple docstring"""
if self.val:
if val < self.val:
if self.left is None:
lowercase__ : Optional[int] = Node(_snake_case )
else:
self.left.insert(_snake_case )
elif val > self.val:
if self.right is None:
lowercase__ : str = Node(_snake_case )
else:
self.right.insert(_snake_case )
else:
lowercase__ : Optional[Any] = val
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
# Recursive traversal
if root:
inorder(root.left , __lowerCamelCase )
res.append(root.val )
inorder(root.right , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
# Build BST
if len(__lowerCamelCase ) == 0:
return arr
lowercase__ : str = Node(arr[0] )
for i in range(1 , len(__lowerCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
lowercase__ : Any = []
inorder(__lowerCamelCase , __lowerCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 364
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = ["pixel_values"]
def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case )
lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' )
lowercase__ : Tuple = do_resize
lowercase__ : List[Any] = do_rescale
lowercase__ : Any = do_normalize
lowercase__ : List[str] = do_center_crop
lowercase__ : Optional[Any] = crop_size
lowercase__ : Union[str, Any] = size
lowercase__ : Any = resample
lowercase__ : int = rescale_factor
lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : List[str] = get_size_dict(_snake_case )
if "shortest_edge" in size:
lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
lowercase__ : int = (size['''height'''], size['''width'''])
else:
raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" )
return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : Optional[Any] = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray:
"""simple docstring"""
return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature:
"""simple docstring"""
lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize
lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size
lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case )
lowercase__ : Tuple = resample if resample is not None else self.resample
lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__ : List[str] = image_std if image_std is not None else self.image_std
lowercase__ : Optional[int] = size if size is not None else self.size
lowercase__ : int = get_size_dict(_snake_case )
if not is_batched(_snake_case ):
lowercase__ : Optional[Any] = [images]
if not valid_images(_snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
lowercase__ : str = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images]
if do_center_crop:
lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images]
if do_rescale:
lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images]
if do_normalize:
lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images]
lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images]
lowercase__ : Any = {'''pixel_values''': images}
return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
| 302
| 0
|
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Tuple ,_snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(len(_snake_case ) ,len(_snake_case ) )
for a, b in zip(_snake_case ,_snake_case ):
self.assertAlmostEqual(_snake_case ,_snake_case ,delta=_snake_case )
def UpperCAmelCase ( self : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ : Optional[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_snake_case ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step ,3 )
self.assertEqual(len(accumulator.gradients ) ,1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[-2.0, 5.0] ,tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[0.0, 0.0] ,tol=1e-2 )
def UpperCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ : Dict = None
ops.enable_eager_execution_internal()
lowercase__ : Optional[int] = tf.config.list_physical_devices('''CPU''' )
if len(_snake_case ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] ,[tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
lowercase__ : List[str] = tf.config.list_logical_devices(device_type='''CPU''' )
lowercase__ : Dict = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
lowercase__ : Optional[int] = GradientAccumulator()
lowercase__ : List[Any] = tf.Variable([4.0, 3.0] )
lowercase__ : Optional[int] = create_optimizer(5e-5 ,10 ,5 )
lowercase__ : List[str] = tf.Variable([0.0, 0.0] ,trainable=_snake_case )
def accumulate_on_replica(_snake_case : Dict ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients ,[variable] ) ) )
@tf.function
def accumulate(_snake_case : Union[str, Any] ,_snake_case : Any ):
with strategy.scope():
lowercase__ : Union[str, Any] = strategy.experimental_local_results(_snake_case )
local_variables[0].assign(_snake_case )
local_variables[1].assign(_snake_case )
strategy.run(_snake_case ,args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_snake_case )
def _check_local_values(_snake_case : Any ,_snake_case : Tuple ):
lowercase__ : str = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() ,_snake_case ,tol=1e-2 )
self.assertListAlmostEqual(values[1].value() ,_snake_case ,tol=1e-2 )
accumulate([1.0, 2.0] ,[-1.0, 1.0] )
accumulate([3.0, -1.0] ,[-1.0, -1.0] )
accumulate([-2.0, 2.0] ,[3.0, -2.0] )
self.assertEqual(accumulator.step ,3 )
_check_local_values([2.0, 3.0] ,[1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() ,[4.0, 3.0] ,tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
_check_local_values([0.0, 0.0] ,[0.0, 0.0] )
| 365
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 302
| 0
|
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 366
|
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None:
lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCamelCase , torch.Tensor ):
raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' )
lowercase__ : List[Any] = v.half()
if save_path is None: # overwrite src_path
lowercase__ : Any = src_path
torch.save(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 302
| 0
|
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
lowercase__ : List[Any] = s.rsplit(__lowerCamelCase , __lowerCamelCase )
return new.join(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]:
lowercase__ : Optional[int] = {}
lowercase__ : str = ['''group_1''', '''group_2''', '''group_3''', '''group_4''']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase__ : Dict = key.replace(f"""{group_key}.""" , f"""{group_key}.group.""" )
if "res_path" in key:
lowercase__ : Optional[int] = key.replace('''res_path.''' , '''res_path.path.''' )
if key.endswith('''.w''' ):
lowercase__ : Dict = rreplace(__lowerCamelCase , '''.w''' , '''.weight''' , 1 )
if key.endswith('''.b''' ):
lowercase__ : List[Any] = rreplace(__lowerCamelCase , '''.b''' , '''.bias''' , 1 )
lowercase__ : List[str] = value.float()
return upgrade
@torch.no_grad()
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=True ) -> Dict:
from dall_e import Encoder
lowercase__ : Optional[int] = Encoder()
if os.path.exists(__lowerCamelCase ):
lowercase__ : int = torch.load(__lowerCamelCase )
else:
lowercase__ : int = torch.hub.load_state_dict_from_url(__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
lowercase__ : Optional[Any] = ckpt.state_dict()
encoder.load_state_dict(__lowerCamelCase )
if config_path is not None:
lowercase__ : Optional[int] = FlavaImageCodebookConfig.from_pretrained(__lowerCamelCase )
else:
lowercase__ : Any = FlavaImageCodebookConfig()
lowercase__ : Any = FlavaImageCodebook(__lowerCamelCase ).eval()
lowercase__ : Optional[int] = encoder.state_dict()
lowercase__ : str = upgrade_state_dict(__lowerCamelCase )
hf_model.load_state_dict(__lowerCamelCase )
lowercase__ : Union[str, Any] = hf_model.state_dict()
lowercase__ : List[str] = count_parameters(__lowerCamelCase )
lowercase__ : List[str] = count_parameters(__lowerCamelCase )
assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 )
if save_checkpoint:
hf_model.save_pretrained(__lowerCamelCase )
else:
return hf_state_dict
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
lowerCAmelCase_ = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 367
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : UNetaDModel
lowerCAmelCase : ScoreSdeVeScheduler
def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_snake_case ,scheduler=_snake_case )
@torch.no_grad()
def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.unet.config.sample_size
lowercase__ : Dict = (batch_size, 3, img_size, img_size)
lowercase__ : Tuple = self.unet
lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma
lowercase__ : Union[str, Any] = sample.to(self.device )
self.scheduler.set_timesteps(_snake_case )
self.scheduler.set_sigmas(_snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample
lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample
# prediction step
lowercase__ : str = model(_snake_case ,_snake_case ).sample
lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean
lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 )
lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
lowercase__ : Any = self.numpy_to_pil(_snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_snake_case )
| 302
| 0
|
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=A_ )
class lowerCAmelCase__ ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} )
lowerCAmelCase : ClassVar[Features] = Features({"labels": ClassLabel} )
lowerCAmelCase : str = "text"
lowerCAmelCase : str = "labels"
def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> Optional[int]:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] ,_snake_case ):
raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" )
lowercase__ : int = copy.deepcopy(self )
lowercase__ : Any = self.label_schema.copy()
lowercase__ : Any = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def UpperCAmelCase ( self : Dict ) -> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
}
| 368
|
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowerCAmelCase_ = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = "maskformer"
lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"}
lowerCAmelCase : Optional[int] = ["resnet", "swin"]
lowerCAmelCase : str = ["detr"]
def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict:
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
lowercase__ : Any = SwinConfig(
image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,)
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[str] = backbone_config.pop('''model_type''' )
lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type]
lowercase__ : str = config_class.from_dict(_snake_case )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
lowercase__ : Union[str, Any] = DetrConfig()
else:
# verify that the decoder is supported
lowercase__ : Tuple = (
decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f"""Transformer Decoder {decoder_type} not supported, please use one of"""
f""" {",".join(self.decoders_supported )}""" )
if isinstance(_snake_case ,_snake_case ):
lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type]
lowercase__ : Optional[Any] = config_class.from_dict(_snake_case )
lowercase__ : List[Any] = backbone_config
lowercase__ : List[Any] = decoder_config
# main feature dimension for the model
lowercase__ : List[str] = fpn_feature_size
lowercase__ : int = mask_feature_size
# initializer
lowercase__ : str = init_std
lowercase__ : str = init_xavier_std
# Hungarian matcher && loss
lowercase__ : Optional[int] = cross_entropy_weight
lowercase__ : List[Any] = dice_weight
lowercase__ : List[str] = mask_weight
lowercase__ : str = use_auxiliary_loss
lowercase__ : Optional[int] = no_object_weight
lowercase__ : Optional[Any] = output_auxiliary_logits
lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads
lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers
super().__init__(**_snake_case )
@classmethod
def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return cls(
backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,)
def UpperCAmelCase ( self : str ) -> Dict[str, any]:
"""simple docstring"""
lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ )
lowercase__ : int = self.backbone_config.to_dict()
lowercase__ : List[Any] = self.decoder_config.to_dict()
lowercase__ : List[str] = self.__class__.model_type
return output
| 302
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]:
lowercase__ : List[Any] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowercase__ : str = [1_44, 1_92, 2_40]
lowercase__ : List[str] = [16, 32, 64, 96, 1_28, 1_60, 6_40]
elif "mobilevit_xs" in mobilevit_name:
lowercase__ : Any = [96, 1_20, 1_44]
lowercase__ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 3_84]
elif "mobilevit_xxs" in mobilevit_name:
lowercase__ : Dict = [64, 80, 96]
lowercase__ : Optional[int] = [16, 16, 24, 48, 64, 80, 3_20]
lowercase__ : Tuple = 0.0_5
lowercase__ : List[Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowercase__ : int = 5_12
lowercase__ : str = 16
lowercase__ : int = 21
lowercase__ : Tuple = '''pascal-voc-id2label.json'''
else:
lowercase__ : Dict = 10_00
lowercase__ : int = '''imagenet-1k-id2label.json'''
lowercase__ : str = '''huggingface/label-files'''
lowercase__ : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : Dict = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : Any = idalabel
lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()}
return config
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=False ) -> Optional[int]:
for i in range(1 , 6 ):
if f"""layer_{i}.""" in name:
lowercase__ : Optional[Any] = name.replace(f"""layer_{i}.""" , f"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowercase__ : Union[str, Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowercase__ : List[str] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowercase__ : Dict = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowercase__ : str = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowercase__ : Optional[Any] = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowercase__ : Optional[int] = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowercase__ : List[Any] = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowercase__ : List[str] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowercase__ : Dict = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if f""".{i}.{j}.""" in name:
lowercase__ : Optional[int] = name.replace(f""".{i}.{j}.""" , f""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if f""".{i}.{j}.""" in name:
lowercase__ : str = name.replace(f""".{i}.{j}.""" , f""".{i}.""" )
if "expand_1x1" in name:
lowercase__ : Optional[Any] = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowercase__ : Union[str, Any] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowercase__ : Tuple = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if f""".global_rep.{i}.weight""" in name:
lowercase__ : Optional[Any] = name.replace(f""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if f""".global_rep.{i}.bias""" in name:
lowercase__ : Any = name.replace(f""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowercase__ : int = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowercase__ : Union[str, Any] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowercase__ : Any = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowercase__ : str = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowercase__ : Any = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowercase__ : int = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowercase__ : List[str] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowercase__ : List[str] = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowercase__ : Tuple = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowercase__ : Optional[int] = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowercase__ : Tuple = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowercase__ : Dict = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowercase__ : Optional[Any] = '''mobilevit.''' + name
return name
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Tuple:
if base_model:
lowercase__ : Optional[Any] = ''''''
else:
lowercase__ : Tuple = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(__lowerCamelCase )
if key[:8] == "encoder.":
lowercase__ : Dict = key[8:]
if "qkv" in key:
lowercase__ : Union[str, Any] = key.split('''.''' )
lowercase__ : Optional[Any] = int(key_split[0][6:] ) - 1
lowercase__ : Union[str, Any] = int(key_split[3] )
lowercase__ : List[Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" )
lowercase__ : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowercase__ : Any = (
f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowercase__ : str = val[:dim, :]
lowercase__ : Union[str, Any] = val[dim : dim * 2, :]
lowercase__ : Union[str, Any] = val[-dim:, :]
else:
lowercase__ : List[Any] = val[:dim]
lowercase__ : Tuple = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
else:
lowercase__ : Any = val
return orig_state_dict
def __UpperCAmelCase ( ) -> str:
lowercase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase__ : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Dict:
lowercase__ : Any = get_mobilevit_config(__lowerCamelCase )
# load original state_dict
lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowercase__ : Dict = MobileViTForSemanticSegmentation(__lowerCamelCase ).eval()
else:
lowercase__ : Optional[Any] = MobileViTForImageClassification(__lowerCamelCase ).eval()
lowercase__ : Optional[Any] = convert_state_dict(__lowerCamelCase , __lowerCamelCase )
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowercase__ : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowercase__ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowercase__ : List[str] = model(**__lowerCamelCase )
lowercase__ : Dict = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowercase__ : str = torch.tensor(
[
[[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]],
[[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]],
[[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowercase__ : List[str] = torch.tensor(
[
[[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]],
[[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]],
[[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowercase__ : Union[str, Any] = torch.tensor(
[
[[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.8_6_2_4, -9.5_9_6_4], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]],
] )
else:
raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , __lowerCamelCase , atol=1E-4 )
else:
assert logits.shape == (1, 10_00)
if mobilevit_name == "mobilevit_s":
lowercase__ : Dict = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] )
elif mobilevit_name == "mobilevit_xs":
lowercase__ : Optional[Any] = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] )
elif mobilevit_name == "mobilevit_xxs":
lowercase__ : List[Any] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] )
else:
raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
lowercase__ : Union[str, Any] = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowercase__ : Optional[int] = model_mapping[mobilevit_name]
image_processor.push_to_hub(__lowerCamelCase , organization='''apple''' )
model.push_to_hub(__lowerCamelCase , organization='''apple''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--mobilevit_name',
default='mobilevit_s',
type=str,
help=(
'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','
' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'
),
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
lowerCAmelCase_ = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 369
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]:
lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowercase__ : Dict = [3, 3, 3, 3]
lowercase__ : str = [5, 5, 5, 5]
elif "fl4" in model_name:
lowercase__ : List[str] = [4, 4, 4, 4]
lowercase__ : Any = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
if "lrf" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
else:
lowercase__ : Optional[Any] = [2, 2, 2, 2]
if "tiny" in model_name:
lowercase__ : Optional[int] = 96
elif "small" in model_name:
lowercase__ : Union[str, Any] = 96
elif "base" in model_name:
lowercase__ : Tuple = 1_28
elif "large" in model_name:
lowercase__ : Any = 1_92
elif "xlarge" in model_name:
lowercase__ : Any = 2_56
elif "huge" in model_name:
lowercase__ : Union[str, Any] = 3_52
# set label information
lowercase__ : List[Any] = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowercase__ : Optional[int] = '''imagenet-22k-id2label.json'''
else:
lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json'''
lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()}
lowercase__ : int = FocalNetConfig(
embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , )
return config
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
if "patch_embed.proj" in name:
lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
lowercase__ : Dict = '''encoder.''' + name
if "encoder.layers" in name:
lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' )
if "downsample.proj" in name:
lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' )
if "blocks" in name:
lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' )
if name == "norm.weight":
lowercase__ : Dict = '''layernorm.weight'''
if name == "norm.bias":
lowercase__ : Dict = '''layernorm.bias'''
if "head" in name:
lowercase__ : Dict = name.replace('''head''' , '''classifier''' )
else:
lowercase__ : List[Any] = '''focalnet.''' + name
return name
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]:
# fmt: off
lowercase__ : Any = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowercase__ : Optional[int] = model_name_to_url[model_name]
print('''Checkpoint URL: ''' , __lowerCamelCase )
lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowercase__ : int = state_dict.pop(__lowerCamelCase )
lowercase__ : Any = val
lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase )
lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase )
model.eval()
# load state dict
model.load_state_dict(__lowerCamelCase )
# verify conversion
lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase__ : int = BitImageProcessor(
do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , )
lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' )
lowercase__ : List[str] = transforms.Compose(
[
transforms.Resize(2_56 ),
transforms.CenterCrop(2_24 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 )
lowercase__ : Optional[Any] = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(f"""{model_name}""" )
processor.push_to_hub(f"""{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='focalnet-tiny',
type=str,
help='Name of the FocalNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub.',
)
lowerCAmelCase_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
"""simple docstring"""
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase_ = ''
lowerCAmelCase_ = ''
lowerCAmelCase_ = ''
lowerCAmelCase_ = 1 # (0 is vertical, 1 is horizontal)
def __UpperCAmelCase ( ) -> None:
lowercase__ : List[Any] = get_dataset(__lowerCamelCase , __lowerCamelCase )
print('''Processing...''' )
lowercase__ : Optional[Any] = update_image_and_anno(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for index, image in enumerate(__lowerCamelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowercase__ : str = random_chars(32 )
lowercase__ : int = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
lowercase__ : Dict = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Success {index+1}/{len(__lowerCamelCase )} with {file_name}""" )
lowercase__ : Optional[int] = []
for anno in new_annos[index]:
lowercase__ : Tuple = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(__lowerCamelCase )
with open(f"""/{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
lowercase__ : Dict = []
lowercase__ : Tuple = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , '''*.txt''' ) ):
lowercase__ : str = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCamelCase ) as in_file:
lowercase__ : Any = in_file.readlines()
lowercase__ : str = os.path.join(__lowerCamelCase , f"""{label_name}.jpg""" )
lowercase__ : Optional[Any] = []
for obj_list in obj_lists:
lowercase__ : Dict = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 ) -> tuple[list, list, list]:
lowercase__ : Union[str, Any] = []
lowercase__ : Union[str, Any] = []
lowercase__ : Optional[Any] = []
for idx in range(len(__lowerCamelCase ) ):
lowercase__ : Any = []
lowercase__ : Tuple = img_list[idx]
path_list.append(__lowerCamelCase )
lowercase__ : List[str] = anno_list[idx]
lowercase__ : Tuple = cva.imread(__lowerCamelCase )
if flip_type == 1:
lowercase__ : Optional[int] = cva.flip(__lowerCamelCase , __lowerCamelCase )
for bbox in img_annos:
lowercase__ : List[str] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
lowercase__ : Optional[int] = cva.flip(__lowerCamelCase , __lowerCamelCase )
for bbox in img_annos:
lowercase__ : str = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCamelCase )
new_imgs_list.append(__lowerCamelCase )
return new_imgs_list, new_annos_lists, path_list
def __UpperCAmelCase ( __lowerCamelCase = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
lowercase__ : Tuple = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print('DONE ✅')
| 370
|
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"]
lowerCAmelCase : int = "ChineseCLIPImageProcessor"
lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any:
"""simple docstring"""
lowercase__ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' ,_snake_case ,)
lowercase__ : Tuple = kwargs.pop('''feature_extractor''' )
lowercase__ : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_snake_case ,_snake_case )
lowercase__ : List[Any] = self.image_processor
def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if images is not None:
lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if text is not None and images is not None:
lowercase__ : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case )
def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.tokenizer.model_input_names
lowercase__ : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,)
return self.image_processor_class
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_mask2former': [
'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Mask2FormerConfig',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Mask2FormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'Mask2FormerForUniversalSegmentation',
'Mask2FormerModel',
'Mask2FormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 371
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase_ = {
'configuration_blip': [
'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlipConfig',
'BlipTextConfig',
'BlipVisionConfig',
],
'processing_blip': ['BlipProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['BlipImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlipModel',
'BlipPreTrainedModel',
'BlipForConditionalGeneration',
'BlipForQuestionAnswering',
'BlipVisionModel',
'BlipTextModel',
'BlipForImageTextRetrieval',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFBlipModel',
'TFBlipPreTrainedModel',
'TFBlipForConditionalGeneration',
'TFBlipForQuestionAnswering',
'TFBlipVisionModel',
'TFBlipTextModel',
'TFBlipForImageTextRetrieval',
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 350
|
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,)
lowerCAmelCase : int = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __UpperCAmelCase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
lowercase__ : str = import_module('''tasks''' )
try:
lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels )
lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) )
lowercase__ : Optional[int] = len(__lowerCamelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , )
lowercase__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ : str = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]:
lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 )
lowercase__ , lowercase__ : Tuple = preds.shape
lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )]
lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )]
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__lowerCamelCase ) -> Dict:
lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
# Data collator
lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ : str = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ : int = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ : Optional[int] = trainer.evaluate()
lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__lowerCamelCase )
# Predict
if training_args.do_predict:
lowercase__ : Optional[int] = TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase )
lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return results
def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = value_function
lowercase__ : Optional[int] = unet
lowercase__ : Tuple = scheduler
lowercase__ : Dict = env
lowercase__ : int = env.get_dataset()
lowercase__ : Dict = {}
for key in self.data.keys():
try:
lowercase__ : Optional[Any] = self.data[key].mean()
except: # noqa: E722
pass
lowercase__ : List[Any] = {}
for key in self.data.keys():
try:
lowercase__ : str = self.data[key].std()
except: # noqa: E722
pass
lowercase__ : Tuple = env.observation_space.shape[0]
lowercase__ : Optional[int] = env.action_space.shape[0]
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
if type(_snake_case ) is dict:
return {k: self.to_torch(_snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(_snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(_snake_case ,device=self.unet.device )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
for key, val in cond.items():
lowercase__ : List[Any] = val.clone()
return x_in
def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = x.shape[0]
lowercase__ : Dict = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long )
for _ in range(_snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample
lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0]
lowercase__ : List[str] = self.scheduler._get_variance(_snake_case )
lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance )
lowercase__ : Optional[int] = model_std * grad
lowercase__ : Optional[Any] = 0
lowercase__ : str = x.detach()
lowercase__ : Dict = x + scale * grad
lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 )
# TODO: verify deprecation of this kwarg
lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.to_torch(_snake_case )
return x, y
def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]:
"""simple docstring"""
lowercase__ : Any = self.normalize(_snake_case ,'''observations''' )
lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 )
lowercase__ : Dict = {0: self.to_torch(_snake_case )}
lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device )
lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : str = self.to_torch(_snake_case )
# run the diffusion process
lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case )
# sort output trajectories by value
lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze()
lowercase__ : str = x[sorted_idx]
lowercase__ : str = sorted_values[:, :, : self.action_dim]
lowercase__ : Optional[int] = actions.detach().cpu().numpy()
lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' )
# select the action with the highest value
if y is not None:
lowercase__ : str = 0
else:
# if we didn't run value guiding, select a random action
lowercase__ : str = np.random.randint(0 ,_snake_case )
lowercase__ : int = denorm_actions[selected_index, 0]
return denorm_actions
| 351
|
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : Dict = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : List[str] = 16
elif accelerator.mixed_precision != "no":
lowercase__ : List[Any] = 8
else:
lowercase__ : Optional[int] = None
return tokenizer.pad(
__lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ : Dict = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
lowercase__ : Union[str, Any] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1":
lowercase__ : Any = 2
# Initialize accelerator
lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : List[Any] = config['''lr''']
lowercase__ : Union[str, Any] = int(config['''num_epochs'''] )
lowercase__ : List[str] = int(config['''seed'''] )
lowercase__ : Any = int(config['''batch_size'''] )
lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__lowerCamelCase )
def inner_training_loop(__lowerCamelCase ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : str = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase )
lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate scheduler
lowercase__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ : int = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.loss
accelerator.backward(__lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : Tuple = model(**__lowerCamelCase )
lowercase__ : Dict = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
lowercase__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ : Union[str, Any] = parser.parse_args()
lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __A ( A_ ,A_ ):
'''simple docstring'''
@register_to_config
def __init__( self : int ,_snake_case : int = 128 ,_snake_case : int = 256 ,_snake_case : float = 2000.0 ,_snake_case : int = 768 ,_snake_case : int = 12 ,_snake_case : int = 12 ,_snake_case : int = 64 ,_snake_case : int = 2_048 ,_snake_case : float = 0.1 ,) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ : str = nn.Sequential(
nn.Linear(_snake_case ,d_model * 4 ,bias=_snake_case ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_snake_case ) ,nn.SiLU() ,)
lowercase__ : int = nn.Embedding(_snake_case ,_snake_case )
lowercase__ : Optional[int] = False
lowercase__ : List[str] = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case )
lowercase__ : Dict = nn.Dropout(p=_snake_case )
lowercase__ : Union[str, Any] = nn.ModuleList()
for lyr_num in range(_snake_case ):
# FiLM conditional T5 decoder
lowercase__ : int = DecoderLayer(d_model=_snake_case ,d_kv=_snake_case ,num_heads=_snake_case ,d_ff=_snake_case ,dropout_rate=_snake_case )
self.decoders.append(_snake_case )
lowercase__ : Optional[int] = TaLayerNorm(_snake_case )
lowercase__ : int = nn.Dropout(p=_snake_case )
lowercase__ : List[Any] = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case )
def UpperCAmelCase ( self : str ,_snake_case : List[Any] ,_snake_case : Union[str, Any] ) -> Dict:
"""simple docstring"""
lowercase__ : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def UpperCAmelCase ( self : List[str] ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
lowercase__ : str = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype )
lowercase__ : int = self.conditioning_emb(_snake_case ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
lowercase__ : List[str] = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
lowercase__ : List[Any] = torch.broadcast_to(
torch.arange(_snake_case ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,)
lowercase__ : Union[str, Any] = self.position_encoding(_snake_case )
lowercase__ : Optional[Any] = self.continuous_inputs_projection(_snake_case )
inputs += position_encodings
lowercase__ : List[Any] = self.dropout(_snake_case )
# decoder: No padding present.
lowercase__ : Tuple = torch.ones(
decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
lowercase__ : Tuple = [(x, self.encoder_decoder_mask(_snake_case ,_snake_case )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
lowercase__ : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 )
lowercase__ : str = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 )
for lyr in self.decoders:
lowercase__ : int = lyr(
_snake_case ,conditioning_emb=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,)[0]
lowercase__ : Dict = self.decoder_norm(_snake_case )
lowercase__ : Union[str, Any] = self.post_dropout(_snake_case )
lowercase__ : int = self.spec_out(_snake_case )
return spec_out
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : str ,_snake_case : Optional[int] ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int=1e-6 ) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Union[str, Any] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=_snake_case ,d_kv=_snake_case ,num_heads=_snake_case ,dropout_rate=_snake_case ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=_snake_case ,d_kv=_snake_case ,num_heads=_snake_case ,dropout_rate=_snake_case ,layer_norm_epsilon=_snake_case ,) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=_snake_case ,d_ff=_snake_case ,dropout_rate=_snake_case ,layer_norm_epsilon=_snake_case ) )
def UpperCAmelCase ( self : int ,_snake_case : int ,_snake_case : Optional[Any]=None ,_snake_case : str=None ,_snake_case : List[str]=None ,_snake_case : Dict=None ,_snake_case : List[str]=None ,) -> List[Any]:
"""simple docstring"""
lowercase__ : List[Any] = self.layer[0](
_snake_case ,conditioning_emb=_snake_case ,attention_mask=_snake_case ,)
if encoder_hidden_states is not None:
lowercase__ : Union[str, Any] = torch.where(encoder_attention_mask > 0 ,0 ,-1e10 ).to(
encoder_hidden_states.dtype )
lowercase__ : int = self.layer[1](
_snake_case ,key_value_states=_snake_case ,attention_mask=_snake_case ,)
# Apply Film Conditional Feed Forward layer
lowercase__ : List[Any] = self.layer[-1](_snake_case ,_snake_case )
return (hidden_states,)
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : Any ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ : List[str] = TaLayerNorm(_snake_case )
lowercase__ : str = TaFiLMLayer(in_features=d_model * 4 ,out_features=_snake_case )
lowercase__ : str = Attention(query_dim=_snake_case ,heads=_snake_case ,dim_head=_snake_case ,out_bias=_snake_case ,scale_qk=_snake_case )
lowercase__ : Optional[Any] = nn.Dropout(_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : List[Any] ,_snake_case : Optional[Any]=None ,_snake_case : Union[str, Any]=None ,) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : int = self.layer_norm(_snake_case )
if conditioning_emb is not None:
lowercase__ : int = self.FiLMLayer(_snake_case ,_snake_case )
# Self-attention block
lowercase__ : Union[str, Any] = self.attention(_snake_case )
lowercase__ : List[Any] = hidden_states + self.dropout(_snake_case )
return hidden_states
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : List[Any] ,_snake_case : Tuple ,_snake_case : str ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[Any] = Attention(query_dim=_snake_case ,heads=_snake_case ,dim_head=_snake_case ,out_bias=_snake_case ,scale_qk=_snake_case )
lowercase__ : List[Any] = TaLayerNorm(_snake_case ,eps=_snake_case )
lowercase__ : List[str] = nn.Dropout(_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : str ,_snake_case : str=None ,_snake_case : Optional[Any]=None ,) -> Tuple:
"""simple docstring"""
lowercase__ : Tuple = self.layer_norm(_snake_case )
lowercase__ : List[Any] = self.attention(
_snake_case ,encoder_hidden_states=_snake_case ,attention_mask=attention_mask.squeeze(1 ) ,)
lowercase__ : Union[str, Any] = hidden_states + self.dropout(_snake_case )
return layer_output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : Tuple ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
super().__init__()
lowercase__ : List[str] = TaDenseGatedActDense(d_model=_snake_case ,d_ff=_snake_case ,dropout_rate=_snake_case )
lowercase__ : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_snake_case )
lowercase__ : Tuple = TaLayerNorm(_snake_case ,eps=_snake_case )
lowercase__ : str = nn.Dropout(_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : List[str]=None ) -> Any:
"""simple docstring"""
lowercase__ : Optional[Any] = self.layer_norm(_snake_case )
if conditioning_emb is not None:
lowercase__ : str = self.film(_snake_case ,_snake_case )
lowercase__ : Dict = self.DenseReluDense(_snake_case )
lowercase__ : str = hidden_states + self.dropout(_snake_case )
return hidden_states
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] ,_snake_case : Any ,_snake_case : str ,_snake_case : Optional[Any] ) -> int:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case )
lowercase__ : Dict = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case )
lowercase__ : Tuple = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case )
lowercase__ : Dict = nn.Dropout(_snake_case )
lowercase__ : Optional[Any] = NewGELUActivation()
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ) -> List[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.act(self.wi_a(_snake_case ) )
lowercase__ : Any = self.wi_a(_snake_case )
lowercase__ : str = hidden_gelu * hidden_linear
lowercase__ : Any = self.dropout(_snake_case )
lowercase__ : int = self.wo(_snake_case )
return hidden_states
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] ,_snake_case : Any ,_snake_case : Union[str, Any]=1e-6 ) -> List[str]:
"""simple docstring"""
super().__init__()
lowercase__ : str = nn.Parameter(torch.ones(_snake_case ) )
lowercase__ : List[Any] = eps
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Dict = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_snake_case )
lowercase__ : Union[str, Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
lowercase__ : Optional[Any] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __A ( nn.Module ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(_snake_case ,3.0 )) ))
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : Any ,_snake_case : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Linear(_snake_case ,out_features * 2 ,bias=_snake_case )
def UpperCAmelCase ( self : int ,_snake_case : Any ,_snake_case : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ : str = self.scale_bias(_snake_case )
lowercase__ : Optional[Any] = torch.chunk(_snake_case ,2 ,-1 )
lowercase__ : Union[str, Any] = x * (1 + scale) + shift
return x
| 352
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case )
lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' )
lowercase__ : Tuple = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
lowercase__ : Optional[int] = model.generate(**_snake_case )
lowercase__ : List[Any] = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
lowercase__ : int = model_reloaded.generate(**_snake_case )
self.assertTrue(torch.allclose(_snake_case ,_snake_case ) )
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : Union[str, Any] = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_snake_case ):
model.save_pretrained(_snake_case )
lowercase__ : int = model.reverse_bettertransformer()
model.save_pretrained(_snake_case )
| 302
| 0
|
"""simple docstring"""
import argparse
import struct
import unittest
class __A :
'''simple docstring'''
def __init__( self : int ,_snake_case : bytes ) -> None:
"""simple docstring"""
lowercase__ : Tuple = data
# Initialize hash values
lowercase__ : str = [
0X6_A_0_9_E_6_6_7,
0XB_B_6_7_A_E_8_5,
0X3_C_6_E_F_3_7_2,
0XA_5_4_F_F_5_3_A,
0X5_1_0_E_5_2_7_F,
0X9_B_0_5_6_8_8_C,
0X1_F_8_3_D_9_A_B,
0X5_B_E_0_C_D_1_9,
]
# Initialize round constants
lowercase__ : List[Any] = [
0X4_2_8_A_2_F_9_8,
0X7_1_3_7_4_4_9_1,
0XB_5_C_0_F_B_C_F,
0XE_9_B_5_D_B_A_5,
0X3_9_5_6_C_2_5_B,
0X5_9_F_1_1_1_F_1,
0X9_2_3_F_8_2_A_4,
0XA_B_1_C_5_E_D_5,
0XD_8_0_7_A_A_9_8,
0X1_2_8_3_5_B_0_1,
0X2_4_3_1_8_5_B_E,
0X5_5_0_C_7_D_C_3,
0X7_2_B_E_5_D_7_4,
0X8_0_D_E_B_1_F_E,
0X9_B_D_C_0_6_A_7,
0XC_1_9_B_F_1_7_4,
0XE_4_9_B_6_9_C_1,
0XE_F_B_E_4_7_8_6,
0X0_F_C_1_9_D_C_6,
0X2_4_0_C_A_1_C_C,
0X2_D_E_9_2_C_6_F,
0X4_A_7_4_8_4_A_A,
0X5_C_B_0_A_9_D_C,
0X7_6_F_9_8_8_D_A,
0X9_8_3_E_5_1_5_2,
0XA_8_3_1_C_6_6_D,
0XB_0_0_3_2_7_C_8,
0XB_F_5_9_7_F_C_7,
0XC_6_E_0_0_B_F_3,
0XD_5_A_7_9_1_4_7,
0X0_6_C_A_6_3_5_1,
0X1_4_2_9_2_9_6_7,
0X2_7_B_7_0_A_8_5,
0X2_E_1_B_2_1_3_8,
0X4_D_2_C_6_D_F_C,
0X5_3_3_8_0_D_1_3,
0X6_5_0_A_7_3_5_4,
0X7_6_6_A_0_A_B_B,
0X8_1_C_2_C_9_2_E,
0X9_2_7_2_2_C_8_5,
0XA_2_B_F_E_8_A_1,
0XA_8_1_A_6_6_4_B,
0XC_2_4_B_8_B_7_0,
0XC_7_6_C_5_1_A_3,
0XD_1_9_2_E_8_1_9,
0XD_6_9_9_0_6_2_4,
0XF_4_0_E_3_5_8_5,
0X1_0_6_A_A_0_7_0,
0X1_9_A_4_C_1_1_6,
0X1_E_3_7_6_C_0_8,
0X2_7_4_8_7_7_4_C,
0X3_4_B_0_B_C_B_5,
0X3_9_1_C_0_C_B_3,
0X4_E_D_8_A_A_4_A,
0X5_B_9_C_C_A_4_F,
0X6_8_2_E_6_F_F_3,
0X7_4_8_F_8_2_E_E,
0X7_8_A_5_6_3_6_F,
0X8_4_C_8_7_8_1_4,
0X8_C_C_7_0_2_0_8,
0X9_0_B_E_F_F_F_A,
0XA_4_5_0_6_C_E_B,
0XB_E_F_9_A_3_F_7,
0XC_6_7_1_7_8_F_2,
]
lowercase__ : int = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCAmelCase ( _snake_case : bytes ) -> bytes:
"""simple docstring"""
lowercase__ : Union[str, Any] = b'''\x80''' + (b'''\x00''' * (63 - (len(_snake_case ) + 8) % 64))
lowercase__ : int = struct.pack('''>Q''' ,(len(_snake_case ) * 8) )
return data + padding + big_endian_integer
def UpperCAmelCase ( self : List[Any] ) -> None:
"""simple docstring"""
lowercase__ : int = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowercase__ : List[str] = list(struct.unpack('''>16L''' ,_snake_case ) )
# add 48 0-ed integers
words += [0] * 48
lowercase__ : str = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowercase__ : Optional[int] = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowercase__ : Union[str, Any] = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowercase__ : int = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X1_0_0_0_0_0_0_0_0
# Compression
lowercase__ : List[Any] = self.ror(_snake_case ,6 ) ^ self.ror(_snake_case ,11 ) ^ self.ror(_snake_case ,25 )
lowercase__ : Union[str, Any] = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g)
lowercase__ : str = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_0_0_0_0_0_0_0_0
lowercase__ : Tuple = self.ror(_snake_case ,2 ) ^ self.ror(_snake_case ,13 ) ^ self.ror(_snake_case ,22 )
lowercase__ : List[str] = (a & b) ^ (a & c) ^ (b & c)
lowercase__ : List[str] = (sa + maj) % 0X1_0_0_0_0_0_0_0_0
lowercase__ : Union[str, Any] = (
g,
f,
e,
((d + tempa) % 0X1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0),
)
lowercase__ : Optional[Any] = [a, b, c, d, e, f, g, h]
# Modify final values
lowercase__ : int = [
((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
lowercase__ : Dict = ''''''.join([hex(_snake_case )[2:].zfill(8 ) for value in self.hashes] )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ) -> int:
"""simple docstring"""
return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : int ) -> None:
"""simple docstring"""
import hashlib
lowercase__ : List[str] = bytes('''Test String''' ,'''utf-8''' )
self.assertEqual(SHAaaa(_snake_case ).hash ,hashlib.shaaaa(_snake_case ).hexdigest() )
def __UpperCAmelCase ( ):
import doctest
doctest.testmod()
lowercase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , )
parser.add_argument(
'''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' )
lowercase__ : List[Any] = parser.parse_args()
lowercase__ : List[str] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , '''rb''' ) as f:
lowercase__ : Dict = f.read()
else:
lowercase__ : Optional[int] = bytes(__lowerCamelCase , '''utf-8''' )
print(SHAaaa(__lowerCamelCase ).hash )
if __name__ == "__main__":
main()
| 353
|
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
return flax_state_dict
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool:
return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : Optional[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
lowercase__ : List[str] = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
# convert pytorch tensor to numpy
lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : List[Any] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
lowercase__ : str = flax_model.params['''params''']
else:
lowercase__ : Optional[int] = flax_model.params
lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(__lowerCamelCase )
lowercase__ : int = {}
lowercase__ : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
lowercase__ : int = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : Tuple = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Any = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import torch
# Load the index
lowercase__ : Dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
lowercase__ : Optional[int] = torch.load(__lowerCamelCase )
lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : Dict = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Optional[Any] = flax_model.params['''params''']
lowercase__ : List[Any] = flatten_dict(__lowerCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
lowercase__ : Union[str, Any] = flax_model.params
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : Tuple = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : List[str] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Tuple = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : List[str] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
continue
if "var" in flax_key[-1]:
lowercase__ : str = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : List[str] = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(__lowerCamelCase , '''rb''' ) as state_f:
try:
lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values()
if any(__lowerCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
lowercase__ : Union[str, Any] = jax.tree_util.tree_map(
lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase )
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : List[str] = pt_model.state_dict()
lowercase__ : int = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
lowercase__ : List[str] = []
lowercase__ : Tuple = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix
lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict:
# conv layer
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict:
# linear layer
lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
lowercase__ : Dict = '''.'''.join(__lowerCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
lowercase__ : Optional[int] = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
lowercase__ : str = key.split('''.''' )
lowercase__ : Optional[Any] = None
if key_components[-3::2] == ["parametrizations", "original0"]:
lowercase__ : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
lowercase__ : str = key_components[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[int] = key_components[:-3] + [name]
lowercase__ : List[str] = '''.'''.join(__lowerCamelCase )
lowercase__ : List[Any] = key
if flax_key in special_pt_names:
lowercase__ : Any = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor
lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase )
# remove from missing keys
missing_keys.remove(__lowerCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCamelCase )
pt_model.load_state_dict(__lowerCamelCase )
# re-transform missing_keys to list
lowercase__ : Optional[Any] = list(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(__lowerCamelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
'''If your task is similar to the task the model of the checkpoint was trained on, '''
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 302
| 0
|
"""simple docstring"""
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class __A ( A_ ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_snake_case ,'''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(_snake_case ,'''num_attention_heads''' ) )
self.parent.assertTrue(hasattr(_snake_case ,'''num_encoder_blocks''' ) )
class __A :
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : List[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Optional[Any]=64 ,_snake_case : Dict=3 ,_snake_case : Dict=4 ,_snake_case : int=[2, 2, 2, 2] ,_snake_case : str=[8, 4, 2, 1] ,_snake_case : List[str]=[16, 32, 64, 128] ,_snake_case : Any=[1, 4, 8, 16] ,_snake_case : Dict=[1, 2, 4, 8] ,_snake_case : List[Any]=True ,_snake_case : Tuple=True ,_snake_case : Any="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Optional[Any]=0.1 ,_snake_case : Optional[int]=0.02 ,_snake_case : List[str]=3 ,_snake_case : str=None ,) -> List[Any]:
"""simple docstring"""
lowercase__ : Optional[int] = parent
lowercase__ : Dict = batch_size
lowercase__ : Tuple = image_size
lowercase__ : str = num_channels
lowercase__ : int = num_encoder_blocks
lowercase__ : List[Any] = sr_ratios
lowercase__ : str = depths
lowercase__ : str = hidden_sizes
lowercase__ : Dict = downsampling_rates
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : Optional[Any] = is_training
lowercase__ : Any = use_labels
lowercase__ : List[Any] = hidden_act
lowercase__ : str = hidden_dropout_prob
lowercase__ : Dict = attention_probs_dropout_prob
lowercase__ : List[str] = initializer_range
lowercase__ : Tuple = num_labels
lowercase__ : List[Any] = scope
def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : str = None
if self.use_labels:
lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
lowercase__ : str = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
return SegformerConfig(
image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCAmelCase ( self : List[Any] ,_snake_case : Dict ,_snake_case : Any ,_snake_case : Tuple ) -> Any:
"""simple docstring"""
lowercase__ : List[str] = SegformerModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : List[Any] = model(_snake_case )
lowercase__ : Dict = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def UpperCAmelCase ( self : Any ,_snake_case : Any ,_snake_case : str ,_snake_case : List[Any] ) -> Dict:
"""simple docstring"""
lowercase__ : Optional[int] = self.num_labels
lowercase__ : Union[str, Any] = SegformerForSemanticSegmentation(_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : Tuple = model(_snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
lowercase__ : Any = model(_snake_case ,labels=_snake_case )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss ,0.0 )
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : str ,_snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowercase__ : Any = 1
lowercase__ : int = SegformerForSemanticSegmentation(config=_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : Union[str, Any] = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(_snake_case )
lowercase__ : Any = model(_snake_case ,labels=_snake_case )
self.parent.assertGreater(result.loss ,0.0 )
def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
lowercase__ : int = self.prepare_config_and_inputs()
lowercase__ : Tuple = config_and_inputs
lowercase__ : str = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __A ( A_ ,A_ ,unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : Tuple = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
lowerCAmelCase : Union[str, Any] = (
{
"feature-extraction": SegformerModel,
"image-classification": SegformerForImageClassification,
"image-segmentation": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase : List[str] = True
lowerCAmelCase : str = False
lowerCAmelCase : Optional[Any] = False
lowerCAmelCase : str = False
def UpperCAmelCase ( self : int ) -> Any:
"""simple docstring"""
lowercase__ : List[Any] = SegformerModelTester(self )
lowercase__ : Dict = SegformerConfigTester(self ,config_class=_snake_case )
def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : str ) -> str:
"""simple docstring"""
lowercase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case )
def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*_snake_case )
@unittest.skip('''SegFormer does not use inputs_embeds''' )
def UpperCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
pass
@unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' )
def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : str = model_class(_snake_case )
lowercase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Any = [*signature.parameters.keys()]
lowercase__ : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : Tuple = True
for model_class in self.all_model_classes:
lowercase__ : Tuple = True
lowercase__ : int = False
lowercase__ : Optional[int] = True
lowercase__ : Optional[int] = model_class(_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowercase__ : Any = model(**self._prepare_for_class(_snake_case ,_snake_case ) )
lowercase__ : List[Any] = outputs.attentions
lowercase__ : Optional[Any] = sum(self.model_tester.depths )
self.assertEqual(len(_snake_case ) ,_snake_case )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowercase__ : Union[str, Any] = True
lowercase__ : Optional[Any] = model_class(_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) )
lowercase__ : Dict = outputs.attentions
self.assertEqual(len(_snake_case ) ,_snake_case )
# verify the first attentions (first block, first layer)
lowercase__ : Union[str, Any] = (self.model_tester.image_size // 4) ** 2
lowercase__ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,)
# verify the last attentions (last block, last layer)
lowercase__ : List[str] = (self.model_tester.image_size // 32) ** 2
lowercase__ : List[Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,)
lowercase__ : Optional[int] = len(_snake_case )
# Check attention is always last and order is fine
lowercase__ : str = True
lowercase__ : Dict = True
lowercase__ : Dict = model_class(_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowercase__ : Any = model(**self._prepare_for_class(_snake_case ,_snake_case ) )
self.assertEqual(out_len + 1 ,len(_snake_case ) )
lowercase__ : str = outputs.attentions
self.assertEqual(len(_snake_case ) ,_snake_case )
# verify the first attentions (first block, first layer)
lowercase__ : List[str] = (self.model_tester.image_size // 4) ** 2
lowercase__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,)
def UpperCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
def check_hidden_states_output(_snake_case : List[Any] ,_snake_case : Dict ,_snake_case : Tuple ):
lowercase__ : List[str] = model_class(_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) )
lowercase__ : Tuple = outputs.hidden_states
lowercase__ : Dict = self.model_tester.num_encoder_blocks
self.assertEqual(len(_snake_case ) ,_snake_case )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) ,[
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] ,)
lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : List[str] = True
check_hidden_states_output(_snake_case ,_snake_case ,_snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : str = True
check_hidden_states_output(_snake_case ,_snake_case ,_snake_case )
def UpperCAmelCase ( self : Any ) -> str:
"""simple docstring"""
if not self.model_tester.is_training:
return
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : int = True
for model_class in self.all_model_classes:
if model_class in get_values(_snake_case ):
continue
lowercase__ : Union[str, Any] = model_class(_snake_case )
model.to(_snake_case )
model.train()
lowercase__ : List[Any] = self._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case )
lowercase__ : int = model(**_snake_case ).loss
loss.backward()
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
pass
@slow
def UpperCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Optional[int] = SegformerModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
lowercase__ : List[str] = SegformerImageProcessor(
image_scale=(512, 512) ,keep_ratio=_snake_case ,align=_snake_case ,do_random_crop=_snake_case )
lowercase__ : Dict = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
_snake_case )
lowercase__ : Dict = prepare_img()
lowercase__ : int = image_processor(images=_snake_case ,return_tensors='''pt''' )
lowercase__ : Dict = encoded_inputs.pixel_values.to(_snake_case )
with torch.no_grad():
lowercase__ : Optional[Any] = model(_snake_case )
lowercase__ : Optional[int] = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape ,_snake_case )
lowercase__ : List[Any] = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_snake_case ,atol=1e-4 ) )
@slow
def UpperCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
lowercase__ : Any = SegformerImageProcessor(
image_scale=(512, 512) ,keep_ratio=_snake_case ,align=_snake_case ,do_random_crop=_snake_case )
lowercase__ : str = SegformerForSemanticSegmentation.from_pretrained(
'''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(_snake_case )
lowercase__ : List[Any] = prepare_img()
lowercase__ : Optional[int] = image_processor(images=_snake_case ,return_tensors='''pt''' )
lowercase__ : Any = encoded_inputs.pixel_values.to(_snake_case )
with torch.no_grad():
lowercase__ : Dict = model(_snake_case )
lowercase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape ,_snake_case )
lowercase__ : Any = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_snake_case ,atol=1e-1 ) )
@slow
def UpperCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
lowercase__ : int = SegformerImageProcessor(
image_scale=(512, 512) ,keep_ratio=_snake_case ,align=_snake_case ,do_random_crop=_snake_case )
lowercase__ : Optional[int] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
_snake_case )
lowercase__ : Union[str, Any] = prepare_img()
lowercase__ : Optional[int] = image_processor(images=_snake_case ,return_tensors='''pt''' )
lowercase__ : int = encoded_inputs.pixel_values.to(_snake_case )
with torch.no_grad():
lowercase__ : Any = model(_snake_case )
lowercase__ : Dict = outputs.logits.detach().cpu()
lowercase__ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_snake_case ,target_sizes=[(500, 300)] )
lowercase__ : Tuple = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape ,_snake_case )
lowercase__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_snake_case )
lowercase__ : Union[str, Any] = torch.Size((128, 128) )
self.assertEqual(segmentation[0].shape ,_snake_case )
| 354
|
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = value_function
lowercase__ : Optional[int] = unet
lowercase__ : Tuple = scheduler
lowercase__ : Dict = env
lowercase__ : int = env.get_dataset()
lowercase__ : Dict = {}
for key in self.data.keys():
try:
lowercase__ : Optional[Any] = self.data[key].mean()
except: # noqa: E722
pass
lowercase__ : List[Any] = {}
for key in self.data.keys():
try:
lowercase__ : str = self.data[key].std()
except: # noqa: E722
pass
lowercase__ : Tuple = env.observation_space.shape[0]
lowercase__ : Optional[int] = env.action_space.shape[0]
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
if type(_snake_case ) is dict:
return {k: self.to_torch(_snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(_snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(_snake_case ,device=self.unet.device )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
for key, val in cond.items():
lowercase__ : List[Any] = val.clone()
return x_in
def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = x.shape[0]
lowercase__ : Dict = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long )
for _ in range(_snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample
lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0]
lowercase__ : List[str] = self.scheduler._get_variance(_snake_case )
lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance )
lowercase__ : Optional[int] = model_std * grad
lowercase__ : Optional[Any] = 0
lowercase__ : str = x.detach()
lowercase__ : Dict = x + scale * grad
lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 )
# TODO: verify deprecation of this kwarg
lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.to_torch(_snake_case )
return x, y
def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]:
"""simple docstring"""
lowercase__ : Any = self.normalize(_snake_case ,'''observations''' )
lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 )
lowercase__ : Dict = {0: self.to_torch(_snake_case )}
lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device )
lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : str = self.to_torch(_snake_case )
# run the diffusion process
lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case )
# sort output trajectories by value
lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze()
lowercase__ : str = x[sorted_idx]
lowercase__ : str = sorted_values[:, :, : self.action_dim]
lowercase__ : Optional[int] = actions.detach().cpu().numpy()
lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' )
# select the action with the highest value
if y is not None:
lowercase__ : str = 0
else:
# if we didn't run value guiding, select a random action
lowercase__ : str = np.random.randint(0 ,_snake_case )
lowercase__ : int = denorm_actions[selected_index, 0]
return denorm_actions
| 302
| 0
|
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
lowercase__ : List[str] = {}
lowercase__ : Union[str, Any] = tokenizer(example['''content'''] , truncation=__lowerCamelCase )['''input_ids''']
lowercase__ : Union[str, Any] = len(example['''content'''] ) / len(output['''input_ids'''] )
return output
lowerCAmelCase_ = HfArgumentParser(PretokenizationArguments)
lowerCAmelCase_ = parser.parse_args()
if args.num_workers is None:
lowerCAmelCase_ = multiprocessing.cpu_count()
lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCAmelCase_ = time.time()
lowerCAmelCase_ = load_dataset(args.dataset_name, split='train')
print(F'''Dataset loaded in {time.time()-t_start:.2f}s''')
lowerCAmelCase_ = time.time()
lowerCAmelCase_ = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'repo_name',
'path',
'copies',
'size',
'content',
'license',
'hash',
'line_mean',
'line_max',
'alpha_frac',
'autogenerated',
],
)
print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''')
lowerCAmelCase_ = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 355
|
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ,id='''sequence''' ),
'''references''': datasets.Value('''string''' ,id='''sequence''' ),
} ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any:
"""simple docstring"""
lowercase__ : Any = compute_mauve(
p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,)
return out
| 302
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
lowercase__ : Optional[int] = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
lowercase__ : Union[str, Any] = 1_28
elif "12-12" in model_name:
lowercase__ : int = 12
lowercase__ : Optional[int] = 12
elif "14-14" in model_name:
lowercase__ : Tuple = 14
lowercase__ : Union[str, Any] = 14
elif "16-16" in model_name:
lowercase__ : List[Any] = 16
lowercase__ : Optional[int] = 16
else:
raise ValueError('''Model not supported''' )
lowercase__ : Any = '''huggingface/label-files'''
if "speech-commands" in model_name:
lowercase__ : Optional[Any] = 35
lowercase__ : Dict = '''speech-commands-v2-id2label.json'''
else:
lowercase__ : List[Any] = 5_27
lowercase__ : str = '''audioset-id2label.json'''
lowercase__ : Union[str, Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : List[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : Tuple = idalabel
lowercase__ : List[str] = {v: k for k, v in idalabel.items()}
return config
def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple:
if "module.v" in name:
lowercase__ : Any = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
lowercase__ : List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
lowercase__ : int = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
lowercase__ : Dict = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
lowercase__ : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
lowercase__ : Union[str, Any] = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
lowercase__ : Dict = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowercase__ : Tuple = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowercase__ : List[Any] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowercase__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowercase__ : str = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowercase__ : List[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
lowercase__ : Dict = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
lowercase__ : Optional[Any] = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
lowercase__ : List[str] = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
for key in orig_state_dict.copy().keys():
lowercase__ : List[str] = orig_state_dict.pop(__lowerCamelCase )
if "qkv" in key:
lowercase__ : Any = key.split('''.''' )
lowercase__ : Dict = int(key_split[3] )
lowercase__ : List[Any] = config.hidden_size
if "weight" in key:
lowercase__ : List[Any] = val[:dim, :]
lowercase__ : Union[str, Any] = val[dim : dim * 2, :]
lowercase__ : str = val[-dim:, :]
else:
lowercase__ : Union[str, Any] = val[:dim]
lowercase__ : str = val[dim : dim * 2]
lowercase__ : List[Any] = val[-dim:]
else:
lowercase__ : str = val
return orig_state_dict
def __UpperCAmelCase ( __lowerCamelCase ) -> int:
lowercase__ : Dict = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
@torch.no_grad()
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Union[str, Any]:
lowercase__ : Optional[Any] = get_audio_spectrogram_transformer_config(__lowerCamelCase )
lowercase__ : Any = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
lowercase__ : Union[str, Any] = model_name_to_url[model_name]
lowercase__ : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )
# remove some keys
remove_keys(__lowerCamelCase )
# rename some keys
lowercase__ : str = convert_state_dict(__lowerCamelCase , __lowerCamelCase )
# load 🤗 model
lowercase__ : Any = ASTForAudioClassification(__lowerCamelCase )
model.eval()
model.load_state_dict(__lowerCamelCase )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
lowercase__ : Union[str, Any] = -4.2_6_7_7_3_9_3 if '''speech-commands''' not in model_name else -6.8_4_5_9_7_8
lowercase__ : Union[str, Any] = 4.5_6_8_9_9_7_4 if '''speech-commands''' not in model_name else 5.5_6_5_4_5_2_6
lowercase__ : Dict = 10_24 if '''speech-commands''' not in model_name else 1_28
lowercase__ : str = ASTFeatureExtractor(mean=__lowerCamelCase , std=__lowerCamelCase , max_length=__lowerCamelCase )
if "speech-commands" in model_name:
lowercase__ : List[Any] = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
lowercase__ : Optional[Any] = dataset[0]['''audio''']['''array''']
else:
lowercase__ : List[Any] = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
lowercase__ : Union[str, Any] = torchaudio.load(__lowerCamelCase )
lowercase__ : Tuple = waveform.squeeze().numpy()
lowercase__ : Any = feature_extractor(__lowerCamelCase , sampling_rate=1_60_00 , return_tensors='''pt''' )
# forward pass
lowercase__ : Optional[int] = model(**__lowerCamelCase )
lowercase__ : int = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
lowercase__ : str = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
lowercase__ : str = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
lowercase__ : Optional[int] = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
lowercase__ : str = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
lowercase__ : Tuple = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
lowercase__ : Optional[Any] = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
lowercase__ : str = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] )
elif model_name == "ast-finetuned-speech-commands-v2":
lowercase__ : Any = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" )
feature_extractor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(f"""MIT/{model_name}""" )
feature_extractor.push_to_hub(f"""MIT/{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
lowerCAmelCase_ : Tuple = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 356
|
"""simple docstring"""
import math
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
lowercase__ : Tuple = 0
lowercase__ : Tuple = 0
while num > 0:
lowercase__ : int = num % 8
lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"""0o{int(__lowerCamelCase )}"""
def __UpperCAmelCase ( ) -> None:
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(2_16 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(5_12 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"]
lowerCAmelCase : int = "ChineseCLIPImageProcessor"
lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any:
"""simple docstring"""
lowercase__ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' ,_snake_case ,)
lowercase__ : Tuple = kwargs.pop('''feature_extractor''' )
lowercase__ : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_snake_case ,_snake_case )
lowercase__ : List[Any] = self.image_processor
def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if images is not None:
lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if text is not None and images is not None:
lowercase__ : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case )
def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.tokenizer.model_input_names
lowercase__ : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,)
return self.image_processor_class
| 357
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
lowerCAmelCase_ = [
'openmmlab/upernet-convnext-tiny',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
lowerCAmelCase_ = 'UperNetConfig'
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Convad(
in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,)
lowercase__ : Tuple = nn.BatchNormad(_snake_case )
lowercase__ : List[str] = nn.ReLU()
def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.conv(_snake_case )
lowercase__ : List[str] = self.batch_norm(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = [
nn.AdaptiveAvgPoolad(_snake_case ),
UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Any = input
for layer in self.layers:
lowercase__ : int = layer(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = pool_scales
lowercase__ : Dict = align_corners
lowercase__ : Optional[Any] = in_channels
lowercase__ : Optional[Any] = channels
lowercase__ : int = []
for i, pool_scale in enumerate(_snake_case ):
lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case )
self.blocks.append(_snake_case )
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]:
"""simple docstring"""
lowercase__ : int = []
for ppm in self.blocks:
lowercase__ : Any = ppm(_snake_case )
lowercase__ : int = nn.functional.interpolate(
_snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
ppm_outs.append(_snake_case )
return ppm_outs
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ : str = config
lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6)
lowercase__ : Optional[Any] = in_channels
lowercase__ : Any = config.hidden_size
lowercase__ : Optional[Any] = False
lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
# PSP Module
lowercase__ : Dict = UperNetPyramidPoolingModule(
self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,)
lowercase__ : str = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
# FPN Module
lowercase__ : Any = nn.ModuleList()
lowercase__ : Union[str, Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 )
lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 )
self.lateral_convs.append(_snake_case )
self.fpn_convs.append(_snake_case )
lowercase__ : int = UperNetConvModule(
len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
def UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str:
"""simple docstring"""
lowercase__ : Dict = inputs[-1]
lowercase__ : Optional[int] = [x]
psp_outs.extend(self.psp_modules(_snake_case ) )
lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 )
lowercase__ : List[str] = self.bottleneck(_snake_case )
return output
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(_snake_case ) )
# build top-down path
lowercase__ : List[Any] = len(_snake_case )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:]
lowercase__ : int = laterals[i - 1] + nn.functional.interpolate(
laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners )
# build outputs
lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Any = nn.functional.interpolate(
fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
lowercase__ : Any = torch.cat(_snake_case ,dim=1 )
lowercase__ : Any = self.fpn_bottleneck(_snake_case )
lowercase__ : str = self.classifier(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = config
lowercase__ : Dict = config.auxiliary_in_channels
lowercase__ : Optional[int] = config.auxiliary_channels
lowercase__ : List[Any] = config.auxiliary_num_convs
lowercase__ : List[Any] = config.auxiliary_concat_input
lowercase__ : str = in_index
lowercase__ : Any = (kernel_size // 2) * dilation
lowercase__ : Optional[Any] = []
convs.append(
UperNetConvModule(
self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
if self.num_convs == 0:
lowercase__ : List[str] = nn.Identity()
else:
lowercase__ : Dict = nn.Sequential(*_snake_case )
if self.concat_input:
lowercase__ : int = UperNetConvModule(
self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 )
lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
def UpperCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : str = encoder_hidden_states[self.in_index]
lowercase__ : List[str] = self.convs(_snake_case )
if self.concat_input:
lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) )
lowercase__ : Dict = self.classifier(_snake_case )
return output
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Any = UperNetConfig
lowerCAmelCase : str = "pixel_values"
lowerCAmelCase : Dict = True
def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[Any] = value
lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : int = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels )
lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]:
"""simple docstring"""
lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs(
_snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case )
lowercase__ : Optional[int] = outputs.feature_maps
lowercase__ : Tuple = self.decode_head(_snake_case )
lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : List[str] = None
if self.auxiliary_head is not None:
lowercase__ : str = self.auxiliary_head(_snake_case )
lowercase__ : Dict = nn.functional.interpolate(
_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : Any = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
lowercase__ : Tuple = (logits,) + outputs[1:]
else:
lowercase__ : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
| 302
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'WavLMForAudioFrameClassification',
'WavLMForCTC',
'WavLMForSequenceClassification',
'WavLMForXVector',
'WavLMModel',
'WavLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 358
|
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCAmelCase_ = _symbol_database.Default()
lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
lowerCAmelCase_ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCAmelCase_ = None
lowerCAmelCase_ = B'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCAmelCase_ = 45
lowerCAmelCase_ = 1_581
lowerCAmelCase_ = 1_517
lowerCAmelCase_ = 1_570
lowerCAmelCase_ = 1_584
lowerCAmelCase_ = 1_793
lowerCAmelCase_ = 1_795
lowerCAmelCase_ = 1_916
lowerCAmelCase_ = 1_864
lowerCAmelCase_ = 1_905
lowerCAmelCase_ = 1_919
lowerCAmelCase_ = 2_429
lowerCAmelCase_ = 2_208
lowerCAmelCase_ = 2_418
lowerCAmelCase_ = 2_323
lowerCAmelCase_ = 2_407
# @@protoc_insertion_point(module_scope)
| 302
| 0
|
"""simple docstring"""
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
lowerCAmelCase_ = logging.getLogger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} ,)
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(A_ )} ,)
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} ,)
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,)
lowerCAmelCase : str = field(
default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} ,)
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "The name of the dataset to use (via the datasets library)."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
lowerCAmelCase : Optional[str] = field(default=A_ ,metadata={"help": "The input training data file (a text file)."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} ,)
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} ,)
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCAmelCase : Optional[int] = field(
default=5 ,metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
} ,)
lowerCAmelCase : Optional[int] = field(
default=A_ ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
} ,)
lowerCAmelCase : Optional[int] = field(
default=A_ ,metadata={"help": "The number of processes to use for the preprocessing."} ,)
lowerCAmelCase : float = field(
default=0.15 ,metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
lowerCAmelCase : bool = field(
default=A_ ,metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} ,)
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
if self.train_file is not None:
lowercase__ : Optional[int] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
lowercase__ : List[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f:
lowercase__ : List[str] = [json.loads(__lowerCamelCase ) for line in f.read().splitlines() if (len(__lowerCamelCase ) > 0 and not line.isspace())]
assert len(__lowerCamelCase ) == len(__lowerCamelCase )
lowercase__ : Tuple = {c: dataset[c] for c in dataset.column_names}
lowercase__ : Tuple = refs
return Dataset.from_dict(__lowerCamelCase )
def __UpperCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ : str = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
lowercase__ : Union[str, Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase__ : int = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowercase__ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
lowercase__ : List[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , )
lowercase__ : str = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , )
else:
lowercase__ : Union[str, Any] = {}
if data_args.train_file is not None:
lowercase__ : str = data_args.train_file
if data_args.validation_file is not None:
lowercase__ : int = data_args.validation_file
lowercase__ : Dict = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
lowercase__ : Tuple = '''text'''
lowercase__ : List[Any] = load_dataset(__lowerCamelCase , data_files=__lowerCamelCase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : Optional[Any] = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
lowercase__ : Optional[int] = AutoConfig.from_pretrained(model_args.config_name , **__lowerCamelCase )
elif model_args.model_name_or_path:
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase )
else:
lowercase__ : Optional[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(f"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(f"""New config: {config}""" )
lowercase__ : Dict = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowerCamelCase )
elif model_args.model_name_or_path:
lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
lowercase__ : Optional[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
lowercase__ : Any = AutoModelForMaskedLM.from_config(__lowerCamelCase )
model.resize_token_embeddings(len(__lowerCamelCase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
lowercase__ : List[Any] = datasets['''train'''].column_names
else:
lowercase__ : Union[str, Any] = datasets['''validation'''].column_names
lowercase__ : Optional[int] = '''text''' if '''text''' in column_names else column_names[0]
lowercase__ : int = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(__lowerCamelCase ):
# Remove empty lines
lowercase__ : List[str] = [line for line in examples['''text'''] if len(__lowerCamelCase ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=data_args.max_seq_length )
lowercase__ : Tuple = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
lowercase__ : Optional[int] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
lowercase__ : List[Any] = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
lowercase__ : Any = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
lowercase__ : Union[str, Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
lowercase__ : Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowerCamelCase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
lowercase__ : Tuple = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
lowercase__ : List[str] = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
lowercase__ : Optional[Any] = model_args.model_name_or_path
else:
lowercase__ : Tuple = None
lowercase__ : Dict = trainer.train(resume_from_checkpoint=__lowerCamelCase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowercase__ : List[str] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
lowercase__ : Union[str, Any] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ : str = trainer.evaluate()
lowercase__ : Tuple = math.exp(eval_output['''eval_loss'''] )
lowercase__ : Tuple = perplexity
lowercase__ : List[Any] = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
return results
def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : Any = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[int] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : int = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : int = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Dict = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case )
lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[int] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case )
lowercase__ : Dict = AutoModelForCausalLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : int ) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : int = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : int = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case )
lowercase__ : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Tuple = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case )
lowercase__ : List[Any] = AutoModelForMaskedLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : List[str] = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case )
lowercase__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case )
lowercase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : int = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : List[str] = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : int = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : str = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : List[str] = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
def UpperCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ : int = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
lowercase__ : Tuple = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
def UpperCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
lowercase__ : List[str] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
lowercase__ : Optional[int] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
| 360
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
lowercase__ : List[str] = '''The dog is cute and lives in the garden house'''
lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] )
lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
lowercase__ : Tuple = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state''']
self.assertEqual(output.shape ,_snake_case )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
| 302
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __A ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : List[str] ,_snake_case : int=13 ,_snake_case : int=7 ,_snake_case : Optional[Any]=True ,_snake_case : Any=True ,_snake_case : Union[str, Any]=True ,_snake_case : Optional[int]=True ,_snake_case : Dict=99 ,_snake_case : int=32 ,_snake_case : List[Any]=5 ,_snake_case : Optional[Any]=4 ,_snake_case : Optional[Any]=37 ,_snake_case : Dict="gelu" ,_snake_case : Union[str, Any]=0.1 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : List[str]=512 ,_snake_case : Tuple=16 ,_snake_case : Optional[Any]=2 ,_snake_case : Optional[int]=0.02 ,_snake_case : Any=4 ,) -> Any:
"""simple docstring"""
lowercase__ : List[Any] = parent
lowercase__ : List[str] = batch_size
lowercase__ : List[str] = seq_length
lowercase__ : str = is_training
lowercase__ : List[Any] = use_attention_mask
lowercase__ : List[str] = use_token_type_ids
lowercase__ : str = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Tuple = hidden_size
lowercase__ : Dict = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : List[Any] = max_position_embeddings
lowercase__ : int = type_vocab_size
lowercase__ : List[Any] = type_sequence_label_size
lowercase__ : Optional[Any] = initializer_range
lowercase__ : List[Any] = num_choices
def UpperCAmelCase ( self : int ) -> int:
"""simple docstring"""
lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowercase__ : List[str] = None
if self.use_attention_mask:
lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ : Dict = None
if self.use_token_type_ids:
lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
lowercase__ : int = RobertaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,)
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase__ : int = config_and_inputs
lowercase__ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def UpperCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
lowercase__ : List[Any] = self.prepare_config_and_inputs()
lowercase__ : List[str] = config_and_inputs
lowercase__ : str = True
lowercase__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __A ( A_ ,unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = True
lowerCAmelCase : int = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : List[Any] = FlaxRobertaModelTester(self )
@slow
def UpperCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase__ : Optional[Any] = model_class_name.from_pretrained('''roberta-base''' ,from_pt=_snake_case )
lowercase__ : Any = model(np.ones((1, 1) ) )
self.assertIsNotNone(_snake_case )
| 361
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = '#'
class __A :
'''simple docstring'''
def __init__( self : str ) -> None:
"""simple docstring"""
lowercase__ : dict = {}
def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None:
"""simple docstring"""
lowercase__ : str = self._trie
for char in text:
if char not in trie:
lowercase__ : Union[str, Any] = {}
lowercase__ : Optional[Any] = trie[char]
lowercase__ : Dict = True
def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list:
"""simple docstring"""
lowercase__ : Optional[Any] = self._trie
for char in prefix:
if char in trie:
lowercase__ : Union[str, Any] = trie[char]
else:
return []
return self._elements(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple:
"""simple docstring"""
lowercase__ : str = []
for c, v in d.items():
lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )]
result.extend(_snake_case )
return tuple(_snake_case )
lowerCAmelCase_ = Trie()
lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal')
for word in words:
trie.insert_word(word)
def __UpperCAmelCase ( __lowerCamelCase ) -> tuple:
lowercase__ : List[Any] = trie.find_word(__lowerCamelCase )
return tuple(string + word for word in suffixes )
def __UpperCAmelCase ( ) -> None:
print(autocomplete_using_trie('''de''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : Tuple ,_snake_case : Dict=13 ,_snake_case : Tuple=30 ,_snake_case : Tuple=2 ,_snake_case : List[Any]=3 ,_snake_case : Optional[int]=True ,_snake_case : int=True ,_snake_case : List[Any]=32 ,_snake_case : Optional[Any]=5 ,_snake_case : Optional[int]=4 ,_snake_case : List[str]=37 ,_snake_case : Optional[int]="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[str]=10 ,_snake_case : str=0.02 ,_snake_case : Optional[Any]=3 ,_snake_case : List[Any]=0.6 ,_snake_case : Optional[Any]=None ,) -> Dict:
"""simple docstring"""
lowercase__ : Tuple = parent
lowercase__ : Any = batch_size
lowercase__ : List[str] = image_size
lowercase__ : int = patch_size
lowercase__ : List[str] = num_channels
lowercase__ : Optional[int] = is_training
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[Any] = hidden_size
lowercase__ : List[str] = num_hidden_layers
lowercase__ : Any = num_attention_heads
lowercase__ : Any = intermediate_size
lowercase__ : Optional[Any] = hidden_act
lowercase__ : str = hidden_dropout_prob
lowercase__ : Optional[int] = attention_probs_dropout_prob
lowercase__ : List[Any] = type_sequence_label_size
lowercase__ : List[str] = initializer_range
lowercase__ : Optional[int] = mask_ratio
lowercase__ : Dict = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowercase__ : Union[str, Any] = (image_size // patch_size) ** 2
lowercase__ : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : Union[str, Any] = None
if self.use_labels:
lowercase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowercase__ : Tuple = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : Dict ) -> List[str]:
"""simple docstring"""
lowercase__ : Optional[Any] = ViTMAEModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : List[str] = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self : Optional[int] ,_snake_case : Tuple ,_snake_case : Optional[Any] ,_snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowercase__ : List[Any] = ViTMAEForPreTraining(_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : Optional[Any] = model(_snake_case )
lowercase__ : List[Any] = (self.image_size // self.patch_size) ** 2
lowercase__ : List[str] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowercase__ : int = 1
lowercase__ : int = ViTMAEForPreTraining(_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase__ : Optional[Any] = model(_snake_case )
lowercase__ : List[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : List[str] = self.prepare_config_and_inputs()
lowercase__ : Union[str, Any] = config_and_inputs
lowercase__ : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __A ( A_ ,A_ ,unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase : int = {"feature-extraction": ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase : List[Any] = False
lowerCAmelCase : Any = False
lowerCAmelCase : Dict = False
lowerCAmelCase : Any = False
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = ViTMAEModelTester(self )
lowercase__ : Optional[Any] = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ,hidden_size=37 )
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def UpperCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
pass
def UpperCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Any = model_class(_snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
lowercase__ : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) )
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Dict = model_class(_snake_case )
lowercase__ : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Union[str, Any] = [*signature.parameters.keys()]
lowercase__ : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,_snake_case )
def UpperCAmelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_snake_case )
def UpperCAmelCase ( self : Tuple ,_snake_case : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Tuple ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
lowercase__ : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
lowercase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowercase__ : Optional[Any] = torch.from_numpy(_snake_case )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowercase__ : List[Any] = pt_noise
super().check_pt_tf_models(_snake_case ,_snake_case ,_snake_case )
def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : List[str] = model_class(_snake_case )
model.to(_snake_case )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) )
lowercase__ : Any = outputs[0].cpu().numpy()
lowercase__ : Optional[int] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowercase__ : Union[str, Any] = model_class.from_pretrained(_snake_case )
model.to(_snake_case )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) )
# Make sure we don't have nans
lowercase__ : Dict = after_outputs[0].cpu().numpy()
lowercase__ : int = 0
lowercase__ : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_snake_case ,1e-5 )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def UpperCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def UpperCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
pass
@slow
def UpperCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Tuple = ViTMAEModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def __UpperCAmelCase ( ) -> Dict:
lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __A ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def UpperCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
np.random.seed(2 )
lowercase__ : Any = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_snake_case )
lowercase__ : int = self.default_image_processor
lowercase__ : int = prepare_img()
lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowercase__ : List[Any] = ViTMAEConfig()
lowercase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowercase__ : Dict = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
lowercase__ : Optional[Any] = model(**_snake_case ,noise=torch.from_numpy(_snake_case ).to(device=_snake_case ) )
# verify the logits
lowercase__ : Optional[int] = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,_snake_case )
lowercase__ : List[Any] = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(_snake_case ) ,atol=1e-4 ) )
| 362
|
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase_ = logging.get_logger(__name__)
# General docstring
lowerCAmelCase_ = 'RegNetConfig'
# Base docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = [1, 1_088, 7, 7]
# Image classification docstring
lowerCAmelCase_ = 'facebook/regnet-y-040'
lowerCAmelCase_ = 'tabby, tabby cat'
lowerCAmelCase_ = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = nn.Convad(
_snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,)
lowercase__ : List[Any] = nn.BatchNormad(_snake_case )
lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.convolution(_snake_case )
lowercase__ : Tuple = self.normalization(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = RegNetConvLayer(
config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act )
lowercase__ : str = config.num_channels
def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str:
"""simple docstring"""
lowercase__ : Union[str, Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
lowercase__ : Optional[int] = self.embedder(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any:
"""simple docstring"""
super().__init__()
lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case )
lowercase__ : Any = nn.BatchNormad(_snake_case )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.convolution(_snake_case )
lowercase__ : Optional[int] = self.normalization(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) )
lowercase__ : Dict = nn.Sequential(
nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,)
def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.pooler(_snake_case )
lowercase__ : Union[str, Any] = self.attention(_snake_case )
lowercase__ : List[str] = hidden_state * attention
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]:
"""simple docstring"""
super().__init__()
lowercase__ : Tuple = in_channels != out_channels or stride != 1
lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width )
lowercase__ : str = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : Optional[int] = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : str = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ : Tuple = hidden_state
lowercase__ : Union[str, Any] = self.layer(_snake_case )
lowercase__ : List[Any] = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : Optional[int] = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = in_channels != out_channels or stride != 1
lowercase__ : List[str] = max(1 ,out_channels // config.groups_width )
lowercase__ : Tuple = (
RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity()
)
lowercase__ : str = nn.Sequential(
RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,)
lowercase__ : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
lowercase__ : str = hidden_state
lowercase__ : Optional[Any] = self.layer(_snake_case )
lowercase__ : int = self.shortcut(_snake_case )
hidden_state += residual
lowercase__ : str = self.activation(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer
lowercase__ : Optional[Any] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,)
def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.layers(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : str = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) )
lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ):
self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) )
def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowercase__ : int = hidden_states + (hidden_state,)
lowercase__ : Any = stage_module(_snake_case )
if output_hidden_states:
lowercase__ : Optional[int] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case )
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : int = RegNetConfig
lowerCAmelCase : List[Any] = "regnet"
lowerCAmelCase : Optional[int] = "pixel_values"
lowerCAmelCase : Union[str, Any] = True
def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' )
elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight ,1 )
nn.init.constant_(module.bias ,0 )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : str = value
lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Any = config
lowercase__ : List[str] = RegNetEmbeddings(_snake_case )
lowercase__ : Any = RegNetEncoder(_snake_case )
lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
lowercase__ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Union[str, Any] = self.embedder(_snake_case )
lowercase__ : List[Any] = self.encoder(
_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : str = encoder_outputs[0]
lowercase__ : Optional[int] = self.pooler(_snake_case )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class __A ( A_ ):
'''simple docstring'''
def __init__( self : int ,_snake_case : Tuple ) -> Any:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : Optional[Any] = config.num_labels
lowercase__ : int = RegNetModel(_snake_case )
# classification head
lowercase__ : str = nn.Sequential(
nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case )
lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1]
lowercase__ : Union[str, Any] = self.classifier(_snake_case )
lowercase__ : Optional[int] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowercase__ : List[Any] = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowercase__ : Dict = '''single_label_classification'''
else:
lowercase__ : Optional[int] = '''multi_label_classification'''
if self.config.problem_type == "regression":
lowercase__ : Union[str, Any] = MSELoss()
if self.num_labels == 1:
lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() )
else:
lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case )
elif self.config.problem_type == "single_label_classification":
lowercase__ : Tuple = CrossEntropyLoss()
lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowercase__ : Any = BCEWithLogitsLoss()
lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case )
if not return_dict:
lowercase__ : Tuple = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
| 302
| 0
|
"""simple docstring"""
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : int = 101 ) -> List[str]:
"""simple docstring"""
lowercase__ : Any = length
def __len__( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
return self.length
def __getitem__( self : Optional[Any] ,_snake_case : int ) -> int:
"""simple docstring"""
return i
class __A :
'''simple docstring'''
def __call__( self : Tuple ,_snake_case : Any ) -> Any:
"""simple docstring"""
return {"input_ids": torch.tensor(_snake_case ), "labels": torch.tensor(_snake_case )}
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : int ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
# Add some (unused) params otherwise DDP will complain.
lowercase__ : Dict = nn.Linear(120 ,80 )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ,_snake_case : Optional[Any]=None ) -> Union[str, Any]:
"""simple docstring"""
if labels is not None:
return torch.tensor(0.0 ,device=input_ids.device ), input_ids
else:
return input_ids
class __A ( A_ ):
'''simple docstring'''
@require_torch_neuroncore
def UpperCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
lowercase__ : Any = f"""--nproc_per_node=2
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
""".split()
lowercase__ : Dict = self.get_auto_remove_tmp_dir()
lowercase__ : int = f"""--output_dir {output_dir}""".split()
lowercase__ : List[str] = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(_snake_case ,env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class __A ( A_ ):
'''simple docstring'''
@require_torch_multi_gpu
def UpperCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ : Union[str, Any] = f"""--nproc_per_node={torch.cuda.device_count()}
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
""".split()
lowercase__ : Tuple = self.get_auto_remove_tmp_dir()
lowercase__ : Optional[int] = f"""--output_dir {output_dir}""".split()
lowercase__ : List[str] = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(_snake_case ,env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
lowerCAmelCase_ = HfArgumentParser((TrainingArguments,))
lowerCAmelCase_ = parser.parse_args_into_dataclasses()[0]
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, '''
F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}'''
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
lowerCAmelCase_ = DummyDataset(dataset_length)
def __UpperCAmelCase ( __lowerCamelCase ) -> Dict:
lowercase__ : Tuple = list(range(len(__lowerCamelCase ) ) )
lowercase__ : Any = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
'''Predictions and/or labels do not match expected results:\n - predictions: '''
f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" )
return {"success": success}
lowerCAmelCase_ = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
lowerCAmelCase_ = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
lowerCAmelCase_ = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
lowerCAmelCase_ = 2
lowerCAmelCase_ = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
lowerCAmelCase_ = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
lowerCAmelCase_ = None
| 363
|
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase_ = 1.6021E-19 # units = C
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]:
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif conductivity < 0:
raise ValueError('''Conductivity cannot be negative''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative''' )
elif mobility < 0:
raise ValueError('''mobility cannot be negative''' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple:
lowercase__ : int = namedtuple('''result''' , '''name value''' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('''Only one argument must be 0''' )
elif power < 0:
raise ValueError(
'''Power cannot be negative in any electrical/electronics system''' )
elif voltage == 0:
return result('''voltage''' , power / current )
elif current == 0:
return result('''current''' , power / voltage )
elif power == 0:
return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 364
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = ["pixel_values"]
def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case )
lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' )
lowercase__ : Tuple = do_resize
lowercase__ : List[Any] = do_rescale
lowercase__ : Any = do_normalize
lowercase__ : List[str] = do_center_crop
lowercase__ : Optional[Any] = crop_size
lowercase__ : Union[str, Any] = size
lowercase__ : Any = resample
lowercase__ : int = rescale_factor
lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : List[str] = get_size_dict(_snake_case )
if "shortest_edge" in size:
lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
lowercase__ : int = (size['''height'''], size['''width'''])
else:
raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" )
return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray:
"""simple docstring"""
lowercase__ : Optional[Any] = get_size_dict(_snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray:
"""simple docstring"""
return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray:
"""simple docstring"""
return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature:
"""simple docstring"""
lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize
lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size
lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case )
lowercase__ : Tuple = resample if resample is not None else self.resample
lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__ : List[str] = image_std if image_std is not None else self.image_std
lowercase__ : Optional[int] = size if size is not None else self.size
lowercase__ : int = get_size_dict(_snake_case )
if not is_batched(_snake_case ):
lowercase__ : Optional[Any] = [images]
if not valid_images(_snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
lowercase__ : str = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images]
if do_center_crop:
lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images]
if do_rescale:
lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images]
if do_normalize:
lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images]
lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images]
lowercase__ : Any = {'''pixel_values''': images}
return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
| 302
| 0
|
"""simple docstring"""
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
lowercase__ : Any = multiprocessing.Manager()
lowercase__ : Dict = manager.list()
lowercase__ : Union[str, Any] = multiprocessing.Process(target=__lowerCamelCase , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append('''timed out''' )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
lowercase__ : List[str] = shutil.rmtree
lowercase__ : Optional[Any] = os.rmdir
lowercase__ : Union[str, Any] = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
lowercase__ : int = {}
with swallow_io():
with time_limit(__lowerCamelCase ):
exec(__lowerCamelCase , __lowerCamelCase )
result.append('''passed''' )
except TimeoutException:
result.append('''timed out''' )
except BaseException as e:
result.append(f"""failed: {e}""" )
# Needed for cleaning up.
lowercase__ : Optional[Any] = rmtree
lowercase__ : str = rmdir
lowercase__ : str = chdir
@contextlib.contextmanager
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]:
def signal_handler(__lowerCamelCase , __lowerCamelCase ):
raise TimeoutException('''Timed out!''' )
signal.setitimer(signal.ITIMER_REAL , __lowerCamelCase )
signal.signal(signal.SIGALRM , __lowerCamelCase )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def __UpperCAmelCase ( ) -> Dict:
lowercase__ : Optional[Any] = WriteOnlyStringIO()
with contextlib.redirect_stdout(__lowerCamelCase ):
with contextlib.redirect_stderr(__lowerCamelCase ):
with redirect_stdin(__lowerCamelCase ):
yield
@contextlib.contextmanager
def __UpperCAmelCase ( ) -> List[Any]:
with tempfile.TemporaryDirectory() as dirname:
with chdir(__lowerCamelCase ):
yield dirname
class __A ( A_ ):
'''simple docstring'''
pass
class __A ( io.StringIO ):
'''simple docstring'''
def UpperCAmelCase ( self : Dict ,*_snake_case : int ,**_snake_case : List[Any] ) -> str:
"""simple docstring"""
raise OSError
def UpperCAmelCase ( self : Any ,*_snake_case : Tuple ,**_snake_case : Dict ) -> Any:
"""simple docstring"""
raise OSError
def UpperCAmelCase ( self : Dict ,*_snake_case : Dict ,**_snake_case : str ) -> List[str]:
"""simple docstring"""
raise OSError
def UpperCAmelCase ( self : int ,*_snake_case : str ,**_snake_case : str ) -> int:
"""simple docstring"""
return False
class __A ( contextlib._RedirectStream ): # type: ignore
'''simple docstring'''
lowerCAmelCase : List[Any] = "stdin"
@contextlib.contextmanager
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
if root == ".":
yield
return
lowercase__ : List[Any] = os.getcwd()
os.chdir(__lowerCamelCase )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase=None ) -> Optional[int]:
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
lowercase__ : List[str] = None
lowercase__ : Tuple = None
import os
lowercase__ : List[str] = '''1'''
lowercase__ : Optional[int] = None
lowercase__ : List[str] = None
lowercase__ : Optional[Any] = None
lowercase__ : List[str] = None
lowercase__ : str = None
lowercase__ : str = None
lowercase__ : Optional[int] = None
lowercase__ : Optional[Any] = None
lowercase__ : Tuple = None
lowercase__ : Tuple = None
lowercase__ : Optional[int] = None
lowercase__ : Optional[int] = None
lowercase__ : Tuple = None
lowercase__ : Any = None
lowercase__ : Optional[int] = None
lowercase__ : Tuple = None
lowercase__ : str = None
lowercase__ : List[Any] = None
lowercase__ : Optional[Any] = None
lowercase__ : Any = None
lowercase__ : Tuple = None
lowercase__ : Optional[int] = None
lowercase__ : Optional[int] = None
lowercase__ : List[str] = None
lowercase__ : Union[str, Any] = None
lowercase__ : Tuple = None
lowercase__ : List[str] = None
import shutil
lowercase__ : List[Any] = None
lowercase__ : List[Any] = None
lowercase__ : Tuple = None
import subprocess
lowercase__ : Any = None # type: ignore
lowercase__ : int = None
import sys
lowercase__ : str = None
lowercase__ : Tuple = None
lowercase__ : int = None
lowercase__ : Optional[Any] = None
lowercase__ : Optional[Any] = None
| 365
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 302
| 0
|
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
lowerCAmelCase_ = False
class __A ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
lowercase__ : List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : List[str] = '''A painting of a squirrel eating a burger '''
lowercase__ : str = torch.manual_seed(0 )
lowercase__ : List[str] = pipe(
prompt=_snake_case ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_snake_case )
lowercase__ : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained(_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : Optional[int] = generator.manual_seed(0 )
lowercase__ : List[Any] = pipe(
prompt=_snake_case ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def UpperCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowercase__ : List[Any] = '''A painting of a squirrel eating a burger '''
lowercase__ : str = torch.manual_seed(0 )
lowercase__ : Optional[Any] = pipe(
prompt=_snake_case ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ).images
lowercase__ : Any = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowercase__ : str = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 366
|
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None:
lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCamelCase , torch.Tensor ):
raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' )
lowercase__ : List[Any] = v.half()
if save_path is None: # overwrite src_path
lowercase__ : Any = src_path
torch.save(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 302
| 0
|
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md'
lowerCAmelCase_ = uuida().hex
lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/'
def __UpperCAmelCase ( __lowerCamelCase = None ) -> str:
lowercase__ : Optional[Any] = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"""
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f"""; torch/{_torch_version}"""
if is_flax_available():
ua += f"""; jax/{_jax_version}"""
ua += f"""; flax/{_flax_version}"""
if is_onnx_available():
ua += f"""; onnxruntime/{_onnxruntime_version}"""
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(__lowerCamelCase , __lowerCamelCase ):
ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
ua += "; " + user_agent
return ua
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None ) -> str:
if token is None:
lowercase__ : Dict = HfFolder.get_token()
if organization is None:
lowercase__ : Optional[Any] = whoami(__lowerCamelCase )['''name''']
return f"""{username}/{model_id}"""
else:
return f"""{organization}/{model_id}"""
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int:
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(__lowerCamelCase , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
lowercase__ : Union[str, Any] = args.hub_token if hasattr(__lowerCamelCase , '''hub_token''' ) else None
lowercase__ : Tuple = get_full_repo_name(__lowerCamelCase , token=__lowerCamelCase )
lowercase__ : Tuple = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__lowerCamelCase , model_name=__lowerCamelCase , repo_name=__lowerCamelCase , dataset_name=args.dataset_name if hasattr(__lowerCamelCase , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(__lowerCamelCase , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(__lowerCamelCase , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__lowerCamelCase , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__lowerCamelCase , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__lowerCamelCase , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__lowerCamelCase , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__lowerCamelCase , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__lowerCamelCase , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__lowerCamelCase , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__lowerCamelCase , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
lowercase__ : List[Any] = os.path.join(args.output_dir , '''README.md''' )
model_card.save(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None ) -> Optional[Any]:
if resolved_file is None or commit_hash is not None:
return commit_hash
lowercase__ : Any = str(Path(__lowerCamelCase ).as_posix() )
lowercase__ : Optional[int] = re.search(r'''snapshots/([^/]+)/''' , __lowerCamelCase )
if search is None:
return None
lowercase__ : int = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(__lowerCamelCase ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowerCAmelCase_ = os.path.expanduser(
os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface'))
)
lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers')
def __UpperCAmelCase ( __lowerCamelCase = None , __lowerCamelCase = None ) -> None:
if new_cache_dir is None:
lowercase__ : int = DIFFUSERS_CACHE
if old_cache_dir is None:
lowercase__ : Any = old_diffusers_cache
lowercase__ : Any = Path(__lowerCamelCase ).expanduser()
lowercase__ : Optional[Any] = Path(__lowerCamelCase ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
lowercase__ : Optional[int] = new_cache_dir / old_blob_path.relative_to(__lowerCamelCase )
new_blob_path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase )
os.replace(__lowerCamelCase , __lowerCamelCase )
try:
os.symlink(__lowerCamelCase , __lowerCamelCase )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt')
if not os.path.isfile(cache_version_file):
lowerCAmelCase_ = 0
else:
with open(cache_version_file) as f:
try:
lowerCAmelCase_ = int(f.read())
except ValueError:
lowerCAmelCase_ = 0
if cache_version < 1:
lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '
'existing cached models. This is a one-time operation, you can interrupt it or run it '
'later by calling `diffusers.utils.hub_utils.move_cache()`.'
)
try:
move_cache()
except Exception as e:
lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__))
logger.error(
F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease '''
'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '
'message and we will do our best to help.'
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, 'w') as f:
f.write('1')
except Exception:
logger.warning(
F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure '''
'the directory exists and can be written to.'
)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None ) -> str:
if variant is not None:
lowercase__ : str = weights_name.split('''.''' )
lowercase__ : List[str] = splits[:-1] + [variant] + splits[-1:]
lowercase__ : List[Any] = '''.'''.join(__lowerCamelCase )
return weights_name
def __UpperCAmelCase ( __lowerCamelCase , *,
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , ) -> List[Any]:
lowercase__ : Optional[Any] = str(__lowerCamelCase )
if os.path.isfile(__lowerCamelCase ):
return pretrained_model_name_or_path
elif os.path.isdir(__lowerCamelCase ):
if os.path.isfile(os.path.join(__lowerCamelCase , __lowerCamelCase ) ):
# Load from a PyTorch checkpoint
lowercase__ : Optional[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ):
lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return model_file
else:
raise EnvironmentError(
f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(__lowerCamelCase ).base_version ) >= version.parse('''0.20.0''' )
):
try:
lowercase__ : int = hf_hub_download(
__lowerCamelCase , filename=_add_variant(__lowerCamelCase , __lowerCamelCase ) , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , user_agent=__lowerCamelCase , subfolder=__lowerCamelCase , revision=revision or commit_hash , )
warnings.warn(
f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __lowerCamelCase , )
return model_file
except: # noqa: E722
warnings.warn(
f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__lowerCamelCase , __lowerCamelCase )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__lowerCamelCase , __lowerCamelCase )}' so that the correct variant file can be added.""" , __lowerCamelCase , )
try:
# 2. Load model file as usual
lowercase__ : str = hf_hub_download(
__lowerCamelCase , filename=__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , user_agent=__lowerCamelCase , subfolder=__lowerCamelCase , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """
'''this model name. Check the model page at '''
f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" )
except EntryNotFoundError:
raise EnvironmentError(
f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" )
except HTTPError as err:
raise EnvironmentError(
f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" )
except ValueError:
raise EnvironmentError(
f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"""
f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"""
f""" directory containing a file named {weights_name} or"""
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """
f"""containing a file named {weights_name}""" )
| 367
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : UNetaDModel
lowerCAmelCase : ScoreSdeVeScheduler
def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_snake_case ,scheduler=_snake_case )
@torch.no_grad()
def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
lowercase__ : Optional[Any] = self.unet.config.sample_size
lowercase__ : Dict = (batch_size, 3, img_size, img_size)
lowercase__ : Tuple = self.unet
lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma
lowercase__ : Union[str, Any] = sample.to(self.device )
self.scheduler.set_timesteps(_snake_case )
self.scheduler.set_sigmas(_snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample
lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample
# prediction step
lowercase__ : str = model(_snake_case ,_snake_case ).sample
lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case )
lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean
lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 )
lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
lowercase__ : Any = self.numpy_to_pil(_snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_snake_case )
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'],
'tokenization_roformer': ['RoFormerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['RoFormerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoFormerForCausalLM',
'RoFormerForMaskedLM',
'RoFormerForMultipleChoice',
'RoFormerForQuestionAnswering',
'RoFormerForSequenceClassification',
'RoFormerForTokenClassification',
'RoFormerLayer',
'RoFormerModel',
'RoFormerPreTrainedModel',
'load_tf_weights_in_roformer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRoFormerForCausalLM',
'TFRoFormerForMaskedLM',
'TFRoFormerForMultipleChoice',
'TFRoFormerForQuestionAnswering',
'TFRoFormerForSequenceClassification',
'TFRoFormerForTokenClassification',
'TFRoFormerLayer',
'TFRoFormerModel',
'TFRoFormerPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'FlaxRoFormerForMaskedLM',
'FlaxRoFormerForMultipleChoice',
'FlaxRoFormerForQuestionAnswering',
'FlaxRoFormerForSequenceClassification',
'FlaxRoFormerForTokenClassification',
'FlaxRoFormerModel',
'FlaxRoFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 368
|
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowerCAmelCase_ = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = "maskformer"
lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"}
lowerCAmelCase : Optional[int] = ["resnet", "swin"]
lowerCAmelCase : str = ["detr"]
def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict:
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
lowercase__ : Any = SwinConfig(
image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,)
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[str] = backbone_config.pop('''model_type''' )
lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type]
lowercase__ : str = config_class.from_dict(_snake_case )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
lowercase__ : Union[str, Any] = DetrConfig()
else:
# verify that the decoder is supported
lowercase__ : Tuple = (
decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f"""Transformer Decoder {decoder_type} not supported, please use one of"""
f""" {",".join(self.decoders_supported )}""" )
if isinstance(_snake_case ,_snake_case ):
lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type]
lowercase__ : Optional[Any] = config_class.from_dict(_snake_case )
lowercase__ : List[Any] = backbone_config
lowercase__ : List[Any] = decoder_config
# main feature dimension for the model
lowercase__ : List[str] = fpn_feature_size
lowercase__ : int = mask_feature_size
# initializer
lowercase__ : str = init_std
lowercase__ : str = init_xavier_std
# Hungarian matcher && loss
lowercase__ : Optional[int] = cross_entropy_weight
lowercase__ : List[Any] = dice_weight
lowercase__ : List[str] = mask_weight
lowercase__ : str = use_auxiliary_loss
lowercase__ : Optional[int] = no_object_weight
lowercase__ : Optional[Any] = output_auxiliary_logits
lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads
lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers
super().__init__(**_snake_case )
@classmethod
def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return cls(
backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,)
def UpperCAmelCase ( self : str ) -> Dict[str, any]:
"""simple docstring"""
lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ )
lowercase__ : int = self.backbone_config.to_dict()
lowercase__ : List[Any] = self.decoder_config.to_dict()
lowercase__ : List[str] = self.__class__.model_type
return output
| 302
| 0
|
"""simple docstring"""
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
lowerCAmelCase_ = float('nan')
class __A :
'''simple docstring'''
def __init__( self : Tuple ,_snake_case : int ) -> Tuple:
"""simple docstring"""
lowercase__ : Optional[int] = sys.stdout
lowercase__ : int = open(_snake_case ,'''a''' )
def __getattr__( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> Tuple:
"""simple docstring"""
return getattr(self.stdout ,_snake_case )
def UpperCAmelCase ( self : Any ,_snake_case : int ) -> str:
"""simple docstring"""
self.stdout.write(_snake_case )
# strip tqdm codes
self.file.write(re.sub(r'''^.*\r''' ,'''''' ,_snake_case ,0 ,re.M ) )
def __UpperCAmelCase ( __lowerCamelCase=80 , __lowerCamelCase=False ) -> Optional[int]:
lowercase__ : Union[str, Any] = []
# deal with critical env vars
lowercase__ : Optional[int] = ['''CUDA_VISIBLE_DEVICES''']
for key in env_keys:
lowercase__ : int = os.environ.get(__lowerCamelCase , __lowerCamelCase )
if val is not None:
cmd.append(f"""{key}={val}""" )
# python executable (not always needed if the script is executable)
lowercase__ : Optional[int] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1]
cmd.append(__lowerCamelCase )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
lowercase__ : Union[str, Any] = []
lowercase__ : Optional[int] = ''''''
while len(__lowerCamelCase ) > 0:
current_line += f"""{cmd.pop(0 )} """
if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(__lowerCamelCase )
lowercase__ : Optional[int] = ''''''
return "\\\n".join(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any:
# unwrap multi-line input
lowercase__ : Dict = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd )
# remove --output_dir if any and set our own
lowercase__ : Union[str, Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd )
args.base_cmd += f""" --output_dir {output_dir}"""
# ensure we have --overwrite_output_dir
lowercase__ : Optional[int] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , )
lowercase__ : List[str] = subprocess.run(__lowerCamelCase , capture_output=__lowerCamelCase , text=__lowerCamelCase )
if verbose:
print('''STDOUT''' , result.stdout )
print('''STDERR''' , result.stderr )
# save the streams
lowercase__ : List[Any] = variation.replace(''' ''' , '''-''' )
with open(Path(__lowerCamelCase ) / f"""log.{prefix}.stdout.txt""" , '''w''' ) as f:
f.write(result.stdout )
with open(Path(__lowerCamelCase ) / f"""log.{prefix}.stderr.txt""" , '''w''' ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print('''failed''' )
return {target_metric_key: nan}
with io.open(f"""{output_dir}/all_results.json""" , '''r''' , encoding='''utf-8''' ) as f:
lowercase__ : int = json.load(__lowerCamelCase )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Tuple:
lowercase__ : List[Any] = []
lowercase__ : List[str] = []
lowercase__ : Tuple = f"""{id}: {variation:<{longest_variation_len}}"""
lowercase__ : str = f"""{preamble}: """
lowercase__ : Any = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(__lowerCamelCase ) , desc=__lowerCamelCase , leave=__lowerCamelCase ):
lowercase__ : List[str] = process_run_single(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowercase__ : Union[str, Any] = single_run_metrics[target_metric_key]
if not math.isnan(__lowerCamelCase ):
metrics.append(__lowerCamelCase )
results.append(__lowerCamelCase )
outcome += "✓"
else:
outcome += "✘"
lowercase__ : Dict = f"""\33[2K\r{outcome}"""
if len(__lowerCamelCase ) > 0:
lowercase__ : str = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
lowercase__ : Optional[int] = round(mean_metrics[target_metric_key] , 2 )
lowercase__ : int = f"""{outcome} {mean_target}"""
if len(__lowerCamelCase ) > 1:
results_str += f""" {tuple(round(__lowerCamelCase , 2 ) for x in results )}"""
print(__lowerCamelCase )
lowercase__ : Union[str, Any] = variation
return mean_metrics
else:
print(__lowerCamelCase )
return {variation_key: variation, target_metric_key: nan}
def __UpperCAmelCase ( ) -> List[str]:
lowercase__ : str = torch.cuda.get_device_properties(torch.device('''cuda''' ) )
return f"""
Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}
Software:
transformers: {transformers.__version__}
torch : {torch.__version__}
cuda : {torch.version.cuda}
python : {platform.python_version()}
Hardware:
{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB
"""
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
lowercase__ : Optional[int] = pd.DataFrame(__lowerCamelCase )
lowercase__ : Dict = '''variation'''
lowercase__ : Optional[int] = '''diff_%'''
lowercase__ : str = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
lowercase__ : Dict = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(__lowerCamelCase ):
# as a fallback, use the minimal value as the sentinel
lowercase__ : Dict = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(__lowerCamelCase ):
lowercase__ : int = df.apply(
lambda __lowerCamelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis='''columns''' , )
# re-order columns
lowercase__ : Optional[int] = [variation_key, target_metric_key, diff_key, *report_metric_keys]
lowercase__ : Dict = df.reindex(__lowerCamelCase , axis='''columns''' ) # reorder cols
# capitalize
lowercase__ : Optional[int] = df.rename(str.capitalize , axis='''columns''' )
# make the cols as narrow as possible
lowercase__ : Optional[int] = df.rename(lambda __lowerCamelCase : c.replace('''_''' , '''<br>''' ) , axis='''columns''' )
lowercase__ : List[str] = df.rename(lambda __lowerCamelCase : c.replace('''_''' , '''\n''' ) , axis='''columns''' )
lowercase__ : Union[str, Any] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum''']
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=__lowerCamelCase , floatfmt='''.2f''' )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=__lowerCamelCase , floatfmt='''.2f''' )]
print('''\n\n'''.join(__lowerCamelCase ) )
def __UpperCAmelCase ( ) -> List[Any]:
lowercase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--base-cmd''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Base cmd''' , )
parser.add_argument(
'''--variations''' , default=__lowerCamelCase , type=__lowerCamelCase , nargs='''+''' , required=__lowerCamelCase , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , )
parser.add_argument(
'''--base-variation''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , )
parser.add_argument(
'''--target-metric-key''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , )
parser.add_argument(
'''--report-metric-keys''' , default='''''' , type=__lowerCamelCase , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , )
parser.add_argument(
'''--repeat-times''' , default=1 , type=__lowerCamelCase , help='''How many times to re-run each variation - an average will be reported''' , )
parser.add_argument(
'''--output_dir''' , default='''output_benchmark''' , type=__lowerCamelCase , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , )
parser.add_argument(
'''--verbose''' , default=__lowerCamelCase , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , )
lowercase__ : int = parser.parse_args()
lowercase__ : List[Any] = args.output_dir
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
lowercase__ : int = get_base_command(__lowerCamelCase , __lowerCamelCase )
# split each dimension into its --foo variations
lowercase__ : Optional[Any] = [list(map(str.strip , re.split(r'''\|''' , __lowerCamelCase ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
lowercase__ : List[str] = list(map(str.strip , map(''' '''.join , itertools.product(*__lowerCamelCase ) ) ) )
lowercase__ : Tuple = max(len(__lowerCamelCase ) for x in variations )
# split wanted keys
lowercase__ : int = args.report_metric_keys.split()
# capture prints into a log file for convenience
lowercase__ : str = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt"""
print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" )
print(f"""and this script's output is also piped into {report_fn}""" )
lowercase__ : Tuple = Tee(__lowerCamelCase )
print(f"""\n*** Running {len(__lowerCamelCase )} benchmarks:""" )
print(f"""Base command: {" ".join(__lowerCamelCase )}""" )
lowercase__ : Optional[int] = '''variation'''
lowercase__ : Tuple = []
for id, variation in enumerate(tqdm(__lowerCamelCase , desc='''Total completion: ''' , leave=__lowerCamelCase ) ):
lowercase__ : Tuple = base_cmd + variation.split()
results.append(
process_run(
id + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.repeat_times , __lowerCamelCase , args.verbose , ) )
process_results(__lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.base_variation , __lowerCamelCase )
if __name__ == "__main__":
main()
| 369
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]:
lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False
lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowercase__ : Dict = [3, 3, 3, 3]
lowercase__ : str = [5, 5, 5, 5]
elif "fl4" in model_name:
lowercase__ : List[str] = [4, 4, 4, 4]
lowercase__ : Any = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
if "lrf" in model_name:
lowercase__ : List[str] = [3, 3, 3, 3]
else:
lowercase__ : Optional[Any] = [2, 2, 2, 2]
if "tiny" in model_name:
lowercase__ : Optional[int] = 96
elif "small" in model_name:
lowercase__ : Union[str, Any] = 96
elif "base" in model_name:
lowercase__ : Tuple = 1_28
elif "large" in model_name:
lowercase__ : Any = 1_92
elif "xlarge" in model_name:
lowercase__ : Any = 2_56
elif "huge" in model_name:
lowercase__ : Union[str, Any] = 3_52
# set label information
lowercase__ : List[Any] = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowercase__ : Optional[int] = '''imagenet-22k-id2label.json'''
else:
lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json'''
lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()}
lowercase__ : int = FocalNetConfig(
embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , )
return config
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
if "patch_embed.proj" in name:
lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
lowercase__ : Dict = '''encoder.''' + name
if "encoder.layers" in name:
lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' )
if "downsample.proj" in name:
lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' )
if "blocks" in name:
lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' )
if name == "norm.weight":
lowercase__ : Dict = '''layernorm.weight'''
if name == "norm.bias":
lowercase__ : Dict = '''layernorm.bias'''
if "head" in name:
lowercase__ : Dict = name.replace('''head''' , '''classifier''' )
else:
lowercase__ : List[Any] = '''focalnet.''' + name
return name
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]:
# fmt: off
lowercase__ : Any = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowercase__ : Optional[int] = model_name_to_url[model_name]
print('''Checkpoint URL: ''' , __lowerCamelCase )
lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowercase__ : int = state_dict.pop(__lowerCamelCase )
lowercase__ : Any = val
lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase )
lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase )
model.eval()
# load state dict
model.load_state_dict(__lowerCamelCase )
# verify conversion
lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase__ : int = BitImageProcessor(
do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , )
lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' )
lowercase__ : List[str] = transforms.Compose(
[
transforms.Resize(2_56 ),
transforms.CenterCrop(2_24 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 )
lowercase__ : Optional[Any] = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(f"""{model_name}""" )
processor.push_to_hub(f"""{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='focalnet-tiny',
type=str,
help='Name of the FocalNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub.',
)
lowerCAmelCase_ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'google/pix2struct-textcaps-base': (
'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'
),
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Dict = "pix2struct_text_model"
lowerCAmelCase : Any = ["past_key_values"]
lowerCAmelCase : Any = {
"hidden_size": "hidden_size",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Optional[Any] ,_snake_case : List[Any]=50_244 ,_snake_case : Optional[Any]=768 ,_snake_case : Any=64 ,_snake_case : List[str]=2_048 ,_snake_case : Optional[int]=12 ,_snake_case : Dict=12 ,_snake_case : Dict=32 ,_snake_case : Dict=128 ,_snake_case : List[str]=0.1 ,_snake_case : List[str]=1e-6 ,_snake_case : Dict=1.0 ,_snake_case : str="gelu_new" ,_snake_case : List[str]=0 ,_snake_case : Union[str, Any]=False ,_snake_case : Tuple=0 ,_snake_case : int=1 ,_snake_case : List[Any]=False ,_snake_case : Union[str, Any]=True ,**_snake_case : Any ,) -> Dict:
"""simple docstring"""
lowercase__ : Union[str, Any] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Tuple = d_kv
lowercase__ : Dict = d_ff
lowercase__ : str = num_layers
lowercase__ : List[Any] = num_heads
lowercase__ : Union[str, Any] = relative_attention_num_buckets
lowercase__ : List[Any] = relative_attention_max_distance
lowercase__ : Any = dropout_rate
lowercase__ : List[str] = layer_norm_epsilon
lowercase__ : Dict = initializer_factor
lowercase__ : Union[str, Any] = use_cache
lowercase__ : Tuple = eos_token_id
lowercase__ : List[Any] = decoder_start_token_id
# for backwards compatibility
lowercase__ : Union[str, Any] = dense_act_fn
super().__init__(
pad_token_id=_snake_case ,eos_token_id=_snake_case ,decoder_start_token_id=_snake_case ,tie_word_embeddings=_snake_case ,is_decoder=_snake_case ,**_snake_case ,)
@classmethod
def UpperCAmelCase ( cls : List[str] ,_snake_case : Union[str, os.PathLike] ,**_snake_case : List[Any] ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(_snake_case )
lowercase__ : Optional[int] = cls.get_config_dict(_snake_case ,**_snake_case )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
lowercase__ : Dict = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_snake_case ,**_snake_case )
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = "pix2struct_vision_model"
def __init__( self : Any ,_snake_case : Optional[Any]=768 ,_snake_case : Any=768 ,_snake_case : Union[str, Any]=2_048 ,_snake_case : Any=64 ,_snake_case : Dict=12 ,_snake_case : Tuple=12 ,_snake_case : Union[str, Any]="gelu_new" ,_snake_case : Dict=1e-6 ,_snake_case : int=0.0 ,_snake_case : str=0.0 ,_snake_case : int=1e-10 ,_snake_case : List[str]=1.0 ,_snake_case : Optional[int]=4_096 ,_snake_case : int=32 ,_snake_case : Optional[int]=128 ,**_snake_case : Optional[Any] ,) -> List[str]:
"""simple docstring"""
super().__init__(**_snake_case )
lowercase__ : List[Any] = hidden_size
lowercase__ : str = patch_embed_hidden_size
lowercase__ : Dict = d_ff
lowercase__ : List[str] = dropout_rate
lowercase__ : Dict = num_hidden_layers
lowercase__ : int = num_attention_heads
lowercase__ : Tuple = initializer_range
lowercase__ : int = initializer_factor
lowercase__ : Dict = attention_dropout
lowercase__ : Tuple = layer_norm_eps
lowercase__ : Optional[Any] = dense_act_fn
lowercase__ : Any = seq_len
lowercase__ : Tuple = relative_attention_num_buckets
lowercase__ : Any = relative_attention_max_distance
lowercase__ : int = d_kv
@classmethod
def UpperCAmelCase ( cls : Any ,_snake_case : Union[str, os.PathLike] ,**_snake_case : str ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(_snake_case )
lowercase__ : Tuple = cls.get_config_dict(_snake_case ,**_snake_case )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
lowercase__ : Union[str, Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_snake_case ,**_snake_case )
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Dict = "pix2struct"
lowerCAmelCase : Optional[int] = True
def __init__( self : List[str] ,_snake_case : Tuple=None ,_snake_case : Dict=None ,_snake_case : Tuple=1.0 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Union[str, Any]=False ,_snake_case : List[str]=False ,_snake_case : Optional[int]=True ,**_snake_case : List[str] ,) -> str:
"""simple docstring"""
super().__init__(tie_word_embeddings=_snake_case ,is_encoder_decoder=_snake_case ,**_snake_case )
if text_config is None:
lowercase__ : int = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
lowercase__ : Union[str, Any] = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
lowercase__ : Optional[int] = PixaStructTextConfig(**_snake_case )
lowercase__ : int = PixaStructVisionConfig(**_snake_case )
lowercase__ : Any = self.text_config.decoder_start_token_id
lowercase__ : List[str] = self.text_config.pad_token_id
lowercase__ : Union[str, Any] = self.text_config.eos_token_id
lowercase__ : Any = initializer_factor
lowercase__ : Any = initializer_range
lowercase__ : int = self.initializer_range
lowercase__ : List[str] = self.initializer_range
lowercase__ : str = is_vqa
@classmethod
def UpperCAmelCase ( cls : int ,_snake_case : PixaStructTextConfig ,_snake_case : PixaStructVisionConfig ,**_snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_snake_case )
def UpperCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ : Dict = copy.deepcopy(self.__dict__ )
lowercase__ : Optional[Any] = self.text_config.to_dict()
lowercase__ : Tuple = self.vision_config.to_dict()
lowercase__ : Tuple = self.__class__.model_type
return output
| 370
|
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"]
lowerCAmelCase : int = "ChineseCLIPImageProcessor"
lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any:
"""simple docstring"""
lowercase__ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' ,_snake_case ,)
lowercase__ : Tuple = kwargs.pop('''feature_extractor''' )
lowercase__ : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_snake_case ,_snake_case )
lowercase__ : List[Any] = self.image_processor
def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if images is not None:
lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case )
if text is not None and images is not None:
lowercase__ : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case )
def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case ,**_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_snake_case ,**_snake_case )
@property
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.tokenizer.model_input_names
lowercase__ : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,)
return self.image_processor_class
| 302
| 0
|
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : int = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
lowercase__ : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
lowercase__ : int = '''xvjiarui/stable-diffusion-2-inpainting'''
lowercase__ : Optional[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_snake_case ,safety_checker=_snake_case )
lowercase__ : int = '''Face of a yellow cat, high resolution, sitting on a park bench'''
lowercase__ : Tuple = jax.random.PRNGKey(0 )
lowercase__ : Optional[Any] = 50
lowercase__ : List[Any] = jax.device_count()
lowercase__ : Dict = num_samples * [prompt]
lowercase__ : int = num_samples * [init_image]
lowercase__ : List[str] = num_samples * [mask_image]
lowercase__ : Optional[Any] = pipeline.prepare_inputs(_snake_case ,_snake_case ,_snake_case )
# shard inputs and rng
lowercase__ : Any = replicate(_snake_case )
lowercase__ : Tuple = jax.random.split(_snake_case ,jax.device_count() )
lowercase__ : str = shard(_snake_case )
lowercase__ : Tuple = shard(_snake_case )
lowercase__ : Union[str, Any] = shard(_snake_case )
lowercase__ : Optional[Any] = pipeline(
_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,jit=_snake_case )
lowercase__ : Union[str, Any] = output.images.reshape(_snake_case ,512 ,512 ,3 )
lowercase__ : Any = images[0, 253:256, 253:256, -1]
lowercase__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowercase__ : List[Any] = jnp.array(
[0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 371
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
lowerCAmelCase_ = Mapping[str, np.ndarray]
lowerCAmelCase_ = Mapping[str, Any] # Is a nested dict.
lowerCAmelCase_ = 0.0_1
@dataclasses.dataclass(frozen=A_ )
class __A :
'''simple docstring'''
lowerCAmelCase : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowerCAmelCase : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowerCAmelCase : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowerCAmelCase : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowerCAmelCase : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowerCAmelCase : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowerCAmelCase : Optional[str] = None
# Templates used to generate this protein (prediction-only)
lowerCAmelCase : Optional[Sequence[str]] = None
# Chain corresponding to each parent
lowerCAmelCase : Optional[Sequence[int]] = None
def __UpperCAmelCase ( __lowerCamelCase ) -> Protein:
lowercase__ : Tuple = r'''(\[[A-Z]+\]\n)'''
lowercase__ : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0]
lowercase__ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowercase__ : List[str] = ["N", "CA", "C"]
lowercase__ : Dict = None
lowercase__ : Tuple = None
lowercase__ : Optional[int] = None
for g in groups:
if "[PRIMARY]" == g[0]:
lowercase__ : Union[str, Any] = g[1][0].strip()
for i in range(len(__lowerCamelCase ) ):
if seq[i] not in residue_constants.restypes:
lowercase__ : str = '''X''' # FIXME: strings are immutable
lowercase__ : List[str] = np.array(
[residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowercase__ : List[List[float]] = []
for axis in range(3 ):
tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) )
lowercase__ : Dict = np.array(__lowerCamelCase )
lowercase__ : Dict = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(__lowerCamelCase ):
lowercase__ : List[Any] = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowercase__ : Optional[int] = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowercase__ : Optional[int] = np.zeros(
(
len(__lowerCamelCase ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(__lowerCamelCase ):
lowercase__ : List[str] = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 0 ) -> List[str]:
lowercase__ : List[str] = []
lowercase__ : str = prot.remark
if remark is not None:
pdb_headers.append(f"""REMARK {remark}""" )
lowercase__ : Optional[int] = prot.parents
lowercase__ : int = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowercase__ : List[Any] = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id]
if parents is None or len(__lowerCamelCase ) == 0:
lowercase__ : List[str] = ['''N/A''']
pdb_headers.append(f"""PARENT {" ".join(__lowerCamelCase )}""" )
return pdb_headers
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str:
lowercase__ : List[str] = []
lowercase__ : str = pdb_str.split('''\n''' )
lowercase__ : List[str] = prot.remark
if remark is not None:
out_pdb_lines.append(f"""REMARK {remark}""" )
lowercase__ : List[List[str]]
if prot.parents is not None and len(prot.parents ) > 0:
lowercase__ : List[Any] = []
if prot.parents_chain_index is not None:
lowercase__ : Dict[str, List[str]] = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(__lowerCamelCase ) , [] )
parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase )
lowercase__ : Optional[int] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowercase__ : int = parent_dict.get(str(__lowerCamelCase ) , ['''N/A'''] )
parents_per_chain.append(__lowerCamelCase )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowercase__ : str = [['''N/A''']]
def make_parent_line(__lowerCamelCase ) -> str:
return f"""PARENT {" ".join(__lowerCamelCase )}"""
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowercase__ : Union[str, Any] = 0
for i, l in enumerate(__lowerCamelCase ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(__lowerCamelCase )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(__lowerCamelCase ):
lowercase__ : List[str] = parents_per_chain[chain_counter]
else:
lowercase__ : List[str] = ['''N/A''']
out_pdb_lines.append(make_parent_line(__lowerCamelCase ) )
return "\n".join(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
lowercase__ : List[str] = residue_constants.restypes + ['''X''']
def res_atoa(__lowerCamelCase ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowercase__ : Tuple = residue_constants.atom_types
lowercase__ : List[str] = []
lowercase__ : Dict = prot.atom_mask
lowercase__ : str = prot.aatype
lowercase__ : Tuple = prot.atom_positions
lowercase__ : int = prot.residue_index.astype(np.intaa )
lowercase__ : Dict = prot.b_factors
lowercase__ : Optional[int] = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowercase__ : str = get_pdb_headers(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
pdb_lines.extend(__lowerCamelCase )
lowercase__ : Union[str, Any] = aatype.shape[0]
lowercase__ : Dict = 1
lowercase__ : Optional[int] = 0
lowercase__ : str = string.ascii_uppercase
lowercase__ : int = None
# Add all atom sites.
for i in range(__lowerCamelCase ):
lowercase__ : List[str] = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowercase__ : List[str] = '''ATOM'''
lowercase__ : List[Any] = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}"""
lowercase__ : List[Any] = ''''''
lowercase__ : Dict = ''''''
lowercase__ : str = 1.0_0
lowercase__ : Optional[int] = atom_name[0] # Protein supports only C, N, O, S, this works.
lowercase__ : Any = ''''''
lowercase__ : str = '''A'''
if chain_index is not None:
lowercase__ : List[str] = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowercase__ : Tuple = (
f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"""
f"""{res_name_a:>3} {chain_tag:>1}"""
f"""{residue_index[i]:>4}{insertion_code:>1} """
f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"""
f"""{occupancy:>6.2f}{b_factor:>6.2f} """
f"""{element:>2}{charge:>2}"""
)
pdb_lines.append(__lowerCamelCase )
atom_index += 1
lowercase__ : Optional[Any] = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowercase__ : int = True
lowercase__ : str = chain_index[i + 1]
if should_terminate:
# Close the chain.
lowercase__ : Optional[Any] = '''TER'''
lowercase__ : str = (
f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"""
)
pdb_lines.append(__lowerCamelCase )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase ) -> np.ndarray:
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , ) -> Protein:
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
| 350
|
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase : Optional[str] = field(
default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
@dataclass
class __A :
'''simple docstring'''
lowerCAmelCase : str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
lowerCAmelCase : Optional[str] = field(
default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,)
lowerCAmelCase : int = field(
default=1_2_8 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
lowerCAmelCase : bool = field(
default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __UpperCAmelCase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
lowercase__ : str = import_module('''tasks''' )
try:
lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels )
lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) )
lowercase__ : Optional[int] = len(__lowerCamelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , )
lowercase__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ : str = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ : str = (
TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]:
lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 )
lowercase__ , lowercase__ : Tuple = preds.shape
lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )]
lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )]
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(__lowerCamelCase ) -> Dict:
lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
# Data collator
lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ : str = Trainer(
model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ : int = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase__ : Optional[int] = trainer.evaluate()
lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__lowerCamelCase )
# Predict
if training_args.do_predict:
lowercase__ : Optional[int] = TokenClassificationDataset(
token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase )
lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(__lowerCamelCase , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return results
def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : int ,*_snake_case : Optional[int] ,**_snake_case : List[Any] ) -> None:
"""simple docstring"""
warnings.warn(
'''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use YolosImageProcessor instead.''' ,_snake_case ,)
super().__init__(*_snake_case ,**_snake_case )
| 351
|
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : Dict = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : List[str] = 16
elif accelerator.mixed_precision != "no":
lowercase__ : List[Any] = 8
else:
lowercase__ : Optional[int] = None
return tokenizer.pad(
__lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ : Dict = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
lowercase__ : Union[str, Any] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1":
lowercase__ : Any = 2
# Initialize accelerator
lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : List[Any] = config['''lr''']
lowercase__ : Union[str, Any] = int(config['''num_epochs'''] )
lowercase__ : List[str] = int(config['''seed'''] )
lowercase__ : Any = int(config['''batch_size'''] )
lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__lowerCamelCase )
def inner_training_loop(__lowerCamelCase ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : str = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase )
lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate scheduler
lowercase__ : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ : int = model(**__lowerCamelCase )
lowercase__ : Optional[int] = outputs.loss
accelerator.backward(__lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : Tuple = model(**__lowerCamelCase )
lowercase__ : Dict = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
lowercase__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ : Union[str, Any] = parser.parse_args()
lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase ) -> list[int]:
if length <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError('''Length must be a positive integer.''' )
return [n * (2 * n - 1) for n in range(__lowerCamelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 352
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : int ) -> str:
"""simple docstring"""
lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case )
lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' )
lowercase__ : Tuple = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
lowercase__ : Optional[int] = model.generate(**_snake_case )
lowercase__ : List[Any] = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
lowercase__ : int = model_reloaded.generate(**_snake_case )
self.assertTrue(torch.allclose(_snake_case ,_snake_case ) )
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5'''
lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case )
lowercase__ : Union[str, Any] = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_snake_case ):
model.save_pretrained(_snake_case )
lowercase__ : int = model.reverse_bettertransformer()
model.save_pretrained(_snake_case )
| 302
| 0
|
"""simple docstring"""
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
lowerCAmelCase_ = [
# (stable-diffusion, HF Diffusers)
('time_embed.0.weight', 'time_embedding.linear_1.weight'),
('time_embed.0.bias', 'time_embedding.linear_1.bias'),
('time_embed.2.weight', 'time_embedding.linear_2.weight'),
('time_embed.2.bias', 'time_embedding.linear_2.bias'),
('input_blocks.0.0.weight', 'conv_in.weight'),
('input_blocks.0.0.bias', 'conv_in.bias'),
('out.0.weight', 'conv_norm_out.weight'),
('out.0.bias', 'conv_norm_out.bias'),
('out.2.weight', 'conv_out.weight'),
('out.2.bias', 'conv_out.bias'),
]
lowerCAmelCase_ = [
# (stable-diffusion, HF Diffusers)
('in_layers.0', 'norm1'),
('in_layers.2', 'conv1'),
('out_layers.0', 'norm2'),
('out_layers.3', 'conv2'),
('emb_layers.1', 'time_emb_proj'),
('skip_connection', 'conv_shortcut'),
]
lowerCAmelCase_ = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
lowerCAmelCase_ = F'''down_blocks.{i}.resnets.{j}.'''
lowerCAmelCase_ = F'''input_blocks.{3*i + j + 1}.0.'''
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
lowerCAmelCase_ = F'''down_blocks.{i}.attentions.{j}.'''
lowerCAmelCase_ = F'''input_blocks.{3*i + j + 1}.1.'''
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
lowerCAmelCase_ = F'''up_blocks.{i}.resnets.{j}.'''
lowerCAmelCase_ = F'''output_blocks.{3*i + j}.0.'''
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
lowerCAmelCase_ = F'''up_blocks.{i}.attentions.{j}.'''
lowerCAmelCase_ = F'''output_blocks.{3*i + j}.1.'''
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
lowerCAmelCase_ = F'''down_blocks.{i}.downsamplers.0.conv.'''
lowerCAmelCase_ = F'''input_blocks.{3*(i+1)}.0.op.'''
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
lowerCAmelCase_ = F'''up_blocks.{i}.upsamplers.0.'''
lowerCAmelCase_ = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.'''
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
lowerCAmelCase_ = 'mid_block.attentions.0.'
lowerCAmelCase_ = 'middle_block.1.'
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
lowerCAmelCase_ = F'''mid_block.resnets.{j}.'''
lowerCAmelCase_ = F'''middle_block.{2*j}.'''
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def __UpperCAmelCase ( __lowerCamelCase ):
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
lowercase__ : str = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
lowercase__ : List[str] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
lowercase__ : List[Any] = v.replace(__lowerCamelCase , __lowerCamelCase )
lowercase__ : str = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
lowercase__ : Optional[Any] = v.replace(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Dict = v
lowercase__ : int = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
lowerCAmelCase_ = [
# (stable-diffusion, HF Diffusers)
('nin_shortcut', 'conv_shortcut'),
('norm_out', 'conv_norm_out'),
('mid.attn_1.', 'mid_block.attentions.0.'),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
lowerCAmelCase_ = F'''encoder.down_blocks.{i}.resnets.{j}.'''
lowerCAmelCase_ = F'''encoder.down.{i}.block.{j}.'''
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
lowerCAmelCase_ = F'''down_blocks.{i}.downsamplers.0.'''
lowerCAmelCase_ = F'''down.{i}.downsample.'''
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
lowerCAmelCase_ = F'''up_blocks.{i}.upsamplers.0.'''
lowerCAmelCase_ = F'''up.{3-i}.upsample.'''
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
lowerCAmelCase_ = F'''decoder.up_blocks.{i}.resnets.{j}.'''
lowerCAmelCase_ = F'''decoder.up.{3-i}.block.{j}.'''
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
lowerCAmelCase_ = F'''mid_block.resnets.{i}.'''
lowerCAmelCase_ = F'''mid.block_{i+1}.'''
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
lowerCAmelCase_ = [
# (stable-diffusion, HF Diffusers)
('norm.', 'group_norm.'),
('q.', 'query.'),
('k.', 'key.'),
('v.', 'value.'),
('proj_out.', 'proj_attn.'),
]
def __UpperCAmelCase ( __lowerCamelCase ):
# convert HF linear weights to SD conv2d weights
return w.reshape(*w.shape , 1 , 1 )
def __UpperCAmelCase ( __lowerCamelCase ):
lowercase__ : Tuple = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
lowercase__ : Optional[Any] = v.replace(__lowerCamelCase , __lowerCamelCase )
lowercase__ : Optional[int] = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
lowercase__ : str = v.replace(__lowerCamelCase , __lowerCamelCase )
lowercase__ : str = v
lowercase__ : Optional[int] = {v: vae_state_dict[k] for k, v in mapping.items()}
lowercase__ : Tuple = ['''q''', '''k''', '''v''', '''proj_out''']
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"""mid.attn_1.{weight_name}.weight""" in k:
print(f"""Reshaping {k} for SD format""" )
lowercase__ : List[str] = reshape_weight_for_sd(__lowerCamelCase )
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
lowerCAmelCase_ = [
# (stable-diffusion, HF Diffusers)
('resblocks.', 'text_model.encoder.layers.'),
('ln_1', 'layer_norm1'),
('ln_2', 'layer_norm2'),
('.c_fc.', '.fc1.'),
('.c_proj.', '.fc2.'),
('.attn', '.self_attn'),
('ln_final.', 'transformer.text_model.final_layer_norm.'),
('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'),
('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'),
]
lowerCAmelCase_ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
lowerCAmelCase_ = re.compile('|'.join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
lowerCAmelCase_ = {'q': 0, 'k': 1, 'v': 2}
def __UpperCAmelCase ( __lowerCamelCase ):
lowercase__ : int = {}
lowercase__ : str = {}
lowercase__ : str = {}
for k, v in text_enc_dict.items():
if (
k.endswith('''.self_attn.q_proj.weight''' )
or k.endswith('''.self_attn.k_proj.weight''' )
or k.endswith('''.self_attn.v_proj.weight''' )
):
lowercase__ : Any = k[: -len('''.q_proj.weight''' )]
lowercase__ : List[str] = k[-len('''q_proj.weight''' )]
if k_pre not in capture_qkv_weight:
lowercase__ : Any = [None, None, None]
lowercase__ : Optional[int] = v
continue
if (
k.endswith('''.self_attn.q_proj.bias''' )
or k.endswith('''.self_attn.k_proj.bias''' )
or k.endswith('''.self_attn.v_proj.bias''' )
):
lowercase__ : Any = k[: -len('''.q_proj.bias''' )]
lowercase__ : List[str] = k[-len('''q_proj.bias''' )]
if k_pre not in capture_qkv_bias:
lowercase__ : Tuple = [None, None, None]
lowercase__ : Optional[Any] = v
continue
lowercase__ : List[Any] = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase )
lowercase__ : Dict = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' )
lowercase__ : List[str] = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase )
lowercase__ : Tuple = torch.cat(__lowerCamelCase )
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' )
lowercase__ : Any = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase )
lowercase__ : Optional[int] = torch.cat(__lowerCamelCase )
return new_state_dict
def __UpperCAmelCase ( __lowerCamelCase ):
return text_enc_dict
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.')
parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--half', action='store_true', help='Save weights in half precision.')
parser.add_argument(
'--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.'
)
lowerCAmelCase_ = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
lowerCAmelCase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors')
lowerCAmelCase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors')
lowerCAmelCase_ = osp.join(args.model_path, 'text_encoder', 'model.safetensors')
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
lowerCAmelCase_ = load_file(unet_path, device='cpu')
else:
lowerCAmelCase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin')
lowerCAmelCase_ = torch.load(unet_path, map_location='cpu')
if osp.exists(vae_path):
lowerCAmelCase_ = load_file(vae_path, device='cpu')
else:
lowerCAmelCase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin')
lowerCAmelCase_ = torch.load(vae_path, map_location='cpu')
if osp.exists(text_enc_path):
lowerCAmelCase_ = load_file(text_enc_path, device='cpu')
else:
lowerCAmelCase_ = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin')
lowerCAmelCase_ = torch.load(text_enc_path, map_location='cpu')
# Convert the UNet model
lowerCAmelCase_ = convert_unet_state_dict(unet_state_dict)
lowerCAmelCase_ = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
lowerCAmelCase_ = convert_vae_state_dict(vae_state_dict)
lowerCAmelCase_ = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
lowerCAmelCase_ = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict
if is_vaa_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
lowerCAmelCase_ = {'transformer.' + k: v for k, v in text_enc_dict.items()}
lowerCAmelCase_ = convert_text_enc_state_dict_vaa(text_enc_dict)
lowerCAmelCase_ = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()}
else:
lowerCAmelCase_ = convert_text_enc_state_dict(text_enc_dict)
lowerCAmelCase_ = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
lowerCAmelCase_ = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
lowerCAmelCase_ = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
lowerCAmelCase_ = {'state_dict': state_dict}
torch.save(state_dict, args.checkpoint_path)
| 353
|
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase )
return flax_state_dict
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool:
return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ):
lowercase__ : Optional[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
lowercase__ : List[str] = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
lowercase__ : List[str] = pt_tuple_key[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
# convert pytorch tensor to numpy
lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : List[Any] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
lowercase__ : str = flax_model.params['''params''']
else:
lowercase__ : Optional[int] = flax_model.params
lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(__lowerCamelCase )
lowercase__ : int = {}
lowercase__ : List[str] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Union[str, Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
lowercase__ : int = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : Tuple = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Any = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import torch
# Load the index
lowercase__ : Dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
lowercase__ : Optional[int] = torch.load(__lowerCamelCase )
lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()}
lowercase__ : Dict = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowercase__ : Optional[Any] = flax_model.params['''params''']
lowercase__ : List[Any] = flatten_dict(__lowerCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
lowercase__ : Union[str, Any] = flax_model.params
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : Tuple = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
lowercase__ : int = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : List[str] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
lowercase__ : Tuple = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : List[str] = pt_tuple_key[1:]
# Correctly rename weight parameters
lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# add model prefix if necessary
lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Dict = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
continue
if "var" in flax_key[-1]:
lowercase__ : str = jnp.asarray(__lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowercase__ : List[str] = jnp.asarray(__lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase )
return unflatten_dict(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : List[str] = os.path.abspath(__lowerCamelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(__lowerCamelCase , '''rb''' ) as state_f:
try:
lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values()
if any(__lowerCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
lowercase__ : Union[str, Any] = jax.tree_util.tree_map(
lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase )
lowercase__ : Tuple = flatten_dict(__lowerCamelCase )
lowercase__ : List[str] = pt_model.state_dict()
lowercase__ : int = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
lowercase__ : List[str] = []
lowercase__ : Tuple = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix
lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
lowercase__ : Tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict:
# conv layer
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict:
# linear layer
lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
lowercase__ : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
lowercase__ : Dict = '''.'''.join(__lowerCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
lowercase__ : Optional[int] = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
lowercase__ : str = key.split('''.''' )
lowercase__ : Optional[Any] = None
if key_components[-3::2] == ["parametrizations", "original0"]:
lowercase__ : List[str] = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
lowercase__ : str = key_components[-2] + '''_v'''
if name is not None:
lowercase__ : Optional[int] = key_components[:-3] + [name]
lowercase__ : List[str] = '''.'''.join(__lowerCamelCase )
lowercase__ : List[Any] = key
if flax_key in special_pt_names:
lowercase__ : Any = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor
lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase )
# remove from missing keys
missing_keys.remove(__lowerCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCamelCase )
pt_model.load_state_dict(__lowerCamelCase )
# re-transform missing_keys to list
lowercase__ : Optional[Any] = list(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(__lowerCamelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
'''If your task is similar to the task the model of the checkpoint was trained on, '''
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 302
| 0
|
"""simple docstring"""
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowerCAmelCase_ = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase_ = importlib.util.spec_from_file_location(
'transformers',
os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
lowerCAmelCase_ = spec.loader.load_module()
lowerCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
lowerCAmelCase_ = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)')
lowerCAmelCase_ = {
'CLIPConfigMixin',
'DecisionTransformerConfigMixin',
'EncoderDecoderConfigMixin',
'RagConfigMixin',
'SpeechEncoderDecoderConfigMixin',
'VisionEncoderDecoderConfigMixin',
'VisionTextDualEncoderConfigMixin',
}
def __UpperCAmelCase ( ) -> Any:
lowercase__ : Tuple = []
for config_class in list(CONFIG_MAPPING.values() ):
lowercase__ : int = False
# source code of `config_class`
lowercase__ : int = inspect.getsource(__lowerCamelCase )
lowercase__ : Any = _re_checkpoint.findall(__lowerCamelCase )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
lowercase__ : List[str] = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
lowercase__ : Tuple = f"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
lowercase__ : Optional[int] = True
break
lowercase__ : Optional[Any] = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
lowercase__ : List[Any] = '''\n'''.join(sorted(__lowerCamelCase ) )
raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 354
|
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = value_function
lowercase__ : Optional[int] = unet
lowercase__ : Tuple = scheduler
lowercase__ : Dict = env
lowercase__ : int = env.get_dataset()
lowercase__ : Dict = {}
for key in self.data.keys():
try:
lowercase__ : Optional[Any] = self.data[key].mean()
except: # noqa: E722
pass
lowercase__ : List[Any] = {}
for key in self.data.keys():
try:
lowercase__ : str = self.data[key].std()
except: # noqa: E722
pass
lowercase__ : Tuple = env.observation_space.shape[0]
lowercase__ : Optional[int] = env.action_space.shape[0]
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
if type(_snake_case ) is dict:
return {k: self.to_torch(_snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(_snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(_snake_case ,device=self.unet.device )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
for key, val in cond.items():
lowercase__ : List[Any] = val.clone()
return x_in
def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Any = x.shape[0]
lowercase__ : Dict = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long )
for _ in range(_snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample
lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0]
lowercase__ : List[str] = self.scheduler._get_variance(_snake_case )
lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance )
lowercase__ : Optional[int] = model_std * grad
lowercase__ : Optional[Any] = 0
lowercase__ : str = x.detach()
lowercase__ : Dict = x + scale * grad
lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 )
# TODO: verify deprecation of this kwarg
lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : Union[str, Any] = self.to_torch(_snake_case )
return x, y
def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]:
"""simple docstring"""
lowercase__ : Any = self.normalize(_snake_case ,'''observations''' )
lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 )
lowercase__ : Dict = {0: self.to_torch(_snake_case )}
lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device )
lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim )
lowercase__ : str = self.to_torch(_snake_case )
# run the diffusion process
lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case )
# sort output trajectories by value
lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze()
lowercase__ : str = x[sorted_idx]
lowercase__ : str = sorted_values[:, :, : self.action_dim]
lowercase__ : Optional[int] = actions.detach().cpu().numpy()
lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' )
# select the action with the highest value
if y is not None:
lowercase__ : str = 0
else:
# if we didn't run value guiding, select a random action
lowercase__ : str = np.random.randint(0 ,_snake_case )
lowercase__ : int = denorm_actions[selected_index, 0]
return denorm_actions
| 302
| 0
|
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
lowercase__ : Any = tmp_path / '''cache'''
lowercase__ : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ : Any = SqlDatasetReader(
'''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read()
_check_sql_dataset(__lowerCamelCase , __lowerCamelCase )
@require_sqlalchemy
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
lowercase__ : str = tmp_path / '''cache'''
lowercase__ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
lowercase__ : Tuple = features.copy() if features else default_expected_features
lowercase__ : Any = (
Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ : List[str] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_sql_dataset(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]:
with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con:
lowercase__ : Union[str, Any] = con.cursor()
cur.execute('''SELECT * FROM dataset''' )
for row in cur:
yield row
@require_sqlalchemy
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
lowercase__ : Optional[Any] = tmp_path / '''cache'''
lowercase__ : Tuple = os.path.join(__lowerCamelCase , '''tmp.sql''' )
lowercase__ : Dict = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read()
SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write()
lowercase__ : Optional[int] = iter_sql_file(__lowerCamelCase )
lowercase__ : str = iter_sql_file(__lowerCamelCase )
for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ):
assert rowa == rowa
@require_sqlalchemy
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
lowercase__ : Optional[Any] = tmp_path / '''cache'''
lowercase__ : List[str] = os.path.join(__lowerCamelCase , '''tmp.sql''' )
lowercase__ : Optional[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read()
SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write()
lowercase__ : Any = iter_sql_file(__lowerCamelCase )
lowercase__ : List[str] = iter_sql_file(__lowerCamelCase )
for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ):
assert rowa == rowa
@require_sqlalchemy
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
lowercase__ : Optional[int] = tmp_path / '''cache'''
lowercase__ : List[str] = os.path.join(__lowerCamelCase , '''tmp.sql''' )
lowercase__ : List[str] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read()
with pytest.raises(__lowerCamelCase ):
SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
| 355
|
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ,id='''sequence''' ),
'''references''': datasets.Value('''string''' ,id='''sequence''' ),
} ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] ,)
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any:
"""simple docstring"""
lowercase__ : Any = compute_mauve(
p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,)
return out
| 302
| 0
|
"""simple docstring"""
from manim import *
class __A ( A_ ):
'''simple docstring'''
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Optional[int] = Rectangle(height=0.5 ,width=0.5 )
lowercase__ : Dict = Rectangle(height=0.25 ,width=0.25 )
lowercase__ : Any = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
lowercase__ : List[Any] = [mem.copy() for i in range(6 )]
lowercase__ : Tuple = [mem.copy() for i in range(6 )]
lowercase__ : Optional[Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : List[str] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : Optional[Any] = VGroup(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : Optional[int] = Text('''CPU''' ,font_size=24 )
lowercase__ : Dict = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_snake_case )
lowercase__ : Optional[Any] = [mem.copy() for i in range(4 )]
lowercase__ : List[Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : List[str] = Text('''GPU''' ,font_size=24 )
lowercase__ : int = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case )
gpu.move_to([-1, -1, 0] )
self.add(_snake_case )
lowercase__ : Tuple = [mem.copy() for i in range(6 )]
lowercase__ : Dict = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : List[Any] = Text('''Model''' ,font_size=24 )
lowercase__ : Any = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case )
model.move_to([3, -1.0, 0] )
self.add(_snake_case )
lowercase__ : Dict = []
lowercase__ : Any = []
lowercase__ : Optional[int] = []
for i, rect in enumerate(_snake_case ):
rect.set_stroke(_snake_case )
lowercase__ : Tuple = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case ,opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_snake_case )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] ,direction=_snake_case ,buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] ,direction=_snake_case ,buff=0.0 )
self.add(_snake_case )
model_cpu_arr.append(_snake_case )
self.add(*_snake_case ,*_snake_case ,*_snake_case )
lowercase__ : Any = [mem.copy() for i in range(6 )]
lowercase__ : List[str] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : List[Any] = Text('''Loaded Checkpoint''' ,font_size=24 )
lowercase__ : List[Any] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case )
checkpoint.move_to([3, 0.5, 0] )
self.add(_snake_case )
lowercase__ : str = []
lowercase__ : Optional[Any] = []
for i, rect in enumerate(_snake_case ):
lowercase__ : int = fill.copy().set_fill(_snake_case ,opacity=0.7 )
target.move_to(_snake_case )
ckpt_arr.append(_snake_case )
lowercase__ : str = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(_snake_case )
self.add(*_snake_case ,*_snake_case )
lowercase__ : Tuple = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowercase__ : str = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
self.add(_snake_case ,_snake_case )
lowercase__ : List[str] = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,)
blue_text.next_to(_snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() )
self.add(_snake_case )
lowercase__ : Dict = MarkupText(
f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" ,font_size=24 ,)
step_a.move_to([2, 2, 0] )
lowercase__ : List[Any] = [meta_mem.copy() for i in range(6 )]
lowercase__ : List[str] = [meta_mem.copy() for i in range(6 )]
lowercase__ : Union[str, Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : Union[str, Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : Any = VGroup(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0 )
lowercase__ : Optional[Any] = Text('''Disk''' ,font_size=24 )
lowercase__ : Optional[Any] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(_snake_case ,run_time=3 ) ,Write(_snake_case ,run_time=1 ) ,Create(_snake_case ,run_time=1 ) )
lowercase__ : Optional[int] = []
for i, rect in enumerate(_snake_case ):
lowercase__ : int = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(_snake_case ,run_time=1.5 ) )
self.play(*_snake_case )
self.play(FadeOut(_snake_case ) )
lowercase__ : Optional[int] = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" ,font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_snake_case ,run_time=3 ) )
self.play(
FadeOut(_snake_case ,_snake_case ,*_snake_case ,*_snake_case ) ,)
self.wait()
| 356
|
"""simple docstring"""
import math
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
lowercase__ : Tuple = 0
lowercase__ : Tuple = 0
while num > 0:
lowercase__ : int = num % 8
lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"""0o{int(__lowerCamelCase )}"""
def __UpperCAmelCase ( ) -> None:
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(2_16 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(5_12 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 302
| 0
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
lowerCAmelCase_ = logging.get_logger(__name__)
def __UpperCAmelCase ( ) -> Dict:
# Get the sagemaker specific mp parameters from smp_options variable.
lowercase__ : List[Any] = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
lowercase__ : Tuple = json.loads(__lowerCamelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
lowercase__ : Optional[int] = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
lowercase__ : Union[str, Any] = json.loads(__lowerCamelCase )
if not mpi_options.get('''sagemaker_mpi_enabled''' , __lowerCamelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec('''smdistributed''' ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : str = field(
default="" ,metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} ,)
def UpperCAmelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
super().__post_init__()
warnings.warn(
'''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use '''
'''`TrainingArguments` instead.''' ,_snake_case ,)
@cached_property
def UpperCAmelCase ( self : Tuple ) -> "torch.device":
"""simple docstring"""
logger.info('''PyTorch: setting up devices''' )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
'''torch.distributed process group is initialized, but local_rank == -1. '''
'''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' )
if self.no_cuda:
lowercase__ : str = torch.device('''cpu''' )
lowercase__ : Union[str, Any] = 0
elif is_sagemaker_model_parallel_available():
lowercase__ : List[str] = smp.local_rank()
lowercase__ : Tuple = torch.device('''cuda''' ,_snake_case )
lowercase__ : Optional[Any] = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend='''smddp''' ,timeout=self.ddp_timeout_delta )
lowercase__ : Tuple = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) )
lowercase__ : Any = torch.device('''cuda''' ,self.local_rank )
lowercase__ : Dict = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
lowercase__ : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
lowercase__ : Tuple = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='''nccl''' ,timeout=self.ddp_timeout_delta )
lowercase__ : Tuple = torch.device('''cuda''' ,self.local_rank )
lowercase__ : List[Any] = 1
if device.type == "cuda":
torch.cuda.set_device(_snake_case )
return device
@property
def UpperCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return not is_sagemaker_model_parallel_available()
@property
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return False
| 357
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
lowerCAmelCase_ = [
'openmmlab/upernet-convnext-tiny',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
lowerCAmelCase_ = 'UperNetConfig'
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : Optional[int] = nn.Convad(
in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,)
lowercase__ : Tuple = nn.BatchNormad(_snake_case )
lowercase__ : List[str] = nn.ReLU()
def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.conv(_snake_case )
lowercase__ : List[str] = self.batch_norm(_snake_case )
lowercase__ : Tuple = self.activation(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : List[Any] = [
nn.AdaptiveAvgPoolad(_snake_case ),
UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Any = input
for layer in self.layers:
lowercase__ : int = layer(_snake_case )
return hidden_state
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = pool_scales
lowercase__ : Dict = align_corners
lowercase__ : Optional[Any] = in_channels
lowercase__ : Optional[Any] = channels
lowercase__ : int = []
for i, pool_scale in enumerate(_snake_case ):
lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case )
self.blocks.append(_snake_case )
self.add_module(str(_snake_case ) ,_snake_case )
def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]:
"""simple docstring"""
lowercase__ : int = []
for ppm in self.blocks:
lowercase__ : Any = ppm(_snake_case )
lowercase__ : int = nn.functional.interpolate(
_snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
ppm_outs.append(_snake_case )
return ppm_outs
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ : str = config
lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6)
lowercase__ : Optional[Any] = in_channels
lowercase__ : Any = config.hidden_size
lowercase__ : Optional[Any] = False
lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
# PSP Module
lowercase__ : Dict = UperNetPyramidPoolingModule(
self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,)
lowercase__ : str = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
# FPN Module
lowercase__ : Any = nn.ModuleList()
lowercase__ : Union[str, Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 )
lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 )
self.lateral_convs.append(_snake_case )
self.fpn_convs.append(_snake_case )
lowercase__ : int = UperNetConvModule(
len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,)
def UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str:
"""simple docstring"""
lowercase__ : Dict = inputs[-1]
lowercase__ : Optional[int] = [x]
psp_outs.extend(self.psp_modules(_snake_case ) )
lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 )
lowercase__ : List[str] = self.bottleneck(_snake_case )
return output
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(_snake_case ) )
# build top-down path
lowercase__ : List[Any] = len(_snake_case )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:]
lowercase__ : int = laterals[i - 1] + nn.functional.interpolate(
laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners )
# build outputs
lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 ,0 ,-1 ):
lowercase__ : Any = nn.functional.interpolate(
fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners )
lowercase__ : Any = torch.cat(_snake_case ,dim=1 )
lowercase__ : Any = self.fpn_bottleneck(_snake_case )
lowercase__ : str = self.classifier(_snake_case )
return output
class __A ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None:
"""simple docstring"""
super().__init__()
lowercase__ : int = config
lowercase__ : Dict = config.auxiliary_in_channels
lowercase__ : Optional[int] = config.auxiliary_channels
lowercase__ : List[Any] = config.auxiliary_num_convs
lowercase__ : List[Any] = config.auxiliary_concat_input
lowercase__ : str = in_index
lowercase__ : Any = (kernel_size // 2) * dilation
lowercase__ : Optional[Any] = []
convs.append(
UperNetConvModule(
self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) )
if self.num_convs == 0:
lowercase__ : List[str] = nn.Identity()
else:
lowercase__ : Dict = nn.Sequential(*_snake_case )
if self.concat_input:
lowercase__ : int = UperNetConvModule(
self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 )
lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 )
def UpperCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
self.apply(self._init_weights )
def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict:
"""simple docstring"""
if isinstance(_snake_case ,nn.Convad ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
lowercase__ : str = encoder_hidden_states[self.in_index]
lowercase__ : List[str] = self.convs(_snake_case )
if self.concat_input:
lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) )
lowercase__ : Dict = self.classifier(_snake_case )
return output
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Any = UperNetConfig
lowerCAmelCase : str = "pixel_values"
lowerCAmelCase : Dict = True
def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]:
"""simple docstring"""
if isinstance(_snake_case ,_snake_case ):
lowercase__ : List[Any] = value
lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,)
class __A ( A_ ):
'''simple docstring'''
def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int:
"""simple docstring"""
super().__init__(_snake_case )
lowercase__ : int = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels )
lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]:
"""simple docstring"""
lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs(
_snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case )
lowercase__ : Optional[int] = outputs.feature_maps
lowercase__ : Tuple = self.decode_head(_snake_case )
lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : List[str] = None
if self.auxiliary_head is not None:
lowercase__ : str = self.auxiliary_head(_snake_case )
lowercase__ : Dict = nn.functional.interpolate(
_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case )
lowercase__ : Any = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
lowercase__ : Tuple = (logits,) + outputs[1:]
else:
lowercase__ : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
| 302
| 0
|
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
lowerCAmelCase_ = numpy.array([0, 0])
lowerCAmelCase_ = numpy.array([0.5, 0.8_6_6_0_2_5_4])
lowerCAmelCase_ = numpy.array([1, 0])
lowerCAmelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> list[numpy.ndarray]:
lowercase__ : Dict = initial_vectors
for _ in range(__lowerCamelCase ):
lowercase__ : Any = iteration_step(__lowerCamelCase )
return vectors
def __UpperCAmelCase ( __lowerCamelCase ) -> list[numpy.ndarray]:
lowercase__ : Tuple = []
for i, start_vector in enumerate(vectors[:-1] ):
lowercase__ : Any = vectors[i + 1]
new_vectors.append(__lowerCamelCase )
lowercase__ : List[str] = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> numpy.ndarray:
lowercase__ : Optional[int] = numpy.radians(__lowerCamelCase )
lowercase__ : str = numpy.cos(__lowerCamelCase ), numpy.sin(__lowerCamelCase )
lowercase__ : Optional[Any] = numpy.array(((c, -s), (s, c)) )
return numpy.dot(__lowerCamelCase , __lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase ) -> None:
lowercase__ : Dict = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowercase__ : List[Any] = zip(*__lowerCamelCase )
plt.plot(__lowerCamelCase , __lowerCamelCase )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 358
|
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCAmelCase_ = _symbol_database.Default()
lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
lowerCAmelCase_ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCAmelCase_ = None
lowerCAmelCase_ = B'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCAmelCase_ = 45
lowerCAmelCase_ = 1_581
lowerCAmelCase_ = 1_517
lowerCAmelCase_ = 1_570
lowerCAmelCase_ = 1_584
lowerCAmelCase_ = 1_793
lowerCAmelCase_ = 1_795
lowerCAmelCase_ = 1_916
lowerCAmelCase_ = 1_864
lowerCAmelCase_ = 1_905
lowerCAmelCase_ = 1_919
lowerCAmelCase_ = 2_429
lowerCAmelCase_ = 2_208
lowerCAmelCase_ = 2_418
lowerCAmelCase_ = 2_323
lowerCAmelCase_ = 2_407
# @@protoc_insertion_point(module_scope)
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
def __UpperCAmelCase ( __lowerCamelCase ) -> float:
if not nums:
raise ValueError('''List is empty''' )
return sum(__lowerCamelCase ) / len(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 302
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.