code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowerCAmelCase_ = 'scheduler_config.json' class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = 1 lowerCAmelCase : int = 2 lowerCAmelCase : Dict = 3 lowerCAmelCase : int = 4 lowerCAmelCase : Tuple = 5 @dataclass class __A ( A_ ): '''simple docstring''' lowerCAmelCase : jnp.ndarray class __A : '''simple docstring''' lowerCAmelCase : Optional[Any] = SCHEDULER_CONFIG_NAME lowerCAmelCase : Optional[int] = ["dtype"] lowerCAmelCase : Tuple = [] lowerCAmelCase : str = True @classmethod def UpperCAmelCase ( cls : List[str] ,_snake_case : Dict[str, Any] = None ,_snake_case : Optional[str] = None ,_snake_case : List[str]=False ,**_snake_case : Union[str, Any] ,) -> Dict: """simple docstring""" lowercase__ , lowercase__ : int = cls.load_config( pretrained_model_name_or_path=_snake_case ,subfolder=_snake_case ,return_unused_kwargs=_snake_case ,**_snake_case ,) lowercase__ , lowercase__ : Optional[Any] = cls.from_config(_snake_case ,return_unused_kwargs=_snake_case ,**_snake_case ) if hasattr(_snake_case ,'''create_state''' ) and getattr(_snake_case ,'''has_state''' ,_snake_case ): lowercase__ : Any = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, os.PathLike] ,_snake_case : bool = False ,**_snake_case : Tuple ) -> int: """simple docstring""" self.save_config(save_directory=_snake_case ,push_to_hub=_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : str = list(set([cls.__name__] + cls._compatibles ) ) lowercase__ : int = importlib.import_module(__name__.split('''.''' )[0] ) lowercase__ : Optional[int] = [ getattr(_snake_case ,_snake_case ) for c in compatible_classes_str if hasattr(_snake_case ,_snake_case ) ] return compatible_classes def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> jnp.ndarray: assert len(__lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ) -> jnp.ndarray: def alpha_bar(__lowerCamelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 lowercase__ : Dict = [] for i in range(__lowerCamelCase ): lowercase__ : Union[str, Any] = i / num_diffusion_timesteps lowercase__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) ) return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase ) @flax.struct.dataclass class __A : '''simple docstring''' lowerCAmelCase : jnp.ndarray lowerCAmelCase : jnp.ndarray lowerCAmelCase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : int ,_snake_case : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = scheduler.config if config.trained_betas is not None: lowercase__ : Optional[Any] = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowercase__ : List[str] = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ : List[Any] = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowercase__ : Union[str, Any] = 1.0 - betas lowercase__ : Tuple = jnp.cumprod(_snake_case ,axis=0 ) return cls( alphas=_snake_case ,betas=_snake_case ,alphas_cumprod=_snake_case ,) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Union[str, Any] = state.alphas_cumprod lowercase__ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowercase__ : int = sqrt_alpha_prod.flatten() lowercase__ : Any = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) lowercase__ : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ : Tuple = sqrt_one_minus_alpha_prod.flatten() lowercase__ : Any = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ , lowercase__ : Optional[Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ , lowercase__ : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
302
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case ,'''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_snake_case ,'''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(_snake_case ,'''num_encoder_blocks''' ) ) class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : List[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Optional[Any]=64 ,_snake_case : Dict=3 ,_snake_case : Dict=4 ,_snake_case : int=[2, 2, 2, 2] ,_snake_case : str=[8, 4, 2, 1] ,_snake_case : List[str]=[16, 32, 64, 128] ,_snake_case : Any=[1, 4, 8, 16] ,_snake_case : Dict=[1, 2, 4, 8] ,_snake_case : List[Any]=True ,_snake_case : Tuple=True ,_snake_case : Any="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Optional[Any]=0.1 ,_snake_case : Optional[int]=0.02 ,_snake_case : List[str]=3 ,_snake_case : str=None ,) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Dict = batch_size lowercase__ : Tuple = image_size lowercase__ : str = num_channels lowercase__ : int = num_encoder_blocks lowercase__ : List[Any] = sr_ratios lowercase__ : str = depths lowercase__ : str = hidden_sizes lowercase__ : Dict = downsampling_rates lowercase__ : Optional[int] = num_attention_heads lowercase__ : Optional[Any] = is_training lowercase__ : Any = use_labels lowercase__ : List[Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : List[str] = initializer_range lowercase__ : Tuple = num_labels lowercase__ : List[Any] = scope def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : str = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowercase__ : str = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return SegformerConfig( image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Dict ,_snake_case : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : List[str] = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = model(_snake_case ) lowercase__ : Dict = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCAmelCase ( self : Any ,_snake_case : Any ,_snake_case : str ,_snake_case : List[Any] ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.num_labels lowercase__ : Union[str, Any] = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowercase__ : Any = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss ,0.0 ) def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : str ,_snake_case : Dict ) -> Tuple: """simple docstring""" lowercase__ : Any = 1 lowercase__ : int = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) lowercase__ : Any = model(_snake_case ,labels=_snake_case ) self.parent.assertGreater(result.loss ,0.0 ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowerCAmelCase : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : List[str] = True lowerCAmelCase : str = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : str = False def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : List[Any] = SegformerModelTester(self ) lowercase__ : Dict = SegformerConfigTester(self ,config_class=_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Any = [*signature.parameters.keys()] lowercase__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Tuple = True lowercase__ : int = False lowercase__ : Optional[int] = True lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.attentions lowercase__ : Optional[Any] = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) # verify the first attentions (first block, first layer) lowercase__ : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 lowercase__ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) # verify the last attentions (last block, last layer) lowercase__ : List[str] = (self.model_tester.image_size // 32) ** 2 lowercase__ : List[Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,) lowercase__ : Optional[int] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : str = True lowercase__ : Dict = True lowercase__ : Dict = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) self.assertEqual(out_len + 1 ,len(_snake_case ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) # verify the first attentions (first block, first layer) lowercase__ : List[str] = (self.model_tester.image_size // 4) ** 2 lowercase__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : List[Any] ,_snake_case : Dict ,_snake_case : Tuple ): lowercase__ : List[str] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Tuple = outputs.hidden_states lowercase__ : Dict = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) ,_snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" if not self.model_tester.is_training: return lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue lowercase__ : Union[str, Any] = model_class(_snake_case ) model.to(_snake_case ) model.train() lowercase__ : List[Any] = self._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case ) lowercase__ : int = model(**_snake_case ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" pass @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[int] = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Tuple: lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" lowercase__ : List[str] = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=_snake_case ,align=_snake_case ,do_random_crop=_snake_case ) lowercase__ : Dict = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _snake_case ) lowercase__ : Dict = prepare_img() lowercase__ : int = image_processor(images=_snake_case ,return_tensors='''pt''' ) lowercase__ : Dict = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): lowercase__ : Optional[Any] = model(_snake_case ) lowercase__ : Optional[int] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : List[Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_snake_case ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ : Any = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=_snake_case ,align=_snake_case ,do_random_crop=_snake_case ) lowercase__ : str = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(_snake_case ) lowercase__ : List[Any] = prepare_img() lowercase__ : Optional[int] = image_processor(images=_snake_case ,return_tensors='''pt''' ) lowercase__ : Any = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): lowercase__ : Dict = model(_snake_case ) lowercase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_snake_case ,atol=1e-1 ) ) @slow def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : int = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=_snake_case ,align=_snake_case ,do_random_crop=_snake_case ) lowercase__ : Optional[int] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _snake_case ) lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Optional[int] = image_processor(images=_snake_case ,return_tensors='''pt''' ) lowercase__ : int = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): lowercase__ : Any = model(_snake_case ) lowercase__ : Dict = outputs.logits.detach().cpu() lowercase__ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_snake_case ,target_sizes=[(500, 300)] ) lowercase__ : Tuple = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,_snake_case ) lowercase__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) lowercase__ : Union[str, Any] = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape ,_snake_case )
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ = get_tests_dir('fixtures') class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowercase__ : Tuple = mock.Mock() lowercase__ : Union[str, Any] = 500 lowercase__ : Tuple = {} lowercase__ : List[Any] = HTTPError lowercase__ : List[Any] = {} # Download this model to make sure it's in the cache. lowercase__ : str = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' ,return_value=_snake_case ) as mock_head: lowercase__ : int = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowercase__ : int = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaises(_snake_case ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : List[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) lowercase__ : List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' ,subfolder='''feature_extractor''' ) self.assertIsNotNone(_snake_case ) @is_staging_test class __A ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase ( cls : Dict ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = TOKEN HfFolder.save_token(_snake_case ) @classmethod def UpperCAmelCase ( cls : int ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token ,repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = ViTImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''test-image-processor''' ,use_auth_token=self._token ) lowercase__ : List[str] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) # Reset repo delete_repo(token=self._token ,repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _snake_case ,repo_id='''test-image-processor''' ,push_to_hub=_snake_case ,use_auth_token=self._token ) lowercase__ : str = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = ViTImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''valid_org/test-image-processor''' ,use_auth_token=self._token ) lowercase__ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) # Reset repo delete_repo(token=self._token ,repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _snake_case ,repo_id='''valid_org/test-image-processor-org''' ,push_to_hub=_snake_case ,use_auth_token=self._token ) lowercase__ : int = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" CustomImageProcessor.register_for_auto_class() lowercase__ : Optional[Any] = CustomImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''test-dynamic-image-processor''' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map ,{'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} ,) lowercase__ : Dict = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" ,trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ ,'''CustomImageProcessor''' )
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCAmelCase_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') lowerCAmelCase_ = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) lowerCAmelCase_ = '|'.join(sys.argv[1:]) lowerCAmelCase_ = re.compile(RF'''^({joined_dirs}).*?\.py$''') lowerCAmelCase_ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
302
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
1
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = AudioLDMPipeline lowerCAmelCase : str = TEXT_TO_AUDIO_PARAMS lowerCAmelCase : Union[str, Any] = TEXT_TO_AUDIO_BATCH_PARAMS lowerCAmelCase : List[Any] = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(32, 64) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=_snake_case ,) lowercase__ : str = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : int = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,projection_dim=32 ,) lowercase__ : str = ClapTextModelWithProjection(_snake_case ) lowercase__ : Dict = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=77 ) lowercase__ : int = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=16_000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=_snake_case ,) lowercase__ : Tuple = SpeechTaHifiGan(_snake_case ) lowercase__ : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Any ,_snake_case : Union[str, Any]=0 ) -> Optional[int]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : List[Any] = torch.manual_seed(_snake_case ) else: lowercase__ : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Union[str, Any] = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Any = self.get_dummy_components() lowercase__ : Union[str, Any] = AudioLDMPipeline(**_snake_case ) lowercase__ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Tuple = self.get_dummy_inputs(_snake_case ) lowercase__ : List[str] = audioldm_pipe(**_snake_case ) lowercase__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 lowercase__ : Optional[Any] = audio[:10] lowercase__ : Any = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : str = self.get_dummy_components() lowercase__ : Dict = AudioLDMPipeline(**_snake_case ) lowercase__ : List[Any] = audioldm_pipe.to(_snake_case ) lowercase__ : Union[str, Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = 3 * [inputs['''prompt''']] # forward lowercase__ : Any = audioldm_pipe(**_snake_case ) lowercase__ : int = output.audios[0] lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = 3 * [inputs.pop('''prompt''' )] lowercase__ : Any = audioldm_pipe.tokenizer( _snake_case ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors='''pt''' ,) lowercase__ : str = text_inputs['''input_ids'''].to(_snake_case ) lowercase__ : int = audioldm_pipe.text_encoder( _snake_case ,) lowercase__ : Dict = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ : Union[str, Any] = F.normalize(_snake_case ,dim=-1 ) lowercase__ : str = prompt_embeds # forward lowercase__ : Union[str, Any] = audioldm_pipe(**_snake_case ) lowercase__ : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = self.get_dummy_components() lowercase__ : List[Any] = AudioLDMPipeline(**_snake_case ) lowercase__ : Optional[Any] = audioldm_pipe.to(_snake_case ) lowercase__ : List[str] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Any = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[Any] = 3 * ['''this is a negative prompt'''] lowercase__ : Any = negative_prompt lowercase__ : Optional[Any] = 3 * [inputs['''prompt''']] # forward lowercase__ : Optional[int] = audioldm_pipe(**_snake_case ) lowercase__ : str = output.audios[0] lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : List[str] = 3 * [inputs.pop('''prompt''' )] lowercase__ : Union[str, Any] = [] for p in [prompt, negative_prompt]: lowercase__ : str = audioldm_pipe.tokenizer( _snake_case ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors='''pt''' ,) lowercase__ : Optional[Any] = text_inputs['''input_ids'''].to(_snake_case ) lowercase__ : Optional[int] = audioldm_pipe.text_encoder( _snake_case ,) lowercase__ : int = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ : List[Any] = F.normalize(_snake_case ,dim=-1 ) embeds.append(_snake_case ) lowercase__ , lowercase__ : int = embeds # forward lowercase__ : int = audioldm_pipe(**_snake_case ) lowercase__ : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : Optional[int] = PNDMScheduler(skip_prk_steps=_snake_case ) lowercase__ : int = AudioLDMPipeline(**_snake_case ) lowercase__ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = '''egg cracking''' lowercase__ : Dict = audioldm_pipe(**_snake_case ,negative_prompt=_snake_case ) lowercase__ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 lowercase__ : Tuple = audio[:10] lowercase__ : Union[str, Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : List[str] = self.get_dummy_components() lowercase__ : Optional[Any] = PNDMScheduler(skip_prk_steps=_snake_case ) lowercase__ : Optional[int] = AudioLDMPipeline(**_snake_case ) lowercase__ : List[str] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowercase__ : List[Any] = audioldm_pipe(_snake_case ,num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase__ : List[Any] = 2 lowercase__ : List[str] = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase__ : List[Any] = 2 lowercase__ : Dict = audioldm_pipe(_snake_case ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase__ : List[Any] = 2 lowercase__ : Union[str, Any] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Tuple = self.get_dummy_components() lowercase__ : Union[str, Any] = AudioLDMPipeline(**_snake_case ) lowercase__ : Any = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Tuple = audioldm_pipe.vocoder.config.sampling_rate lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 ,**_snake_case ) lowercase__ : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 lowercase__ : Optional[int] = audioldm_pipe(audio_length_in_s=0.032 ,**_snake_case ) lowercase__ : str = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.get_dummy_components() lowercase__ : Any = AudioLDMPipeline(**_snake_case ) lowercase__ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Union[str, Any] = ['''hey'''] lowercase__ : int = audioldm_pipe(_snake_case ,num_inference_steps=1 ) lowercase__ : Any = output.audios.shape assert audio_shape == (1, 256) lowercase__ : List[str] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase__ : int = SpeechTaHifiGan(_snake_case ).to(_snake_case ) lowercase__ : Union[str, Any] = audioldm_pipe(_snake_case ,num_inference_steps=1 ) lowercase__ : Optional[Any] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ,_snake_case : str="cpu" ,_snake_case : Any=torch.floataa ,_snake_case : int=0 ) -> Optional[int]: """simple docstring""" lowercase__ : int = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Any = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) lowercase__ : Optional[Any] = torch.from_numpy(_snake_case ).to(device=_snake_case ,dtype=_snake_case ) lowercase__ : List[str] = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Any = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ : Optional[int] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Tuple = self.get_inputs(_snake_case ) lowercase__ : Dict = 25 lowercase__ : int = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81_920 lowercase__ : int = audio[77_230:77_240] lowercase__ : int = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowercase__ : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ : Optional[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase__ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Dict = self.get_inputs(_snake_case ) lowercase__ : List[Any] = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81_920 lowercase__ : Optional[int] = audio[27_780:27_790] lowercase__ : List[str] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowercase__ : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase_ = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' lowerCAmelCase_ = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' lowerCAmelCase_ = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : int=None ,_snake_case : Optional[Any]=True ,_snake_case : Tuple=False ) -> List[str]: """simple docstring""" if rouge_types is None: lowercase__ : Tuple = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] lowercase__ : str = rouge_scorer.RougeScorer(rouge_types=_snake_case ,use_stemmer=_snake_case ) if use_aggregator: lowercase__ : Optional[int] = scoring.BootstrapAggregator() else: lowercase__ : Any = [] for ref, pred in zip(_snake_case ,_snake_case ): lowercase__ : str = scorer.score(_snake_case ,_snake_case ) if use_aggregator: aggregator.add_scores(_snake_case ) else: scores.append(_snake_case ) if use_aggregator: lowercase__ : Optional[int] = aggregator.aggregate() else: lowercase__ : Dict = {} for key in scores[0]: lowercase__ : Optional[int] = [score[key] for score in scores] return result
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
"""simple docstring""" from functools import lru_cache def __UpperCAmelCase ( __lowerCamelCase ) -> set: lowercase__ : Optional[int] = 2 lowercase__ : Tuple = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def __UpperCAmelCase ( __lowerCamelCase ) -> int: return len(unique_prime_factors(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) ) in (0, 1) def __UpperCAmelCase ( __lowerCamelCase ) -> list: lowercase__ : Dict = 2 while True: # Increment each value of a generated range lowercase__ : Dict = [base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ : Any = [upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def __UpperCAmelCase ( __lowerCamelCase = 4 ) -> int: lowercase__ : Union[str, Any] = run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "switch_transformers" lowerCAmelCase : str = ["past_key_values"] lowerCAmelCase : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[Any] ,_snake_case : Dict=32_128 ,_snake_case : List[Any]=768 ,_snake_case : Any=64 ,_snake_case : str=2_048 ,_snake_case : Optional[Any]=64 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=3 ,_snake_case : Optional[Any]=12 ,_snake_case : List[Any]=3 ,_snake_case : Optional[Any]=12 ,_snake_case : Optional[int]=8 ,_snake_case : Tuple=False ,_snake_case : Dict=0.01 ,_snake_case : List[str]="float32" ,_snake_case : str=False ,_snake_case : Dict=32 ,_snake_case : Optional[int]=128 ,_snake_case : List[str]=0.1 ,_snake_case : Optional[Any]=1e-6 ,_snake_case : Any=0.001 ,_snake_case : Dict=0.001 ,_snake_case : List[str]=1.0 ,_snake_case : Tuple="relu" ,_snake_case : List[Any]=True ,_snake_case : List[Any]=False ,_snake_case : int=True ,_snake_case : Union[str, Any]=0 ,_snake_case : Optional[int]=1 ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" lowercase__ : Any = vocab_size lowercase__ : Any = d_model lowercase__ : Tuple = d_kv lowercase__ : Any = d_ff lowercase__ : str = num_sparse_encoder_layers lowercase__ : List[Any] = num_layers lowercase__ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : List[str] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase__ : str = self.num_layers // self.num_sparse_encoder_layers else: lowercase__ : List[str] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase__ : str = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase__ : str = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase__ : Optional[int] = num_heads lowercase__ : int = num_experts lowercase__ : Union[str, Any] = expert_capacity lowercase__ : Dict = router_bias lowercase__ : str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) lowercase__ : Any = router_dtype lowercase__ : Dict = router_ignore_padding_tokens lowercase__ : int = relative_attention_num_buckets lowercase__ : List[str] = relative_attention_max_distance lowercase__ : Union[str, Any] = dropout_rate lowercase__ : str = layer_norm_epsilon lowercase__ : Optional[int] = initializer_factor lowercase__ : Dict = feed_forward_proj lowercase__ : Optional[Any] = use_cache lowercase__ : Tuple = add_router_probs lowercase__ : Union[str, Any] = router_z_loss_coef lowercase__ : List[Any] = router_aux_loss_coef lowercase__ : Optional[int] = self.feed_forward_proj.split('''-''' ) lowercase__ : List[Any] = act_info[-1] lowercase__ : Tuple = act_info[0] == '''gated''' if len(_snake_case ) > 1 and act_info[0] != "gated" or len(_snake_case ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=_snake_case ,eos_token_id=_snake_case ,is_encoder_decoder=_snake_case ,**_snake_case ,)
302
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) lowerCAmelCase : Dict = "CIDAS/clipseg-rd64-refined" lowerCAmelCase : Tuple = "image_segmenter" lowerCAmelCase : Union[str, Any] = CLIPSegForImageSegmentation lowerCAmelCase : Dict = ["image", "text"] lowerCAmelCase : Union[str, Any] = ["image"] def __init__( self : Union[str, Any] ,*_snake_case : Optional[Any] ,**_snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self ,['''vision'''] ) super().__init__(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : "Image" ,_snake_case : str ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(text=[label] ,images=[image] ,padding=_snake_case ,return_tensors='''pt''' ) def UpperCAmelCase ( self : Any ,_snake_case : Any ) -> str: """simple docstring""" with torch.no_grad(): lowercase__ : int = self.model(**_snake_case ).logits return logits def UpperCAmelCase ( self : int ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Tuple = outputs.cpu().detach().numpy() lowercase__ : Optional[int] = 0 lowercase__ : int = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
302
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __lowerCamelCase ) -> float: if not nums: raise ValueError('''List is empty''' ) return sum(__lowerCamelCase ) / len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = 0 @slow def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_snake_case ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase__ : Tuple = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_snake_case ) ,0 ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : int = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) # Check that tokenizer_type ≠ model_type lowercase__ : str = AutoTokenizer.from_pretrained(_snake_case ,config=_snake_case ) self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_snake_case ,'''vocab.txt''' ) ) lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''bert''' ,use_fast=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_snake_case ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_snake_case ,'''merges.txt''' ) ) lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''gpt2''' ,use_fast=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @require_tokenizers def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_snake_case ,'''vocab.txt''' ) ) lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''bert''' ) self.assertIsInstance(_snake_case ,_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_snake_case ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_snake_case ,'''merges.txt''' ) ) lowercase__ : str = AutoTokenizer.from_pretrained(_snake_case ,tokenizer_type='''gpt2''' ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" with pytest.raises(_snake_case ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def UpperCAmelCase ( self : str ) -> str: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase__ : Tuple = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_snake_case ,_snake_case ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_snake_case ) else: self.assertEqual(tokenizer.do_lower_case ,_snake_case ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _snake_case ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): lowercase__ : Tuple = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = TOKENIZER_MAPPING.values() lowercase__ : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_snake_case ) @require_tokenizers def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_snake_case ) ,_snake_case ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_snake_case ) @require_tokenizers def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_snake_case ) lowercase__ : str = '''Hello, world. How are you?''' lowercase__ : Union[str, Any] = tokenizer.tokenize(_snake_case ) self.assertEqual('''[UNK]''' ,tokens[0] ) lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_snake_case ) lowercase__ : Union[str, Any] = tokenizer.tokenize(_snake_case ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_snake_case ) ,_snake_case ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ : Tuple = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case ) lowercase__ : int = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = get_tokenizer_config('''bert-base-cased''' ) lowercase__ : Union[str, Any] = config.pop('''_commit_hash''' ,_snake_case ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_snake_case ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase__ : List[Any] = get_tokenizer_config(_snake_case ) self.assertDictEqual(_snake_case ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case ) lowercase__ : str = get_tokenizer_config(_snake_case ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('''custom''' ,_snake_case ) AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_snake_case ): AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case ) lowercase__ : Optional[Any] = CustomTokenizer.from_pretrained(_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case ) lowercase__ : str = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" try: AutoConfig.register('''custom''' ,_snake_case ) # Can register in two steps AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_snake_case ,fast_tokenizer_class=_snake_case ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _snake_case ,slow_tokenizer_class=_snake_case ,fast_tokenizer_class=_snake_case ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_snake_case ): AutoTokenizer.register(_snake_case ,fast_tokenizer_class=_snake_case ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : str = BertTokenizerFast.from_pretrained(_snake_case ) bert_tokenizer.save_pretrained(_snake_case ) lowercase__ : Optional[Any] = CustomTokenizerFast.from_pretrained(_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case ) lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case ,use_fast=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" with self.assertRaises(_snake_case ): lowercase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_snake_case ): lowercase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ) lowercase__ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case ) lowercase__ : Any = AutoTokenizer.from_pretrained(_snake_case ,trust_remote_code=_snake_case ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version lowercase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ,use_fast=_snake_case ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case ) lowercase__ : Dict = AutoTokenizer.from_pretrained(_snake_case ,trust_remote_code=_snake_case ,use_fast=_snake_case ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = False class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = NewTokenizer lowerCAmelCase : Optional[Any] = False try: AutoConfig.register('''custom''' ,_snake_case ) AutoTokenizer.register(_snake_case ,slow_tokenizer_class=_snake_case ) AutoTokenizer.register(_snake_case ,fast_tokenizer_class=_snake_case ) # If remote code is not set, the default is to use local lowercase__ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ,use_fast=_snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase__ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase__ : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_snake_case ,use_fast=_snake_case ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_snake_case ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version lowercase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_snake_case ,use_fast=_snake_case ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" with self.assertRaisesRegex( _snake_case ,'''bert-base is not a local folder and is not a valid model identifier''' ): lowercase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" with self.assertRaisesRegex( _snake_case ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ,revision='''aaaaaa''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
302
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
1
"""simple docstring""" import math import os import sys def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : int = '''''' try: with open(__lowerCamelCase , '''rb''' ) as binary_file: lowercase__ : int = binary_file.read() for dat in data: lowercase__ : List[str] = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> None: lexicon.pop(__lowerCamelCase ) lowercase__ : List[str] = last_match_id if math.loga(__lowerCamelCase ).is_integer(): for curr_key in lexicon: lowercase__ : int = '''0''' + lexicon[curr_key] lowercase__ : Union[str, Any] = bin(__lowerCamelCase )[2:] def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[str] = {'''0''': '''0''', '''1''': '''1'''} lowercase__ , lowercase__ : int = '''''', '''''' lowercase__ : List[str] = len(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ : Dict = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) index += 1 lowercase__ : int = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase__ : Union[str, Any] = lexicon[curr_string] result += last_match_id return result def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[str] = os.path.getsize(__lowerCamelCase ) lowercase__ : Any = bin(__lowerCamelCase )[2:] lowercase__ : Optional[int] = len(__lowerCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> None: lowercase__ : Tuple = 8 try: with open(__lowerCamelCase , '''wb''' ) as opened_file: lowercase__ : str = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowerCamelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> None: lowercase__ : Optional[int] = read_file_binary(__lowerCamelCase ) lowercase__ : Dict = compress_data(__lowerCamelCase ) lowercase__ : List[str] = add_file_length(__lowerCamelCase , __lowerCamelCase ) write_file_binary(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : Union[str, Any] ,**_snake_case : str ) -> Optional[int]: """simple docstring""" super().__init__(**_snake_case ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self : Union[str, Any] ,_snake_case : Union[np.ndarray, bytes, str] ,**_snake_case : str ) -> Any: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,**_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : List[Any] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Tuple = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : int ,_snake_case : List[Any] ,_snake_case : Union[str, Any]=None ,_snake_case : Any="This is a sound of {}." ) -> Tuple: """simple docstring""" if isinstance(_snake_case ,_snake_case ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase__ : Optional[int] = requests.get(_snake_case ).content else: with open(_snake_case ,'''rb''' ) as f: lowercase__ : Tuple = f.read() if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = ffmpeg_read(_snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(_snake_case ,np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowercase__ : Optional[Any] = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors='''pt''' ) lowercase__ : Optional[Any] = candidate_labels lowercase__ : Union[str, Any] = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Tuple = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : int = [text_inputs] return inputs def UpperCAmelCase ( self : str ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Dict = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : int = text_inputs[0] else: # Batching case. lowercase__ : Optional[Any] = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Optional[int] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = model_outputs.pop('''candidate_labels''' ) lowercase__ : List[str] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : List[str] = logits.softmax(dim=0 ) lowercase__ : str = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowercase__ : int = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
302
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" lowerCAmelCase_ = 9.8_0_6_6_5 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = g ) -> float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Union[str, Any] = [0] * len(__lowerCamelCase ) lowercase__ : List[str] = [] lowercase__ : Any = [1] * len(__lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCamelCase ) ): if indegree[i] == 0: queue.append(__lowerCamelCase ) while queue: lowercase__ : Tuple = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ : Optional[Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCamelCase ) print(max(__lowerCamelCase ) ) # Adjacency list of Graph lowerCAmelCase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = ["input_ids", "attention_mask"] lowerCAmelCase : Any = None def __init__( self : Optional[int] ,_snake_case : List[Any]=None ,_snake_case : Optional[Any]=None ,_snake_case : int=None ,_snake_case : List[str]="<unk>" ,_snake_case : Optional[int]="<s>" ,_snake_case : Optional[Any]="</s>" ,_snake_case : Optional[Any]="<pad>" ,_snake_case : Optional[int]=False ,_snake_case : Tuple=False ,**_snake_case : List[str] ,) -> Tuple: """simple docstring""" super().__init__( _snake_case ,_snake_case ,tokenizer_file=_snake_case ,unk_token=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,pad_token=_snake_case ,add_prefix_space=_snake_case ,clean_up_tokenization_spaces=_snake_case ,**_snake_case ,) lowercase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_snake_case ) != add_prefix_space: lowercase__ : str = getattr(_snake_case ,pre_tok_state.pop('''type''' ) ) lowercase__ : int = add_prefix_space lowercase__ : Optional[int] = pre_tok_class(**_snake_case ) lowercase__ : Any = add_prefix_space def UpperCAmelCase ( self : Tuple ,*_snake_case : List[Any] ,**_snake_case : Optional[Any] ) -> BatchEncoding: """simple docstring""" lowercase__ : Optional[Any] = kwargs.get('''is_split_into_words''' ,_snake_case ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,*_snake_case : Optional[int] ,**_snake_case : Optional[Any] ) -> BatchEncoding: """simple docstring""" lowercase__ : List[Any] = kwargs.get('''is_split_into_words''' ,_snake_case ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ : Union[str, Any] = self._tokenizer.model.save(_snake_case ,name=_snake_case ) return tuple(_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : "Conversation" ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case ,add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: lowercase__ : Optional[int] = input_ids[-self.model_max_length :] return input_ids
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: # Initialise PyTorch model lowercase__ : Tuple = RemBertConfig.from_json_file(__lowerCamelCase ) print('''Building PyTorch model from configuration: {}'''.format(str(__lowerCamelCase ) ) ) lowercase__ : Optional[int] = RemBertModel(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__lowerCamelCase ) ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
302
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
1
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __UpperCAmelCase ( *__lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase=True , __lowerCamelCase=2 ) -> Optional[Any]: from .. import __version__ lowercase__ : int = take_from lowercase__ : Optional[int] = () if not isinstance(args[0] , __lowerCamelCase ): lowercase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__lowerCamelCase ).base_version ) >= version.parse(__lowerCamelCase ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) lowercase__ : Dict = None if isinstance(__lowerCamelCase , __lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__lowerCamelCase ),) lowercase__ : Optional[int] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__lowerCamelCase , __lowerCamelCase ): values += (getattr(__lowerCamelCase , __lowerCamelCase ),) lowercase__ : List[str] = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: lowercase__ : List[str] = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: lowercase__ : Tuple = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __lowerCamelCase , stacklevel=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) > 0: lowercase__ : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] lowercase__ : int = call_frame.filename lowercase__ : Optional[int] = call_frame.lineno lowercase__ : Tuple = call_frame.function lowercase__ , lowercase__ : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__lowerCamelCase ) == 0: return elif len(__lowerCamelCase ) == 1: return values[0] return values
302
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase_ = spec.loader.load_module() lowerCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase_ = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase_ = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def __UpperCAmelCase ( ) -> Any: lowercase__ : Tuple = [] for config_class in list(CONFIG_MAPPING.values() ): lowercase__ : int = False # source code of `config_class` lowercase__ : int = inspect.getsource(__lowerCamelCase ) lowercase__ : Any = _re_checkpoint.findall(__lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowercase__ , lowercase__ : List[str] = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowercase__ : Tuple = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowercase__ : Optional[int] = True break lowercase__ : Optional[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowercase__ : List[Any] = '''\n'''.join(sorted(__lowerCamelCase ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
302
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> bool: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__lowerCamelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__lowerCamelCase ) == 1: return True lowercase__ : str = series[1] - series[0] for index in range(len(__lowerCamelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCAmelCase ( __lowerCamelCase ) -> float: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__lowerCamelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowercase__ : Optional[Any] = 0 for val in series: answer += val return answer / len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
1
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __UpperCAmelCase ( __lowerCamelCase ) -> str: if isinstance(__lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __A : '''simple docstring''' def UpperCAmelCase ( self : Any ,_snake_case : Any ,_snake_case : Optional[int] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" pass def UpperCAmelCase ( self : Any ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : List[Any] ,_snake_case : Optional[Any] ,_snake_case : Optional[Any]=None ,**_snake_case : str ) -> Optional[Any]: """simple docstring""" lowercase__ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case ,_snake_case ) lowercase__ : Any = TFVisionTextDualEncoderModel(_snake_case ) lowercase__ : List[Any] = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Tuple ,_snake_case : int ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Dict=None ,**_snake_case : str ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Any = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : List[str] = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : Any = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tuple ,_snake_case : Tuple ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : int=None ,**_snake_case : Any ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Tuple = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) lowercase__ : List[str] = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : int ,_snake_case : List[Any] ,_snake_case : List[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Any = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : int = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) lowercase__ : Any = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) lowercase__ : Optional[int] = after_output[0].numpy() lowercase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case ,1e-5 ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : str=None ,**_snake_case : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : int = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : Optional[int] = model( input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ,output_attentions=_snake_case ) lowercase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Optional[Any] = to_atuple(vision_model.config.image_size ) lowercase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowercase__ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(_snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : np.ndarray ,_snake_case : float ) -> Optional[Any]: """simple docstring""" lowercase__ : int = np.abs((a - b) ).max() self.assertLessEqual(_snake_case ,_snake_case ,f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.get_pretrained_model_and_inputs() lowercase__ : Optional[Any] = model_a(**_snake_case ) lowercase__ : Dict = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) lowercase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) lowercase__ : int = model_a(**_snake_case ) lowercase__ : List[Any] = after_outputs[0].numpy() lowercase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case ,1e-5 ) @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> int: """simple docstring""" lowercase__ : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-random-bert''' ) lowercase__ : Union[str, Any] = 13 lowercase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Optional[int] = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : Dict = random_attention_mask([batch_size, 4] ) lowercase__ : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ,_snake_case : List[Any] ) -> int: """simple docstring""" lowercase__ : Any = TFViTModel(_snake_case ,name='''vision_model''' ) lowercase__ : Tuple = TFBertModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ : str = TFViTModelTester(self ) lowercase__ : Dict = TFBertModelTester(self ) lowercase__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() lowercase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : List[Any] = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowercase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' ,'''hf-internal-testing/tiny-random-roberta''' ) lowercase__ : int = 13 lowercase__ : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Optional[Any] = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : Any = random_attention_mask([batch_size, 4] ) lowercase__ : int = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : Dict=None ,**_snake_case : str ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Any = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : Union[str, Any] = model( input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ,output_attentions=_snake_case ) lowercase__ : int = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) ,vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase__ : Any = to_atuple(vision_model.config.image_size ) lowercase__ : List[str] = to_atuple(vision_model.config.patch_size ) lowercase__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ : str = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ : int = output.text_model_output.attentions self.assertEqual(len(_snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = TFDeiTModel(_snake_case ,name='''vision_model''' ) lowercase__ : List[Any] = TFRobertaModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFDeiTModelTester(self ) lowercase__ : Any = TFRobertaModelTester(self ) lowercase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowercase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' ,'''hf-internal-testing/tiny-random-bert''' ) lowercase__ : List[Any] = 13 lowercase__ : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Optional[Any] = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : Dict = random_attention_mask([batch_size, 4] ) lowercase__ : List[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Any ,_snake_case : Optional[Any] ,_snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = TFCLIPVisionModel(_snake_case ,name='''vision_model''' ) lowercase__ : Tuple = TFBertModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : Optional[int] = TFCLIPVisionModelTester(self ) lowercase__ : List[Any] = TFBertModelTester(self ) lowercase__ : Optional[int] = clip_model_tester.prepare_config_and_inputs() lowercase__ : Tuple = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ : List[Any] = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ,from_pt=_snake_case ) lowercase__ : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : str = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=_snake_case ,padding=_snake_case ,return_tensors='''np''' ) lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) lowercase__ : List[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() ,_snake_case ,atol=1e-3 ) )
302
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
1
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'sentencepiece.model'} lowerCAmelCase_ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } lowerCAmelCase_ = { 'google/rembert': 256, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : List[str]=False ,_snake_case : Dict=True ,_snake_case : Dict=True ,_snake_case : Union[str, Any]="[CLS]" ,_snake_case : str="[SEP]" ,_snake_case : Tuple="[UNK]" ,_snake_case : Optional[int]="[SEP]" ,_snake_case : Union[str, Any]="[PAD]" ,_snake_case : Any="[CLS]" ,_snake_case : List[str]="[MASK]" ,**_snake_case : Dict ,) -> List[str]: """simple docstring""" super().__init__( do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,**_snake_case ,) lowercase__ : Optional[Any] = do_lower_case lowercase__ : List[Any] = remove_space lowercase__ : List[Any] = keep_accents lowercase__ : str = vocab_file lowercase__ : Any = spm.SentencePieceProcessor() self.sp_model.Load(_snake_case ) @property def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Optional[Any]: """simple docstring""" lowercase__ : str = self.__dict__.copy() lowercase__ : str = None return state def __setstate__( self : Optional[int] ,_snake_case : int ) -> List[str]: """simple docstring""" lowercase__ : Dict = d lowercase__ : Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : Any=False ) -> int: """simple docstring""" lowercase__ : Optional[int] = self.sp_model.EncodeAsPieces(_snake_case ) return pieces def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" return self.sp_model.PieceToId(_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Dict ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = self.sp_model.decode_pieces(_snake_case ) return out_string def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Optional[Any] = [self.sep_token_id] lowercase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self : str ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCAmelCase ( self : List[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_snake_case ) ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file ,_snake_case ) return (out_vocab_file,)
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } ,) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(A_ )} ,) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } ,) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) lowerCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=A_ ,metadata={"help": "The input training data file (a text file)."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} ,) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} ,) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase : Optional[int] = field( default=5 ,metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } ,) lowerCAmelCase : Optional[int] = field( default=A_ ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } ,) lowerCAmelCase : Optional[int] = field( default=A_ ,metadata={"help": "The number of processes to use for the preprocessing."} ,) lowerCAmelCase : float = field( default=0.15 ,metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if self.train_file is not None: lowercase__ : Optional[int] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase__ : List[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: lowercase__ : List[str] = [json.loads(__lowerCamelCase ) for line in f.read().splitlines() if (len(__lowerCamelCase ) > 0 and not line.isspace())] assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase__ : Tuple = {c: dataset[c] for c in dataset.column_names} lowercase__ : Tuple = refs return Dataset.from_dict(__lowerCamelCase ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : str = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase__ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , ) lowercase__ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , ) else: lowercase__ : Union[str, Any] = {} if data_args.train_file is not None: lowercase__ : str = data_args.train_file if data_args.validation_file is not None: lowercase__ : int = data_args.validation_file lowercase__ : Dict = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowercase__ : Tuple = '''text''' lowercase__ : List[Any] = load_dataset(__lowerCamelCase , data_files=__lowerCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : Optional[Any] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ : Optional[int] = AutoConfig.from_pretrained(model_args.config_name , **__lowerCamelCase ) elif model_args.model_name_or_path: lowercase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase ) else: lowercase__ : Optional[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) lowercase__ : Dict = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowerCamelCase ) elif model_args.model_name_or_path: lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowercase__ : Optional[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ : Any = AutoModelForMaskedLM.from_config(__lowerCamelCase ) model.resize_token_embeddings(len(__lowerCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase__ : List[Any] = datasets['''train'''].column_names else: lowercase__ : Union[str, Any] = datasets['''validation'''].column_names lowercase__ : Optional[int] = '''text''' if '''text''' in column_names else column_names[0] lowercase__ : int = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowerCamelCase ): # Remove empty lines lowercase__ : List[str] = [line for line in examples['''text'''] if len(__lowerCamelCase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=data_args.max_seq_length ) lowercase__ : Tuple = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase__ : Optional[int] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase__ : List[Any] = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase__ : Any = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase__ : Union[str, Any] = False # Data collator # This one will take care of randomly masking the tokens. lowercase__ : Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowerCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ : Tuple = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase__ : List[str] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase__ : Optional[Any] = model_args.model_name_or_path else: lowercase__ : Tuple = None lowercase__ : Dict = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase__ : List[str] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation lowercase__ : Union[str, Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : str = trainer.evaluate() lowercase__ : Tuple = math.exp(eval_output['''eval_loss'''] ) lowercase__ : Tuple = perplexity lowercase__ : List[Any] = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["flax"] def __init__( self : Dict ,*_snake_case : List[str] ,**_snake_case : Tuple ) -> Dict: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] ,*_snake_case : Any ,**_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] ,*_snake_case : Any ,**_snake_case : List[Any] ) -> Tuple: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ["flax"] def __init__( self : Optional[int] ,*_snake_case : str ,**_snake_case : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Dict ,*_snake_case : Any ,**_snake_case : Dict ) -> Optional[int]: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] ,*_snake_case : Any ,**_snake_case : int ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = ["flax"] def __init__( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> str: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : Tuple ,**_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : int ) -> List[str]: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["flax"] def __init__( self : Any ,*_snake_case : str ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : Any ,**_snake_case : Optional[int] ) -> Dict: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Dict ,*_snake_case : Tuple ,**_snake_case : str ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : int = ["flax"] def __init__( self : List[str] ,*_snake_case : str ,**_snake_case : str ) -> Dict: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Any ,*_snake_case : int ,**_snake_case : int ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Dict ,*_snake_case : Union[str, Any] ,**_snake_case : Optional[int] ) -> Dict: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ["flax"] def __init__( self : Optional[int] ,*_snake_case : Optional[int] ,**_snake_case : Optional[Any] ) -> Dict: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Optional[int] ,*_snake_case : Union[str, Any] ,**_snake_case : List[str] ) -> int: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : int ,*_snake_case : Optional[int] ,**_snake_case : Tuple ) -> List[str]: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : int = ["flax"] def __init__( self : Optional[Any] ,*_snake_case : int ,**_snake_case : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : int ,*_snake_case : Optional[Any] ,**_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : int ,*_snake_case : Optional[int] ,**_snake_case : List[str] ) -> Dict: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["flax"] def __init__( self : Optional[int] ,*_snake_case : Optional[Any] ,**_snake_case : int ) -> Tuple: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] ,*_snake_case : List[str] ,**_snake_case : List[Any] ) -> int: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : Optional[Any] ,**_snake_case : List[Any] ) -> Tuple: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ["flax"] def __init__( self : Union[str, Any] ,*_snake_case : Any ,**_snake_case : Any ) -> Optional[int]: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : Any ,**_snake_case : Optional[Any] ) -> str: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : str ,*_snake_case : Dict ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : int = ["flax"] def __init__( self : Union[str, Any] ,*_snake_case : List[Any] ,**_snake_case : List[Any] ) -> Any: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : Union[str, Any] ,**_snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Dict ,*_snake_case : Dict ,**_snake_case : Optional[Any] ) -> Any: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ["flax"] def __init__( self : Any ,*_snake_case : Tuple ,**_snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Any ,*_snake_case : List[Any] ,**_snake_case : Dict ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Any ,*_snake_case : Optional[Any] ,**_snake_case : Tuple ) -> Dict: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["flax"] def __init__( self : Dict ,*_snake_case : int ,**_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] ,*_snake_case : List[str] ,**_snake_case : Dict ) -> int: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : str ,*_snake_case : str ,**_snake_case : int ) -> Optional[int]: """simple docstring""" requires_backends(cls ,['''flax'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["flax"] def __init__( self : Optional[int] ,*_snake_case : Dict ,**_snake_case : Dict ) -> Tuple: """simple docstring""" requires_backends(self ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : Dict ,*_snake_case : List[str] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax'''] ) @classmethod def UpperCAmelCase ( cls : str ,*_snake_case : Optional[int] ,**_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" requires_backends(cls ,['''flax'''] )
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } lowerCAmelCase_ = '▁' class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[str] = AlbertTokenizer def __init__( self : Dict ,_snake_case : Dict=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=True ,_snake_case : Optional[Any]=False ,_snake_case : Any="[CLS]" ,_snake_case : int="[SEP]" ,_snake_case : List[str]="<unk>" ,_snake_case : Any="[SEP]" ,_snake_case : Union[str, Any]="<pad>" ,_snake_case : Optional[int]="[CLS]" ,_snake_case : Optional[int]="[MASK]" ,**_snake_case : Optional[Any] ,) -> str: """simple docstring""" lowercase__ : Optional[int] = ( AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ,normalized=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token ) super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,**_snake_case ,) lowercase__ : List[Any] = do_lower_case lowercase__ : Tuple = remove_space lowercase__ : Optional[int] = keep_accents lowercase__ : int = vocab_file lowercase__ : List[Any] = False if not self.vocab_file else True def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self : str ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[str] = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file ,_snake_case ) return (out_vocab_file,)
302
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,*_snake_case : Union[str, Any] ,**_snake_case : Dict ) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
302
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __A ( A_ ): '''simple docstring''' lowerCAmelCase : torch.FloatTensor class __A ( A_ ,A_ ): '''simple docstring''' @register_to_config def __init__( self : Any ,_snake_case : int = 32 ,_snake_case : int = 64 ,_snake_case : int = 20 ,_snake_case : int = 768 ,_snake_case : str=77 ,_snake_case : str=4 ,_snake_case : float = 0.0 ,_snake_case : str = "silu" ,_snake_case : Optional[str] = None ,_snake_case : Optional[str] = None ,_snake_case : Optional[str] = "linear" ,_snake_case : Optional[str] = "prd" ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,) -> Tuple: """simple docstring""" super().__init__() lowercase__ : Tuple = num_attention_heads lowercase__ : Union[str, Any] = attention_head_dim lowercase__ : str = num_attention_heads * attention_head_dim lowercase__ : Dict = additional_embeddings lowercase__ : Optional[int] = time_embed_dim or inner_dim lowercase__ : Any = embedding_proj_dim or embedding_dim lowercase__ : Optional[Any] = clip_embed_dim or embedding_dim lowercase__ : Union[str, Any] = Timesteps(_snake_case ,_snake_case ,0 ) lowercase__ : List[Any] = TimestepEmbedding(_snake_case ,_snake_case ,out_dim=_snake_case ,act_fn=_snake_case ) lowercase__ : Tuple = nn.Linear(_snake_case ,_snake_case ) if embedding_proj_norm_type is None: lowercase__ : Optional[int] = None elif embedding_proj_norm_type == "layer": lowercase__ : str = nn.LayerNorm(_snake_case ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowercase__ : Any = nn.Linear(_snake_case ,_snake_case ) if encoder_hid_proj_type is None: lowercase__ : int = None elif encoder_hid_proj_type == "linear": lowercase__ : Optional[Any] = nn.Linear(_snake_case ,_snake_case ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowercase__ : Union[str, Any] = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_snake_case ) ) if added_emb_type == "prd": lowercase__ : List[str] = nn.Parameter(torch.zeros(1 ,1 ,_snake_case ) ) elif added_emb_type is None: lowercase__ : List[Any] = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowercase__ : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _snake_case ,_snake_case ,_snake_case ,dropout=_snake_case ,activation_fn='''gelu''' ,attention_bias=_snake_case ,) for d in range(_snake_case ) ] ) if norm_in_type == "layer": lowercase__ : Any = nn.LayerNorm(_snake_case ) elif norm_in_type is None: lowercase__ : Union[str, Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowercase__ : Tuple = nn.LayerNorm(_snake_case ) lowercase__ : List[Any] = nn.Linear(_snake_case ,_snake_case ) lowercase__ : Optional[int] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0000.0 ) causal_attention_mask.triu_(1 ) lowercase__ : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' ,_snake_case ,persistent=_snake_case ) lowercase__ : List[Any] = nn.Parameter(torch.zeros(1 ,_snake_case ) ) lowercase__ : Dict = nn.Parameter(torch.zeros(1 ,_snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase ( self : int ) -> Dict[str, AttentionProcessor]: """simple docstring""" lowercase__ : int = {} def fn_recursive_add_processors(_snake_case : str ,_snake_case : torch.nn.Module ,_snake_case : Dict[str, AttentionProcessor] ): if hasattr(_snake_case ,'''set_processor''' ): lowercase__ : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" ,_snake_case ,_snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_snake_case ,_snake_case ,_snake_case ) return processors def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = len(self.attn_processors.keys() ) if isinstance(_snake_case ,_snake_case ) and len(_snake_case ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(_snake_case )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_snake_case : str ,_snake_case : torch.nn.Module ,_snake_case : List[str] ): if hasattr(_snake_case ,'''set_processor''' ): if not isinstance(_snake_case ,_snake_case ): module.set_processor(_snake_case ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" ,_snake_case ,_snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ,_snake_case : Union[torch.Tensor, float, int] ,_snake_case : torch.FloatTensor ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.BoolTensor] = None ,_snake_case : bool = True ,) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = hidden_states.shape[0] lowercase__ : str = timestep if not torch.is_tensor(_snake_case ): lowercase__ : Optional[int] = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_snake_case ) and len(timesteps.shape ) == 0: lowercase__ : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ : Union[str, Any] = timesteps * torch.ones(_snake_case ,dtype=timesteps.dtype ,device=timesteps.device ) lowercase__ : List[str] = self.time_proj(_snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase__ : Optional[int] = timesteps_projected.to(dtype=self.dtype ) lowercase__ : Any = self.time_embedding(_snake_case ) if self.embedding_proj_norm is not None: lowercase__ : Optional[int] = self.embedding_proj_norm(_snake_case ) lowercase__ : List[Any] = self.embedding_proj(_snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase__ : Any = self.encoder_hidden_states_proj(_snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) lowercase__ : int = self.proj_in(_snake_case ) lowercase__ : List[Any] = self.positional_embedding.to(hidden_states.dtype ) lowercase__ : Optional[int] = [] lowercase__ : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase__ : Tuple = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase__ : Optional[Any] = hidden_states[:, None, :] lowercase__ : Tuple = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase__ : int = self.prd_embedding.to(hidden_states.dtype ).expand(_snake_case ,-1 ,-1 ) additional_embeds.append(_snake_case ) lowercase__ : int = torch.cat( _snake_case ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase__ : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase__ : Optional[int] = F.pad( _snake_case ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) lowercase__ : Optional[int] = hidden_states + positional_embeddings if attention_mask is not None: lowercase__ : str = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowercase__ : Optional[int] = F.pad(_snake_case ,(0, self.additional_embeddings) ,value=0.0 ) lowercase__ : Any = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase__ : Union[str, Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: lowercase__ : Optional[Any] = self.norm_in(_snake_case ) for block in self.transformer_blocks: lowercase__ : List[Any] = block(_snake_case ,attention_mask=_snake_case ) lowercase__ : Optional[Any] = self.norm_out(_snake_case ) if self.prd_embedding is not None: lowercase__ : Optional[Any] = hidden_states[:, -1] else: lowercase__ : Optional[Any] = hidden_states[:, additional_embeddings_len:] lowercase__ : str = self.proj_to_clip_embeddings(_snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Tuple ) -> str: """simple docstring""" lowercase__ : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = SMALL_MODEL_IDENTIFIER lowercase__ : Dict = '''pt''' lowercase__ : Optional[int] = '''tf''' def UpperCAmelCase ( self : str ,_snake_case : Tuple ) -> Dict: """simple docstring""" lowercase__ : List[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Dict = TFAutoModel.from_pretrained(self.test_model ,from_pt=_snake_case ) model_tf.save_pretrained(_snake_case ) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = '''mock_framework''' # Framework provided - return whatever the user provides lowercase__ : Dict = FeaturesManager.determine_framework(self.test_model ,_snake_case ) self.assertEqual(_snake_case ,_snake_case ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_snake_case ) lowercase__ : Optional[Any] = FeaturesManager.determine_framework(_snake_case ,_snake_case ) self.assertEqual(_snake_case ,_snake_case ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_snake_case ) lowercase__ : Any = FeaturesManager.determine_framework(_snake_case ,_snake_case ) self.assertEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_snake_case ) lowercase__ : Optional[int] = FeaturesManager.determine_framework(_snake_case ) self.assertEqual(_snake_case ,self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_snake_case ) lowercase__ : List[str] = FeaturesManager.determine_framework(_snake_case ) self.assertEqual(_snake_case ,self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_snake_case ): lowercase__ : Dict = FeaturesManager.determine_framework(_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowercase__ : Dict = MagicMock(return_value=_snake_case ) with patch('''transformers.onnx.features.is_tf_available''' ,_snake_case ): lowercase__ : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case ,self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowercase__ : Dict = MagicMock(return_value=_snake_case ) with patch('''transformers.onnx.features.is_torch_available''' ,_snake_case ): lowercase__ : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case ,self.framework_tf ) # Both in environment -> use PyTorch lowercase__ : Optional[Any] = MagicMock(return_value=_snake_case ) lowercase__ : Optional[int] = MagicMock(return_value=_snake_case ) with patch('''transformers.onnx.features.is_tf_available''' ,_snake_case ), patch( '''transformers.onnx.features.is_torch_available''' ,_snake_case ): lowercase__ : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case ,self.framework_pt ) # Both not in environment -> raise error lowercase__ : List[Any] = MagicMock(return_value=_snake_case ) lowercase__ : str = MagicMock(return_value=_snake_case ) with patch('''transformers.onnx.features.is_tf_available''' ,_snake_case ), patch( '''transformers.onnx.features.is_torch_available''' ,_snake_case ): with self.assertRaises(_snake_case ): lowercase__ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
302
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
1
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Tuple ,_snake_case : Dict=13 ,_snake_case : Tuple=30 ,_snake_case : Tuple=2 ,_snake_case : List[Any]=3 ,_snake_case : Optional[int]=True ,_snake_case : int=True ,_snake_case : List[Any]=32 ,_snake_case : Optional[Any]=5 ,_snake_case : Optional[int]=4 ,_snake_case : List[str]=37 ,_snake_case : Optional[int]="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[str]=10 ,_snake_case : str=0.02 ,_snake_case : Optional[Any]=3 ,_snake_case : List[Any]=0.6 ,_snake_case : Optional[Any]=None ,) -> Dict: """simple docstring""" lowercase__ : Tuple = parent lowercase__ : Any = batch_size lowercase__ : List[str] = image_size lowercase__ : int = patch_size lowercase__ : List[str] = num_channels lowercase__ : Optional[int] = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Optional[int] = mask_ratio lowercase__ : Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ : Union[str, Any] = (image_size // patch_size) ** 2 lowercase__ : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Union[str, Any] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : Dict ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = ViTMAEModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Tuple ,_snake_case : Optional[Any] ,_snake_case : Dict ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = ViTMAEForPreTraining(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ) lowercase__ : List[Any] = (self.image_size // self.patch_size) ** 2 lowercase__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ : int = 1 lowercase__ : int = ViTMAEForPreTraining(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = model(_snake_case ) lowercase__ : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase : int = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False lowerCAmelCase : Dict = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = ViTMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" pass def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(_snake_case ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Union[str, Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) def UpperCAmelCase ( self : Tuple ,_snake_case : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) lowercase__ : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowercase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : Optional[Any] = torch.from_numpy(_snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ : List[Any] = pt_noise super().check_pt_tf_models(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(_snake_case ) model.to(_snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Any = outputs[0].cpu().numpy() lowercase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model_class.from_pretrained(_snake_case ) model.to(_snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) # Make sure we don't have nans lowercase__ : Dict = after_outputs[0].cpu().numpy() lowercase__ : int = 0 lowercase__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case ,1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" pass @slow def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = ViTMAEModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ : Any = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_snake_case ) lowercase__ : int = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ : List[Any] = ViTMAEConfig() lowercase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ,noise=torch.from_numpy(_snake_case ).to(device=_snake_case ) ) # verify the logits lowercase__ : Optional[int] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(_snake_case ) ,atol=1e-4 ) )
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase__ : Union[str, Any] = 1_28 elif "12-12" in model_name: lowercase__ : int = 12 lowercase__ : Optional[int] = 12 elif "14-14" in model_name: lowercase__ : Tuple = 14 lowercase__ : Union[str, Any] = 14 elif "16-16" in model_name: lowercase__ : List[Any] = 16 lowercase__ : Optional[int] = 16 else: raise ValueError('''Model not supported''' ) lowercase__ : Any = '''huggingface/label-files''' if "speech-commands" in model_name: lowercase__ : Optional[Any] = 35 lowercase__ : Dict = '''speech-commands-v2-id2label.json''' else: lowercase__ : List[Any] = 5_27 lowercase__ : str = '''audioset-id2label.json''' lowercase__ : Union[str, Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : List[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Tuple = idalabel lowercase__ : List[str] = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: if "module.v" in name: lowercase__ : Any = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: lowercase__ : List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: lowercase__ : int = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: lowercase__ : Dict = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase__ : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: lowercase__ : Union[str, Any] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowercase__ : Dict = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__ : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ : str = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : List[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase__ : Dict = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: lowercase__ : Optional[Any] = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: lowercase__ : List[str] = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase__ : List[str] = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: lowercase__ : Any = key.split('''.''' ) lowercase__ : Dict = int(key_split[3] ) lowercase__ : List[Any] = config.hidden_size if "weight" in key: lowercase__ : List[Any] = val[:dim, :] lowercase__ : Union[str, Any] = val[dim : dim * 2, :] lowercase__ : str = val[-dim:, :] else: lowercase__ : Union[str, Any] = val[:dim] lowercase__ : str = val[dim : dim * 2] lowercase__ : List[Any] = val[-dim:] else: lowercase__ : str = val return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Dict = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Union[str, Any]: lowercase__ : Optional[Any] = get_audio_spectrogram_transformer_config(__lowerCamelCase ) lowercase__ : Any = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict lowercase__ : Union[str, Any] = model_name_to_url[model_name] lowercase__ : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' ) # remove some keys remove_keys(__lowerCamelCase ) # rename some keys lowercase__ : str = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) # load 🤗 model lowercase__ : Any = ASTForAudioClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase__ : Union[str, Any] = -4.2_6_7_7_3_9_3 if '''speech-commands''' not in model_name else -6.8_4_5_9_7_8 lowercase__ : Union[str, Any] = 4.5_6_8_9_9_7_4 if '''speech-commands''' not in model_name else 5.5_6_5_4_5_2_6 lowercase__ : Dict = 10_24 if '''speech-commands''' not in model_name else 1_28 lowercase__ : str = ASTFeatureExtractor(mean=__lowerCamelCase , std=__lowerCamelCase , max_length=__lowerCamelCase ) if "speech-commands" in model_name: lowercase__ : List[Any] = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) lowercase__ : Optional[Any] = dataset[0]['''audio''']['''array'''] else: lowercase__ : List[Any] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) lowercase__ , lowercase__ : Union[str, Any] = torchaudio.load(__lowerCamelCase ) lowercase__ : Tuple = waveform.squeeze().numpy() lowercase__ : Any = feature_extractor(__lowerCamelCase , sampling_rate=1_60_00 , return_tensors='''pt''' ) # forward pass lowercase__ : Optional[int] = model(**__lowerCamelCase ) lowercase__ : int = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase__ : str = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase__ : str = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase__ : Optional[int] = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase__ : str = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase__ : Tuple = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase__ : Optional[Any] = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase__ : str = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase__ : Any = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(__lowerCamelCase ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
1
"""simple docstring""" from math import ceil, sqrt def __UpperCAmelCase ( __lowerCamelCase = 1_00_00_00 ) -> int: lowercase__ : List[str] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase__ : Dict = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase__ : List[str] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowerCAmelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) lowercase__ : Dict = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) lowercase__ : List[Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : Dict = CLIPTextModel(_snake_case ) lowercase__ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : Any = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : List[str]=0 ) -> Dict: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Tuple = torch.manual_seed(_snake_case ) else: lowercase__ : List[str] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Tuple = 2 lowercase__ : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,) lowercase__ : Any = floats_tensor(control_image.shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Tuple = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Dict = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : List[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(_snake_case : Optional[int] ): if isinstance(_snake_case ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__ : List[str] = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Dict = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Dict = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : Any = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : List[str] = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : int = MultiControlNetModel([controlneta, controlneta] ) lowercase__ : Dict = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(_snake_case ) else: lowercase__ : int = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[Any] = 2 lowercase__ : str = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), ] lowercase__ : Optional[Any] = floats_tensor(control_image[0].shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Tuple = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : int = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : Any = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowercase__ : Dict = 10.0 lowercase__ : str = 4 lowercase__ : List[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : str = steps lowercase__ : List[str] = scale lowercase__ : Dict = pipe(**_snake_case )[0] lowercase__ : Optional[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = steps lowercase__ : Tuple = scale lowercase__ : Optional[Any] = pipe(**_snake_case ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] lowercase__ : Optional[int] = self.get_dummy_inputs(_snake_case ) lowercase__ : int = steps lowercase__ : Optional[Any] = scale lowercase__ : Tuple = pipe(**_snake_case ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] lowercase__ : str = self.get_dummy_inputs(_snake_case ) lowercase__ : Tuple = steps lowercase__ : Union[str, Any] = scale lowercase__ : Union[str, Any] = pipe(**_snake_case ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__ : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,safety_checker=_snake_case ,controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : Any = '''evil space-punk bird''' lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__ : str = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__ : Optional[int] = pipe( _snake_case ,_snake_case ,control_image=_snake_case ,generator=_snake_case ,output_type='''np''' ,num_inference_steps=50 ,strength=0.6 ,) lowercase__ : Dict = output.images[0] assert image.shape == (512, 512, 3) lowercase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = DownBlockaD # noqa F405 lowerCAmelCase : int = "down" def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase : str = "down" def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : Tuple = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = AttnDownBlockaD # noqa F405 lowerCAmelCase : str = "down" def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase : Optional[Any] = "down" def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Tuple = super().prepare_init_args_and_inputs_for_common() lowercase__ : Optional[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Any = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase : Tuple = "down" @property def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : List[str] = super().prepare_init_args_and_inputs_for_common() lowercase__ : Dict = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' ,'''MPS result is not consistent''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = SkipDownBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "down" @property def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_skip_sample=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "down" @property def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=_snake_case ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = DownEncoderBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "down" @property def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ : List[str] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Any = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase : Union[str, Any] = "down" @property def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : Tuple = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ : int = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : str = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = UNetMidBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "mid" def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ : List[str] = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : int = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase : Optional[Any] = "mid" def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Dict = super().prepare_init_args_and_inputs_for_common() lowercase__ : Tuple = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase : List[Any] = "mid" @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Dict = super().prepare_init_args_and_inputs_for_common() lowercase__ : Any = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : Tuple = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = UpBlockaD # noqa F405 lowerCAmelCase : Union[str, Any] = "up" @property def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase : Any = "up" @property def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : int = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase : Tuple = "up" @property def UpperCAmelCase ( self : int ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ , lowercase__ : Any = super().prepare_init_args_and_inputs_for_common() lowercase__ : Optional[int] = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase : str = "up" @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ,include_encoder_hidden_states=_snake_case ) def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() lowercase__ : List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : str ) -> int: """simple docstring""" lowercase__ : int = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = AttnUpBlockaD # noqa F405 lowerCAmelCase : List[Any] = "up" @property def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) @unittest.skipIf(torch_device == '''mps''' ,'''MPS result is not consistent''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : str = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = SkipUpBlockaD # noqa F405 lowerCAmelCase : int = "up" @property def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : int = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "up" @property def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : str = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = UpDecoderBlockaD # noqa F405 lowerCAmelCase : Any = "up" @property def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase : Union[str, Any] = "up" @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_snake_case )
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # TODO Update this lowerCAmelCase_ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "esm" def __init__( self : List[Any] ,_snake_case : int=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=None ,_snake_case : List[str]=768 ,_snake_case : Optional[int]=12 ,_snake_case : Optional[int]=12 ,_snake_case : Optional[Any]=3_072 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : int=0.1 ,_snake_case : Optional[Any]=1_026 ,_snake_case : Optional[int]=0.02 ,_snake_case : int=1e-12 ,_snake_case : Dict="absolute" ,_snake_case : Optional[int]=True ,_snake_case : Union[str, Any]=None ,_snake_case : Dict=False ,_snake_case : List[str]=False ,_snake_case : Optional[Any]=None ,_snake_case : Any=None ,**_snake_case : Optional[Any] ,) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,mask_token_id=_snake_case ,**_snake_case ) lowercase__ : Tuple = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : Dict = initializer_range lowercase__ : int = layer_norm_eps lowercase__ : int = position_embedding_type lowercase__ : Union[str, Any] = use_cache lowercase__ : List[Any] = emb_layer_norm_before lowercase__ : Any = token_dropout lowercase__ : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) lowercase__ : Dict = EsmFoldConfig() elif isinstance(_snake_case ,_snake_case ): lowercase__ : Dict = EsmFoldConfig(**_snake_case ) lowercase__ : Optional[Any] = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) lowercase__ : Tuple = get_default_vocab_list() else: lowercase__ : str = vocab_list else: lowercase__ : str = None lowercase__ : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'''use_esm_attn_map''' ,_snake_case ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config ,_snake_case ): lowercase__ : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = None lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : float = 0 lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : int = 1_2_8 lowerCAmelCase : "TrunkConfig" = None def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" if self.trunk is None: lowercase__ : int = TrunkConfig() elif isinstance(self.trunk ,_snake_case ): lowercase__ : Any = TrunkConfig(**self.trunk ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : Tuple = asdict(self ) lowercase__ : List[str] = self.trunk.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : int = 4_8 lowerCAmelCase : int = 1_0_2_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : float = 0 lowerCAmelCase : float = 0 lowerCAmelCase : bool = False lowerCAmelCase : int = 4 lowerCAmelCase : Optional[int] = 1_2_8 lowerCAmelCase : "StructureModuleConfig" = None def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" if self.structure_module is None: lowercase__ : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,_snake_case ): lowercase__ : Tuple = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowercase__ : Optional[int] = self.sequence_state_dim // self.sequence_head_width lowercase__ : Any = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : List[Any] = asdict(self ) lowercase__ : Dict = self.structure_module.to_dict() return output @dataclass class __A : '''simple docstring''' lowerCAmelCase : int = 3_8_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_6 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_2 lowerCAmelCase : int = 4 lowerCAmelCase : int = 8 lowerCAmelCase : float = 0.1 lowerCAmelCase : int = 8 lowerCAmelCase : int = 1 lowerCAmelCase : int = 2 lowerCAmelCase : int = 7 lowerCAmelCase : int = 1_0 lowerCAmelCase : float = 1e-8 lowerCAmelCase : float = 1e5 def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return asdict(self ) def __UpperCAmelCase ( ) -> Any: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
302
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
1
"""simple docstring""" lowerCAmelCase_ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
302
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
1
"""simple docstring""" class __A : '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = val lowercase__ : List[str] = None lowercase__ : Dict = None def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Tuple: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ : Optional[int] = Node(_snake_case ) else: self.left.insert(_snake_case ) elif val > self.val: if self.right is None: lowercase__ : str = Node(_snake_case ) else: self.right.insert(_snake_case ) else: lowercase__ : Optional[Any] = val def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: # Recursive traversal if root: inorder(root.left , __lowerCamelCase ) res.append(root.val ) inorder(root.right , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: # Build BST if len(__lowerCamelCase ) == 0: return arr lowercase__ : str = Node(arr[0] ) for i in range(1 , len(__lowerCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ : Any = [] inorder(__lowerCamelCase , __lowerCamelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Tuple ,*_snake_case : Any ,**_snake_case : Tuple ) -> None: """simple docstring""" warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
302
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ : int = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ : Optional[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_snake_case ,safety_checker=_snake_case ) lowercase__ : int = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ : Tuple = jax.random.PRNGKey(0 ) lowercase__ : Optional[Any] = 50 lowercase__ : List[Any] = jax.device_count() lowercase__ : Dict = num_samples * [prompt] lowercase__ : int = num_samples * [init_image] lowercase__ : List[str] = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ : Optional[Any] = pipeline.prepare_inputs(_snake_case ,_snake_case ,_snake_case ) # shard inputs and rng lowercase__ : Any = replicate(_snake_case ) lowercase__ : Tuple = jax.random.split(_snake_case ,jax.device_count() ) lowercase__ : str = shard(_snake_case ) lowercase__ : Tuple = shard(_snake_case ) lowercase__ : Union[str, Any] = shard(_snake_case ) lowercase__ : Optional[Any] = pipeline( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,jit=_snake_case ) lowercase__ : Union[str, Any] = output.images.reshape(_snake_case ,512 ,512 ,3 ) lowercase__ : Any = images[0, 253:256, 253:256, -1] lowercase__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : List[Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : Optional[int] ,_snake_case : str=13 ,_snake_case : Union[str, Any]=30 ,_snake_case : Optional[Any]=2 ,_snake_case : int=3 ,_snake_case : int=True ,_snake_case : Dict=True ,_snake_case : List[str]=32 ,_snake_case : Any=5 ,_snake_case : str=4 ,_snake_case : List[Any]=37 ,_snake_case : int="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Optional[int]=0.1 ,_snake_case : Optional[Any]=10 ,_snake_case : int=0.02 ,_snake_case : Dict=None ,_snake_case : Optional[int]=2 ,) -> List[Any]: """simple docstring""" lowercase__ : Tuple = parent lowercase__ : List[str] = batch_size lowercase__ : List[str] = image_size lowercase__ : Dict = patch_size lowercase__ : Optional[int] = num_channels lowercase__ : str = is_training lowercase__ : str = use_labels lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : int = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : Dict = scope lowercase__ : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Union[str, Any] = (image_size // patch_size) ** 2 lowercase__ : Any = num_patches + 1 def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : List[str] = None if self.use_labels: lowercase__ : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : Dict ,_snake_case : Any ,_snake_case : Optional[Any] ,_snake_case : Dict ) -> List[Any]: """simple docstring""" lowercase__ : str = ViTModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = ViTForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Tuple = 1 lowercase__ : Optional[Any] = ViTForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Dict = model(_snake_case ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[Any] ,_snake_case : Union[str, Any] ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.type_sequence_label_size lowercase__ : List[str] = ViTForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : Dict = 1 lowercase__ : Tuple = ViTForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Any = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Any = config_and_inputs lowercase__ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase : int = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = ViTModelTester(self ) lowercase__ : str = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(_snake_case ) lowercase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = ViTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Optional[Any]: lowercase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(_snake_case ) lowercase__ : int = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : str = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(_snake_case ) lowercase__ : List[Any] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' ,size=480 ) lowercase__ : Any = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''pt''' ) lowercase__ : Tuple = inputs.pixel_values.to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : str = model(_snake_case ,interpolate_pos_encoding=_snake_case ) # verify the logits lowercase__ : Any = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,_snake_case ) lowercase__ : Dict = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,_snake_case ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = ViTModel.from_pretrained('''facebook/dino-vits8''' ,torch_dtype=torch.floataa ,device_map='''auto''' ) lowercase__ : str = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : Union[str, Any] = image_processor(images=_snake_case ,return_tensors='''pt''' ) lowercase__ : Union[str, Any] = inputs.pixel_values.to(_snake_case ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ : List[Any] = model(_snake_case )
302
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
1
"""simple docstring""" import argparse import struct import unittest class __A : '''simple docstring''' def __init__( self : int ,_snake_case : bytes ) -> None: """simple docstring""" lowercase__ : Tuple = data # Initialize hash values lowercase__ : str = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants lowercase__ : List[Any] = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] lowercase__ : int = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase ( _snake_case : bytes ) -> bytes: """simple docstring""" lowercase__ : Union[str, Any] = b'''\x80''' + (b'''\x00''' * (63 - (len(_snake_case ) + 8) % 64)) lowercase__ : int = struct.pack('''>Q''' ,(len(_snake_case ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowercase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase__ : List[str] = list(struct.unpack('''>16L''' ,_snake_case ) ) # add 48 0-ed integers words += [0] * 48 lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase__ : Optional[int] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowercase__ : Union[str, Any] = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowercase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression lowercase__ : List[Any] = self.ror(_snake_case ,6 ) ^ self.ror(_snake_case ,11 ) ^ self.ror(_snake_case ,25 ) lowercase__ : Union[str, Any] = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) lowercase__ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 lowercase__ : Tuple = self.ror(_snake_case ,2 ) ^ self.ror(_snake_case ,13 ) ^ self.ror(_snake_case ,22 ) lowercase__ : List[str] = (a & b) ^ (a & c) ^ (b & c) lowercase__ : List[str] = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) lowercase__ : Optional[Any] = [a, b, c, d, e, f, g, h] # Modify final values lowercase__ : int = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] lowercase__ : Dict = ''''''.join([hex(_snake_case )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ) -> int: """simple docstring""" return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> None: """simple docstring""" import hashlib lowercase__ : List[str] = bytes('''Test String''' ,'''utf-8''' ) self.assertEqual(SHAaaa(_snake_case ).hash ,hashlib.shaaaa(_snake_case ).hexdigest() ) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: lowercase__ : Dict = f.read() else: lowercase__ : Optional[int] = bytes(__lowerCamelCase , '''utf-8''' ) print(SHAaaa(__lowerCamelCase ).hash ) if __name__ == "__main__": main()
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : str = 10 lowercase__ : int = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) lowercase__ : List[str] = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(__lowerCamelCase ) ), } , features=__lowerCamelCase , ) return dataset @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=__lowerCamelCase ) return filename # FILE_CONTENT + files lowerCAmelCase_ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' lowercase__ : str = FILE_CONTENT with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return filename @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: import bza lowercase__ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' lowercase__ : Optional[int] = bytes(__lowerCamelCase , '''utf-8''' ) with bza.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: import gzip lowercase__ : str = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) lowercase__ : Dict = bytes(__lowerCamelCase , '''utf-8''' ) with gzip.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase__ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' lowercase__ : Optional[int] = bytes(__lowerCamelCase , '''utf-8''' ) with lza.frame.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase__ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(__lowerCamelCase , '''w''' ) as archive: archive.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: import tarfile lowercase__ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(__lowerCamelCase , '''w''' ) as f: f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> int: import lzma lowercase__ : str = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' lowercase__ : Any = bytes(__lowerCamelCase , '''utf-8''' ) with lzma.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: import zipfile lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase__ : Tuple = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' lowercase__ : List[Any] = bytes(__lowerCamelCase , '''utf-8''' ) with zstd.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' lowercase__ : Any = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return filename lowerCAmelCase_ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase_ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase_ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase_ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase_ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> Optional[int]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Tuple = datasets.Dataset.from_dict(__lowerCamelCase ) lowercase__ : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: lowercase__ : Union[str, Any] = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(__lowerCamelCase , '''w''' , newline='''''' ) as f: lowercase__ : int = csv.DictWriter(__lowerCamelCase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(__lowerCamelCase , '''w''' , newline='''''' ) as f: lowercase__ : Optional[int] = csv.DictWriter(__lowerCamelCase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: import bza lowercase__ : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(__lowerCamelCase , '''rb''' ) as f: lowercase__ : List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(__lowerCamelCase , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) lowercase__ : int = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(__lowerCamelCase , '''wb''' ) as f: lowercase__ : List[Any] = pq.ParquetWriter(__lowerCamelCase , schema=__lowerCamelCase ) lowercase__ : Optional[Any] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowerCamelCase ) )] for k in DATA[0]} , schema=__lowerCamelCase ) writer.write_table(__lowerCamelCase ) writer.close() return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowercase__ : Any = {'''data''': DATA} with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowercase__ : str = {'''data''': DATA_DICT_OF_LISTS} with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: import gzip lowercase__ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(__lowerCamelCase , '''rb''' ) as orig_file: with gzip.open(__lowerCamelCase , '''wb''' ) as zipped_file: zipped_file.writelines(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: import gzip lowercase__ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(__lowerCamelCase , '''rb''' ) as orig_file: with gzip.open(__lowerCamelCase , '''wb''' ) as zipped_file: zipped_file.writelines(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : str = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''nested''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Dict = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(__lowerCamelCase , '''w''' ) as f: f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(__lowerCamelCase , '''w''' ) as f: f.add(__lowerCamelCase , arcname=os.path.join('''nested''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : List[str] = ['''0''', '''1''', '''2''', '''3'''] lowercase__ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(__lowerCamelCase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(__lowerCamelCase , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : List[Any] = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> Union[str, Any]: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> List[Any]: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
302
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "pix2struct_text_model" lowerCAmelCase : Any = ["past_key_values"] lowerCAmelCase : Any = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] ,_snake_case : List[Any]=50_244 ,_snake_case : Optional[Any]=768 ,_snake_case : Any=64 ,_snake_case : List[str]=2_048 ,_snake_case : Optional[int]=12 ,_snake_case : Dict=12 ,_snake_case : Dict=32 ,_snake_case : Dict=128 ,_snake_case : List[str]=0.1 ,_snake_case : List[str]=1e-6 ,_snake_case : Dict=1.0 ,_snake_case : str="gelu_new" ,_snake_case : List[str]=0 ,_snake_case : Union[str, Any]=False ,_snake_case : Tuple=0 ,_snake_case : int=1 ,_snake_case : List[Any]=False ,_snake_case : Union[str, Any]=True ,**_snake_case : Any ,) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Tuple = d_kv lowercase__ : Dict = d_ff lowercase__ : str = num_layers lowercase__ : List[Any] = num_heads lowercase__ : Union[str, Any] = relative_attention_num_buckets lowercase__ : List[Any] = relative_attention_max_distance lowercase__ : Any = dropout_rate lowercase__ : List[str] = layer_norm_epsilon lowercase__ : Dict = initializer_factor lowercase__ : Union[str, Any] = use_cache lowercase__ : Tuple = eos_token_id lowercase__ : List[Any] = decoder_start_token_id # for backwards compatibility lowercase__ : Union[str, Any] = dense_act_fn super().__init__( pad_token_id=_snake_case ,eos_token_id=_snake_case ,decoder_start_token_id=_snake_case ,tie_word_embeddings=_snake_case ,is_decoder=_snake_case ,**_snake_case ,) @classmethod def UpperCAmelCase ( cls : List[str] ,_snake_case : Union[str, os.PathLike] ,**_snake_case : List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_snake_case ) lowercase__ , lowercase__ : Optional[int] = cls.get_config_dict(_snake_case ,**_snake_case ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase__ : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case ,**_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = "pix2struct_vision_model" def __init__( self : Any ,_snake_case : Optional[Any]=768 ,_snake_case : Any=768 ,_snake_case : Union[str, Any]=2_048 ,_snake_case : Any=64 ,_snake_case : Dict=12 ,_snake_case : Tuple=12 ,_snake_case : Union[str, Any]="gelu_new" ,_snake_case : Dict=1e-6 ,_snake_case : int=0.0 ,_snake_case : str=0.0 ,_snake_case : int=1e-10 ,_snake_case : List[str]=1.0 ,_snake_case : Optional[int]=4_096 ,_snake_case : int=32 ,_snake_case : Optional[int]=128 ,**_snake_case : Optional[Any] ,) -> List[str]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[Any] = hidden_size lowercase__ : str = patch_embed_hidden_size lowercase__ : Dict = d_ff lowercase__ : List[str] = dropout_rate lowercase__ : Dict = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Tuple = initializer_range lowercase__ : int = initializer_factor lowercase__ : Dict = attention_dropout lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = dense_act_fn lowercase__ : Any = seq_len lowercase__ : Tuple = relative_attention_num_buckets lowercase__ : Any = relative_attention_max_distance lowercase__ : int = d_kv @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : Union[str, os.PathLike] ,**_snake_case : str ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_snake_case ) lowercase__ , lowercase__ : Tuple = cls.get_config_dict(_snake_case ,**_snake_case ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase__ : Union[str, Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case ,**_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "pix2struct" lowerCAmelCase : Optional[int] = True def __init__( self : List[str] ,_snake_case : Tuple=None ,_snake_case : Dict=None ,_snake_case : Tuple=1.0 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Union[str, Any]=False ,_snake_case : List[str]=False ,_snake_case : Optional[int]=True ,**_snake_case : List[str] ,) -> str: """simple docstring""" super().__init__(tie_word_embeddings=_snake_case ,is_encoder_decoder=_snake_case ,**_snake_case ) if text_config is None: lowercase__ : int = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: lowercase__ : Union[str, Any] = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) lowercase__ : Optional[int] = PixaStructTextConfig(**_snake_case ) lowercase__ : int = PixaStructVisionConfig(**_snake_case ) lowercase__ : Any = self.text_config.decoder_start_token_id lowercase__ : List[str] = self.text_config.pad_token_id lowercase__ : Union[str, Any] = self.text_config.eos_token_id lowercase__ : Any = initializer_factor lowercase__ : Any = initializer_range lowercase__ : int = self.initializer_range lowercase__ : List[str] = self.initializer_range lowercase__ : str = is_vqa @classmethod def UpperCAmelCase ( cls : int ,_snake_case : PixaStructTextConfig ,_snake_case : PixaStructVisionConfig ,**_snake_case : Optional[int] ) -> List[str]: """simple docstring""" return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_snake_case ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = copy.deepcopy(self.__dict__ ) lowercase__ : Optional[Any] = self.text_config.to_dict() lowercase__ : Tuple = self.vision_config.to_dict() lowercase__ : Tuple = self.__class__.model_type return output
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = "realm" def __init__( self : Optional[Any] ,_snake_case : List[Any]=30_522 ,_snake_case : Any=768 ,_snake_case : Dict=128 ,_snake_case : List[str]=12 ,_snake_case : str=12 ,_snake_case : Any=8 ,_snake_case : Optional[Any]=3_072 ,_snake_case : Optional[Any]="gelu_new" ,_snake_case : Dict=0.1 ,_snake_case : Any=0.1 ,_snake_case : Any=512 ,_snake_case : str=2 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : str=1e-12 ,_snake_case : Optional[int]=256 ,_snake_case : int=10 ,_snake_case : Tuple=1e-3 ,_snake_case : Optional[Any]=5 ,_snake_case : Union[str, Any]=320 ,_snake_case : List[str]=13_353_718 ,_snake_case : Dict=5_000 ,_snake_case : str=1 ,_snake_case : Optional[Any]=0 ,_snake_case : int=2 ,**_snake_case : Tuple ,) -> int: """simple docstring""" super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) # Common config lowercase__ : Any = vocab_size lowercase__ : Dict = max_position_embeddings lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[int] = retriever_proj_size lowercase__ : Any = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Optional[int] = num_candidates lowercase__ : Any = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = type_vocab_size lowercase__ : Optional[Any] = layer_norm_eps # Reader config lowercase__ : Tuple = span_hidden_size lowercase__ : List[Any] = max_span_width lowercase__ : Dict = reader_layer_norm_eps lowercase__ : Union[str, Any] = reader_beam_size lowercase__ : Union[str, Any] = reader_seq_len # Retrieval config lowercase__ : List[Any] = num_block_records lowercase__ : List[Any] = searcher_beam_size
302
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
1
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any ,_snake_case : Any=1_024 ,_snake_case : List[Any]=1_024 ,_snake_case : Union[str, Any]=3.6 ) -> Any: """simple docstring""" lowercase__ : List[Any] = tokenizer lowercase__ : Optional[Any] = tokenizer.bos_token_id lowercase__ : Optional[Any] = dataset lowercase__ : Tuple = seq_length lowercase__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self : str ) -> Dict: """simple docstring""" lowercase__ : List[Any] = iter(self.dataset ) lowercase__ : Tuple = True while more_examples: lowercase__ , lowercase__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_snake_case )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase__ : str = False break lowercase__ : Tuple = tokenizer(_snake_case ,truncation=_snake_case )['''input_ids'''] lowercase__ : Dict = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(_snake_case ) ,self.seq_length ): lowercase__ : Union[str, Any] = all_token_ids[i : i + self.seq_length] if len(_snake_case ) == self.seq_length: yield torch.tensor(_snake_case ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Union[str, Any] = {'''streaming''': True} lowercase__ : int = load_dataset(args.dataset_name , split='''train''' , **__lowerCamelCase ) lowercase__ : str = ConstantLengthDataset(__lowerCamelCase , __lowerCamelCase , seq_length=args.seq_length ) lowercase__ : List[str] = DataLoader(__lowerCamelCase , batch_size=args.batch_size ) return eval_dataloader def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: model.eval() lowercase__ : List[Any] = [] for step, batch in enumerate(__lowerCamelCase ): with torch.no_grad(): lowercase__ : str = model(__lowerCamelCase , labels=__lowerCamelCase ) lowercase__ : Optional[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__lowerCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase__ : Optional[int] = torch.mean(torch.cat(__lowerCamelCase ) ) try: lowercase__ : Any = torch.exp(__lowerCamelCase ) except OverflowError: lowercase__ : Any = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ ,lowerCAmelCase_ = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase_ = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "albert" def __init__( self : Optional[int] ,_snake_case : List[str]=30_000 ,_snake_case : Tuple=128 ,_snake_case : str=4_096 ,_snake_case : Optional[Any]=12 ,_snake_case : int=1 ,_snake_case : Tuple=64 ,_snake_case : str=16_384 ,_snake_case : Union[str, Any]=1 ,_snake_case : str="gelu_new" ,_snake_case : Optional[Any]=0 ,_snake_case : str=0 ,_snake_case : Dict=512 ,_snake_case : Optional[int]=2 ,_snake_case : Tuple=0.02 ,_snake_case : List[Any]=1e-12 ,_snake_case : List[str]=0.1 ,_snake_case : Optional[int]="absolute" ,_snake_case : Union[str, Any]=0 ,_snake_case : Any=2 ,_snake_case : str=3 ,**_snake_case : Tuple ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) lowercase__ : Tuple = vocab_size lowercase__ : Dict = embedding_size lowercase__ : str = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : int = num_hidden_groups lowercase__ : Tuple = num_attention_heads lowercase__ : str = inner_group_num lowercase__ : Union[str, Any] = hidden_act lowercase__ : List[str] = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : int = initializer_range lowercase__ : List[Any] = layer_norm_eps lowercase__ : List[str] = classifier_dropout_prob lowercase__ : Any = position_embedding_type class __A ( A_ ): '''simple docstring''' @property def UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
302
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __A : '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : dict[str, list[str]] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : Any = graph # mapping node to its parent in resulting breadth first tree lowercase__ : dict[str, str | None] = {} lowercase__ : List[Any] = source_vertex def UpperCAmelCase ( self : Any ) -> None: """simple docstring""" lowercase__ : List[Any] = {self.source_vertex} lowercase__ : Tuple = None lowercase__ : Optional[int] = [self.source_vertex] # first in first out queue while queue: lowercase__ : Any = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_snake_case ) lowercase__ : List[Any] = vertex queue.append(_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : str ) -> str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowercase__ : List[Any] = self.parent.get(_snake_case ) if target_vertex_parent is None: lowercase__ : List[str] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(_snake_case ) return self.shortest_path(_snake_case ) + f"""->{target_vertex}""" if __name__ == "__main__": lowerCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
1
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowerCAmelCase_ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase_ = F'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase_ = F'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase_ = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase_ = F'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase_ = F'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase_ = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase_ = F'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase_ = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase_ = F'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase_ = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase_ = 'mid_block.attentions.0.' lowerCAmelCase_ = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase_ = F'''mid_block.resnets.{j}.''' lowerCAmelCase_ = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __UpperCAmelCase ( __lowerCamelCase ) -> int: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. lowercase__ : str = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ : List[str] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ : List[Any] = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ : Optional[Any] = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = v lowercase__ : int = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase_ = F'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase_ = F'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase_ = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase_ = F'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase_ = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase_ = F'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase_ = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase_ = F'''mid_block.resnets.{i}.''' lowerCAmelCase_ = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def __UpperCAmelCase ( __lowerCamelCase ) -> Any: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Tuple = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ : Optional[Any] = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ : str = v.replace(__lowerCamelCase , __lowerCamelCase ) lowercase__ : str = v lowercase__ : Optional[int] = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ : Tuple = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) lowercase__ : List[str] = reshape_weight_for_sd(__lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase_ = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowerCAmelCase_ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase_ = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase_ = {'q': 0, 'k': 1, 'v': 2} def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = {} lowercase__ : str = {} lowercase__ : str = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): lowercase__ : Any = k[: -len('''.q_proj.weight''' )] lowercase__ : List[str] = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: lowercase__ : Any = [None, None, None] lowercase__ : Optional[int] = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): lowercase__ : Any = k[: -len('''.q_proj.bias''' )] lowercase__ : List[str] = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: lowercase__ : Tuple = [None, None, None] lowercase__ : Optional[Any] = v continue lowercase__ : List[Any] = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase ) lowercase__ : Dict = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase__ : List[str] = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase ) lowercase__ : Tuple = torch.cat(__lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase__ : Any = textenc_pattern.sub(lambda __lowerCamelCase : protected[re.escape(m.group(0 ) )] , __lowerCamelCase ) lowercase__ : Optional[int] = torch.cat(__lowerCamelCase ) return new_state_dict def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: return text_enc_dict if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowerCAmelCase_ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowerCAmelCase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowerCAmelCase_ = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase_ = load_file(unet_path, device='cpu') else: lowerCAmelCase_ = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowerCAmelCase_ = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowerCAmelCase_ = load_file(vae_path, device='cpu') else: lowerCAmelCase_ = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowerCAmelCase_ = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowerCAmelCase_ = load_file(text_enc_path, device='cpu') else: lowerCAmelCase_ = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowerCAmelCase_ = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowerCAmelCase_ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase_ = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase_ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase_ = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase_ = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase_ = {'transformer.' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase_ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase_ = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase_ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase_ = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase_ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase_ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase_ = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "blenderbot-small" lowerCAmelCase : Union[str, Any] = ["past_key_values"] lowerCAmelCase : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : str ,_snake_case : Dict=50_265 ,_snake_case : List[str]=512 ,_snake_case : Tuple=8 ,_snake_case : Dict=2_048 ,_snake_case : Optional[Any]=16 ,_snake_case : str=8 ,_snake_case : Optional[int]=2_048 ,_snake_case : Union[str, Any]=16 ,_snake_case : List[str]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=True ,_snake_case : List[str]=True ,_snake_case : Any="gelu" ,_snake_case : List[str]=512 ,_snake_case : Optional[Any]=0.1 ,_snake_case : str=0.0 ,_snake_case : int=0.0 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : List[Any]=1 ,_snake_case : Tuple=False ,_snake_case : int=0 ,_snake_case : Dict=1 ,_snake_case : List[str]=2 ,_snake_case : Optional[Any]=2 ,**_snake_case : Optional[Any] ,) -> Tuple: """simple docstring""" lowercase__ : Dict = vocab_size lowercase__ : str = max_position_embeddings lowercase__ : Dict = d_model lowercase__ : str = encoder_ffn_dim lowercase__ : Dict = encoder_layers lowercase__ : List[str] = encoder_attention_heads lowercase__ : str = decoder_ffn_dim lowercase__ : int = decoder_layers lowercase__ : Dict = decoder_attention_heads lowercase__ : List[str] = dropout lowercase__ : List[Any] = attention_dropout lowercase__ : List[Any] = activation_dropout lowercase__ : List[Any] = activation_function lowercase__ : int = init_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : Union[str, Any] = decoder_layerdrop lowercase__ : Dict = use_cache lowercase__ : Optional[int] = encoder_layers lowercase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,is_encoder_decoder=_snake_case ,decoder_start_token_id=_snake_case ,forced_eos_token_id=_snake_case ,**_snake_case ,) class __A ( A_ ): '''simple docstring''' @property def UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase__ : List[Any] = {0: '''batch'''} lowercase__ : Optional[int] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} lowercase__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_snake_case ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase__ , lowercase__ : List[Any] = self.num_layers for i in range(_snake_case ): lowercase__ : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase__ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase__ : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def UpperCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ : Dict = super().outputs else: lowercase__ : int = super(_snake_case ,self ).outputs if self.use_past: lowercase__ , lowercase__ : Dict = self.num_layers for i in range(_snake_case ): lowercase__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase__ : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCAmelCase ( self : Tuple ,_snake_case : PreTrainedTokenizer ,_snake_case : int = -1 ,_snake_case : int = -1 ,_snake_case : bool = False ,_snake_case : Optional[TensorType] = None ,) -> Mapping[str, Any]: """simple docstring""" lowercase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) # Generate decoder inputs lowercase__ : List[Any] = seq_length if not self.use_past else 1 lowercase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase__ : Any = dict(**_snake_case ,**_snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__ , lowercase__ : int = common_inputs['''input_ids'''].shape lowercase__ : Dict = common_inputs['''decoder_input_ids'''].shape[1] lowercase__ , lowercase__ : List[Any] = self.num_attention_heads lowercase__ : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : int = decoder_seq_length + 3 lowercase__ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ : Any = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_snake_case ,_snake_case )] ,dim=1 ) lowercase__ : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__ , lowercase__ : int = self.num_layers lowercase__ : Union[str, Any] = min(_snake_case ,_snake_case ) lowercase__ : List[Any] = max(_snake_case ,_snake_case ) - min_num_layers lowercase__ : int = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), ) ) # TODO: test this. lowercase__ : List[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_snake_case ,_snake_case ): common_inputs["past_key_values"].append((torch.zeros(_snake_case ), torch.zeros(_snake_case )) ) return common_inputs def UpperCAmelCase ( self : str ,_snake_case : PreTrainedTokenizer ,_snake_case : int = -1 ,_snake_case : int = -1 ,_snake_case : bool = False ,_snake_case : Optional[TensorType] = None ,) -> Mapping[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__ , lowercase__ : int = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__ : str = seqlen + 2 lowercase__ , lowercase__ : Union[str, Any] = self.num_layers lowercase__ , lowercase__ : List[Any] = self.num_attention_heads lowercase__ : List[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : Optional[int] = common_inputs['''attention_mask'''].dtype lowercase__ : str = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_snake_case ,_snake_case ,dtype=_snake_case )] ,dim=1 ) lowercase__ : Any = [ (torch.zeros(_snake_case ), torch.zeros(_snake_case )) for _ in range(_snake_case ) ] return common_inputs def UpperCAmelCase ( self : str ,_snake_case : PreTrainedTokenizer ,_snake_case : int = -1 ,_snake_case : int = -1 ,_snake_case : bool = False ,_snake_case : Optional[TensorType] = None ,) -> Mapping[str, Any]: """simple docstring""" lowercase__ : Any = compute_effective_axis_dimension( _snake_case ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : int = tokenizer.num_special_tokens_to_add(_snake_case ) lowercase__ : int = compute_effective_axis_dimension( _snake_case ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_snake_case ) # Generate dummy inputs according to compute batch and sequence lowercase__ : Optional[int] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__ : List[str] = dict(tokenizer(_snake_case ,return_tensors=_snake_case ) ) return common_inputs def UpperCAmelCase ( self : Any ,_snake_case : PreTrainedTokenizer ,_snake_case : int = -1 ,_snake_case : int = -1 ,_snake_case : bool = False ,_snake_case : Optional[TensorType] = None ,) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _snake_case ,batch_size=_snake_case ,seq_length=_snake_case ,is_pair=_snake_case ,framework=_snake_case ) elif self.task == "causal-lm": lowercase__ : List[Any] = self._generate_dummy_inputs_for_causal_lm( _snake_case ,batch_size=_snake_case ,seq_length=_snake_case ,is_pair=_snake_case ,framework=_snake_case ) else: lowercase__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case ,batch_size=_snake_case ,seq_length=_snake_case ,is_pair=_snake_case ,framework=_snake_case ) return common_inputs def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : List[Any] ,_snake_case : str ,_snake_case : Dict ) -> Any: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase__ : List[str] = super()._flatten_past_key_values_(_snake_case ,_snake_case ,_snake_case ,_snake_case ) else: lowercase__ : List[str] = super(_snake_case ,self )._flatten_past_key_values_( _snake_case ,_snake_case ,_snake_case ,_snake_case )
302
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
1
"""simple docstring""" from math import loga def __UpperCAmelCase ( __lowerCamelCase ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: def count_of_possible_combinations(__lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: def count_of_possible_combinations_with_dp_array( __lowerCamelCase , __lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase__ : Dict = sum( count_of_possible_combinations_with_dp_array(target - item , __lowerCamelCase ) for item in array ) lowercase__ : Optional[int] = answer return answer lowercase__ : str = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : int = [0] * (target + 1) lowercase__ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = 3 lowerCAmelCase_ = 5 lowerCAmelCase_ = [1, 2, 5] print(combination_sum_iv(n, array, target))
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def __UpperCAmelCase ( __lowerCamelCase ) -> list[list[float]]: lowercase__ : Optional[int] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowercase__ : Optional[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowercase__ : int = [[0.0, 0.0], [0.0, 0.0]] lowercase__ , lowercase__ : Dict = matrix[1][1], matrix[0][0] lowercase__ , lowercase__ : Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowercase__ : Union[str, Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowercase__ : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowercase__ : Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowercase__ : Tuple = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowercase__ : Union[str, Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowercase__ : Optional[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowercase__ : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowercase__ : List[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowercase__ : List[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowercase__ : int = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowercase__ : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowercase__ : Optional[int] = array(__lowerCamelCase ) for i in range(3 ): for j in range(3 ): lowercase__ : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowercase__ : Dict = array(__lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(__lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
"""simple docstring""" import random def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> tuple: lowercase__ , lowercase__ , lowercase__ : Any = [], [], [] for element in data: if element < pivot: less.append(__lowerCamelCase ) elif element > pivot: greater.append(__lowerCamelCase ) else: equal.append(__lowerCamelCase ) return less, equal, greater def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__lowerCamelCase ) or index < 0: return None lowercase__ : Optional[int] = items[random.randint(0 , len(__lowerCamelCase ) - 1 )] lowercase__ : int = 0 lowercase__ , lowercase__ , lowercase__ : Dict = _partition(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any] = len(__lowerCamelCase ) lowercase__ : Dict = len(__lowerCamelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowerCamelCase , __lowerCamelCase ) # must be in larger else: return quick_select(__lowerCamelCase , index - (m + count) )
302
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : Optional[int] = tmp_path / '''cache''' lowercase__ : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Any = JsonDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : Optional[Any] = tmp_path / '''cache''' lowercase__ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ : Optional[int] = features.copy() if features else default_expected_features lowercase__ : List[Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Tuple = JsonDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : Any = tmp_path / '''cache''' lowercase__ : Dict = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowercase__ : Optional[int] = features.copy() if features else default_expected_features lowercase__ : Dict = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Union[str, Any] = JsonDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__ : List[str] = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowercase__ : Any = features.copy() lowercase__ : List[str] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Union[str, Any] = tmp_path / '''cache''' lowercase__ : Dict = JsonDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Dict = tmp_path / '''cache''' lowercase__ : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ : Any = JsonDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , split=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase , __lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: if issubclass(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Union[str, Any] = jsonl_path elif issubclass(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Tuple = [jsonl_path] lowercase__ : Dict = tmp_path / '''cache''' lowercase__ : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ : Optional[Any] = JsonDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_json_dataset(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=("train",) ) -> Any: assert isinstance(__lowerCamelCase , __lowerCamelCase ) for split in splits: lowercase__ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : List[Any] = tmp_path / '''cache''' lowercase__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : int = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_json_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : int = tmp_path / '''cache''' lowercase__ : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ : Optional[Any] = features.copy() if features else default_expected_features lowercase__ : Union[str, Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Any = JsonDatasetReader({'''train''': jsonl_path} , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_json_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: if split: lowercase__ : Dict = {split: jsonl_path} else: lowercase__ : Optional[int] = '''train''' lowercase__ : Union[str, Any] = {'''train''': jsonl_path, '''test''': jsonl_path} lowercase__ : int = tmp_path / '''cache''' lowercase__ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ : Tuple = JsonDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_json_datasetdict(__lowerCamelCase , __lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: return json.load(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: return [json.loads(__lowerCamelCase ) for line in buffer] class __A : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' ,[(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self : Dict ,_snake_case : List[str] ,_snake_case : str ,_snake_case : List[str] ) -> List[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_snake_case ,_snake_case ,lines=_snake_case ).write() buffer.seek(0 ) lowercase__ : Tuple = load_json_function(_snake_case ) assert isinstance(_snake_case ,_snake_case ) assert isinstance(exported_content[0] ,_snake_case ) assert len(_snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' ,[ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ,_snake_case : Any ,_snake_case : List[str] ,_snake_case : List[Any] ,_snake_case : Union[str, Any] ) -> int: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_snake_case ,_snake_case ,lines=_snake_case ,orient=_snake_case ).write() buffer.seek(0 ) lowercase__ : int = load_json(_snake_case ) assert isinstance(_snake_case ,_snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_snake_case ,'''keys''' ) and not hasattr(exported_content[0] ,'''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' ,[(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_snake_case ,_snake_case ,lines=_snake_case ,num_proc=2 ).write() buffer.seek(0 ) lowercase__ : Any = load_json_function(_snake_case ) assert isinstance(_snake_case ,_snake_case ) assert isinstance(exported_content[0] ,_snake_case ) assert len(_snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' ,[ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Any ,_snake_case : List[str] ,_snake_case : List[str] ) -> Optional[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_snake_case ,_snake_case ,lines=_snake_case ,orient=_snake_case ,num_proc=2 ).write() buffer.seek(0 ) lowercase__ : Union[str, Any] = load_json(_snake_case ) assert isinstance(_snake_case ,_snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_snake_case ,'''keys''' ) and not hasattr(exported_content[0] ,'''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_snake_case ) == 10 def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> Optional[Any]: """simple docstring""" with pytest.raises(_snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(_snake_case ,_snake_case ,num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' ,[('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" lowercase__ : Any = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_snake_case ,_snake_case ,compression=_snake_case ).write() with fsspec.open(_snake_case ,'''rb''' ,compression='''infer''' ) as f: lowercase__ : int = f.read() with fsspec.open(_snake_case ,'''rb''' ,compression='''infer''' ) as f: lowercase__ : List[Any] = f.read() assert exported_content == original_content
302
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
1
"""simple docstring""" import numpy as np def __UpperCAmelCase ( __lowerCamelCase ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
1
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : List[str] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase__ : Tuple = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) lowercase__ : Any = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase__ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase__ : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Tuple = dct.pop(__lowerCamelCase ) lowercase__ : str = val def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "handwritten" in checkpoint_url: lowercase__ : Tuple = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : int = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' lowercase__ : Union[str, Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert('''RGB''' ) return im @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : List[str] = ViTConfig(image_size=3_84 , qkv_bias=__lowerCamelCase ) lowercase__ : Optional[int] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase__ : Tuple = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder lowercase__ : Tuple = 10_24 lowercase__ : str = 40_96 lowercase__ : List[str] = 24 lowercase__ : Union[str, Any] = 16 lowercase__ : Dict = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : Dict = False lowercase__ : Any = '''relu''' lowercase__ : List[str] = 10_24 lowercase__ : List[Any] = True lowercase__ : Optional[Any] = False lowercase__ : Union[str, Any] = False # load HuggingFace model lowercase__ : Optional[Any] = ViTModel(__lowerCamelCase , add_pooling_layer=__lowerCamelCase ) lowercase__ : Dict = TrOCRForCausalLM(__lowerCamelCase ) lowercase__ : List[Any] = VisionEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) model.eval() # load state_dict of original model, rename some keys lowercase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' , check_hash=__lowerCamelCase )['''model'''] lowercase__ : int = create_rename_keys(__lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase__ : Optional[int] = state_dict.pop(__lowerCamelCase ) if key.startswith('''decoder''' ) and "output_projection" not in key: lowercase__ : Union[str, Any] = val else: lowercase__ : Any = val # load state dict model.load_state_dict(__lowerCamelCase ) # Check outputs on an image lowercase__ : Tuple = ViTImageProcessor(size=encoder_config.image_size ) lowercase__ : List[str] = RobertaTokenizer.from_pretrained('''roberta-large''' ) lowercase__ : int = TrOCRProcessor(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = processor(images=prepare_img(__lowerCamelCase ) , return_tensors='''pt''' ).pixel_values # verify logits lowercase__ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase__ : List[Any] = model(pixel_values=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) lowercase__ : Optional[Any] = outputs.logits lowercase__ : Optional[int] = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: lowercase__ : str = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase__ : str = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: lowercase__ : str = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: lowercase__ : Optional[Any] = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __lowerCamelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
302
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): '''simple docstring''' lowerCAmelCase : int = 1_0_0_0_0 lowerCAmelCase : Optional[List[str]] = None lowerCAmelCase : Optional[datasets.Features] = None class __A ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCAmelCase : Dict = ParquetConfig def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__ : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_snake_case ,(str, list, tuple) ): lowercase__ : Union[str, Any] = data_files if isinstance(_snake_case ,_snake_case ): lowercase__ : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ : Optional[Any] = [dl_manager.iter_files(_snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'''files''': files} )] lowercase__ : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ : List[Any] = [dl_manager.iter_files(_snake_case ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_snake_case ): with open(_snake_case ,'''rb''' ) as f: lowercase__ : Any = datasets.Features.from_arrow_schema(pq.read_schema(_snake_case ) ) break splits.append(datasets.SplitGenerator(name=_snake_case ,gen_kwargs={'''files''': files} ) ) return splits def UpperCAmelCase ( self : int ,_snake_case : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ : Any = table_cast(_snake_case ,self.info.features.arrow_schema ) return pa_table def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[str] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(_snake_case ) ): with open(_snake_case ,'''rb''' ) as f: lowercase__ : Union[str, Any] = pq.ParquetFile(_snake_case ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size ,columns=self.config.columns ) ): lowercase__ : Any = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(_snake_case ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(_snake_case )}: {e}""" ) raise
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : List[str] = 1 lowercase__ : Union[str, Any] = 2 while i * i <= n: lowercase__ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __UpperCAmelCase ( ) -> Tuple: lowercase__ : Dict = 1 lowercase__ : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(__lowerCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["image_processor", "tokenizer"] lowerCAmelCase : Dict = "LayoutLMv2ImageProcessor" lowerCAmelCase : int = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : List[Any] ,_snake_case : Dict=None ,_snake_case : List[str]=None ,**_snake_case : Optional[int] ) -> int: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Optional[Any] = kwargs.pop('''feature_extractor''' ) lowercase__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) def __call__( self : str ,_snake_case : List[str] ,_snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None ,_snake_case : Union[List[List[int]], List[List[List[int]]]] = None ,_snake_case : Optional[Union[List[int], List[List[int]]]] = None ,_snake_case : bool = True ,_snake_case : Union[bool, str, PaddingStrategy] = False ,_snake_case : Union[bool, str, TruncationStrategy] = None ,_snake_case : Optional[int] = None ,_snake_case : int = 0 ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : bool = True ,_snake_case : Optional[Union[str, TensorType]] = None ,**_snake_case : Union[str, Any] ,) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase__ : Tuple = self.image_processor(images=_snake_case ,return_tensors=_snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_snake_case ,_snake_case ): lowercase__ : int = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase__ : List[Any] = features['''words'''] lowercase__ : Union[str, Any] = self.tokenizer( text=text if text is not None else features['''words'''] ,text_pair=text_pair if text_pair is not None else None ,boxes=boxes if boxes is not None else features['''boxes'''] ,word_labels=_snake_case ,add_special_tokens=_snake_case ,padding=_snake_case ,truncation=_snake_case ,max_length=_snake_case ,stride=_snake_case ,pad_to_multiple_of=_snake_case ,return_token_type_ids=_snake_case ,return_attention_mask=_snake_case ,return_overflowing_tokens=_snake_case ,return_special_tokens_mask=_snake_case ,return_offsets_mapping=_snake_case ,return_length=_snake_case ,verbose=_snake_case ,return_tensors=_snake_case ,**_snake_case ,) # add pixel values lowercase__ : Any = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase__ : str = self.get_overflowing_images(_snake_case ,encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase__ : str = images return encoded_inputs def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_snake_case ) != len(_snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(_snake_case )} and {len(_snake_case )}""" ) return images_with_overflow def UpperCAmelCase ( self : Optional[Any] ,*_snake_case : Union[str, Any] ,**_snake_case : Dict ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,*_snake_case : Tuple ,**_snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class @property def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,_snake_case ,) return self.image_processor
302
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
1
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __UpperCAmelCase ( ) -> List[str]: lowercase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=__lowerCamelCase , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=__lowerCamelCase , default=5 ) parser.add_argument('''--batch_size''' , type=__lowerCamelCase , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=__lowerCamelCase , default=1 ) parser.add_argument('''--freeze''' , type=__lowerCamelCase , default=__lowerCamelCase ) parser.add_argument('''--learning_rate''' , type=__lowerCamelCase , default=5E-4 ) parser.add_argument('''--seed''' , type=__lowerCamelCase , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=__lowerCamelCase , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=__lowerCamelCase , default=10 ) parser.add_argument('''--weight_decay''' , type=__lowerCamelCase , default=0.0_1 ) parser.add_argument('''--output_dir''' , type=__lowerCamelCase , default='''./results''' ) return parser.parse_args() lowerCAmelCase_ = load('accuracy') def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ , lowercase__ : Tuple = eval_pred lowercase__ : int = np.argmax(__lowerCamelCase , axis=1 ) return metric.compute(predictions=__lowerCamelCase , references=__lowerCamelCase ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[Any] ,_snake_case : Dict ) -> None: """simple docstring""" super().__init__() lowercase__ : List[str] = trainer def UpperCAmelCase ( self : Dict ,_snake_case : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,**_snake_case : List[str] ) -> List[str]: """simple docstring""" if control.should_evaluate: lowercase__ : str = deepcopy(_snake_case ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset ,metric_key_prefix='''train''' ) return control_copy def __UpperCAmelCase ( ) -> int: lowercase__ : str = get_args() set_seed(args.seed ) lowercase__ : Dict = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) lowercase__ : Optional[int] = dataset.train_test_split(test_size=0.2 ) lowercase__ : Union[str, Any] = train_test['''test'''].train_test_split(test_size=0.5 ) lowercase__ : int = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) lowercase__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase__ : Dict = tokenizer.eos_token lowercase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowercase__ : Tuple = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowercase__ : int = False lowercase__ : Optional[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(__lowerCamelCase ): lowercase__ : Tuple = tokenizer(example['''src'''] , truncation=__lowerCamelCase , max_length=10_24 ) lowercase__ : Tuple = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowercase__ : List[Any] = train_test_validation.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=train_test_validation['''train'''].column_names , ) lowercase__ : List[str] = DataCollatorWithPadding(tokenizer=__lowerCamelCase ) lowercase__ : Optional[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) lowercase__ : Any = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , compute_metrics=__lowerCamelCase , ) print('''Training...''' ) trainer.add_callback(CustomCallback(__lowerCamelCase ) ) trainer.train() if __name__ == "__main__": main()
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[str] = old_name if "patch_embed" in old_name: lowercase__ , lowercase__ , lowercase__ : Tuple = old_name.split('''.''' ) if layer == "0": lowercase__ : Tuple = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": lowercase__ : Optional[Any] = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": lowercase__ : List[str] = old_name.replace('''3''' , '''convolution2''' ) else: lowercase__ : Union[str, Any] = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , __lowerCamelCase ): lowercase__ : Optional[Any] = r'''\b\d{2}\b''' if bool(re.search(__lowerCamelCase , __lowerCamelCase ) ): lowercase__ : List[Any] = re.search(r'''\d\.\d\d.''' , __lowerCamelCase ).group() else: lowercase__ : List[Any] = re.search(r'''\d\.\d.''' , __lowerCamelCase ).group() if int(match[0] ) < 6: lowercase__ : Optional[int] = old_name.replace(__lowerCamelCase , '''''' ) lowercase__ : Any = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) lowercase__ : Dict = '''intermediate_stages.''' + trimmed_name else: lowercase__ : Optional[Any] = old_name.replace(__lowerCamelCase , '''''' ) if int(match[2] ) < num_meta4D_last_stage: lowercase__ : Optional[Any] = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: lowercase__ : Union[str, Any] = str(int(match[2] ) - num_meta4D_last_stage ) lowercase__ : List[Any] = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: lowercase__ : Any = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: lowercase__ : int = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: lowercase__ : Dict = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: lowercase__ : int = trimmed_name.replace('''fc2''' , '''linear_out''' ) lowercase__ : Optional[int] = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , __lowerCamelCase ): lowercase__ : List[Any] = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: lowercase__ : List[str] = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowercase__ : List[str] = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowercase__ : Dict = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: lowercase__ : Optional[Any] = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: lowercase__ : List[str] = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: lowercase__ : Any = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: lowercase__ : Union[str, Any] = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowercase__ : List[str] = new_name.replace('''norm''' , '''layernorm''' ) lowercase__ : Tuple = '''efficientformer.''' + new_name else: lowercase__ : str = '''efficientformer.encoder.''' + new_name return new_name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: for key in checkpoint.copy().keys(): lowercase__ : Optional[int] = checkpoint.pop(__lowerCamelCase ) lowercase__ : Any = val return checkpoint def __UpperCAmelCase ( ) -> Optional[Any]: lowercase__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return image def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model'''] lowercase__ : List[Any] = EfficientFormerConfig.from_json_file(__lowerCamelCase ) lowercase__ : Optional[int] = EfficientFormerForImageClassificationWithTeacher(__lowerCamelCase ) lowercase__ : Optional[Any] = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) lowercase__ : int = config.depths[-1] - config.num_metaad_blocks + 1 lowercase__ : Union[str, Any] = convert_torch_checkpoint(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() lowercase__ : List[str] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowercase__ : Dict = prepare_img() lowercase__ : Optional[int] = 2_56 lowercase__ : Tuple = 2_24 lowercase__ : Union[str, Any] = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) lowercase__ : int = processor(images=__lowerCamelCase , return_tensors='''pt''' ).pixel_values # original processing pipeline lowercase__ : Dict = Compose( [ Resize(__lowerCamelCase , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(__lowerCamelCase ), ToTensor(), Normalize(__lowerCamelCase , __lowerCamelCase ), ] ) lowercase__ : int = image_transforms(__lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[str] = model(__lowerCamelCase ) lowercase__ : List[Any] = outputs.logits lowercase__ : int = (1, 10_00) if "l1" in model_name: lowercase__ : Tuple = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , __lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowercase__ : int = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , __lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowercase__ : Any = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowerCamelCase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=__lowerCamelCase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=__lowerCamelCase , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowerCAmelCase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : List[str] = '''laion/clap-htsat-unfused''' lowercase__ : Union[str, Any] = tempfile.mkdtemp() def UpperCAmelCase ( self : Dict ,**_snake_case : Dict ) -> Tuple: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint ,**_snake_case ) def UpperCAmelCase ( self : Any ,**_snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint ,**_snake_case ) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : List[Any] = self.get_feature_extractor() lowercase__ : str = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) processor.save_pretrained(self.tmpdirname ) lowercase__ : str = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ : Dict = ClapProcessor(tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[str] = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) lowercase__ : Optional[int] = self.get_feature_extractor(do_normalize=_snake_case ,padding_value=1.0 ) lowercase__ : Tuple = ClapProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Dict = self.get_feature_extractor() lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Optional[Any] = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) lowercase__ : int = floats_list((3, 1_000) ) lowercase__ : Union[str, Any] = feature_extractor(_snake_case ,return_tensors='''np''' ) lowercase__ : List[str] = processor(audios=_snake_case ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : int = self.get_feature_extractor() lowercase__ : int = self.get_tokenizer() lowercase__ : Dict = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) lowercase__ : List[Any] = '''This is a test string''' lowercase__ : List[str] = processor(text=_snake_case ) lowercase__ : Any = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = self.get_feature_extractor() lowercase__ : str = self.get_tokenizer() lowercase__ : List[Any] = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) lowercase__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Optional[int] = processor.batch_decode(_snake_case ) lowercase__ : str = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : int = self.get_feature_extractor() lowercase__ : str = self.get_tokenizer() lowercase__ : str = ClapProcessor(tokenizer=_snake_case ,feature_extractor=_snake_case ) self.assertListEqual( processor.model_input_names[2:] ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,)
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case ,'''width_multiplier''' ) ) class __A : '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : str=13 ,_snake_case : int=64 ,_snake_case : Union[str, Any]=2 ,_snake_case : Optional[int]=3 ,_snake_case : List[Any]="swish" ,_snake_case : Tuple=3 ,_snake_case : Dict=32 ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.02 ,_snake_case : Any=True ,_snake_case : List[str]=True ,_snake_case : str=10 ,_snake_case : Optional[int]=None ,_snake_case : Optional[Any]=0.25 ,_snake_case : Optional[int]=0.0 ,_snake_case : Optional[Any]=0.0 ,) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : int = num_channels lowercase__ : Tuple = make_divisible(512 * width_multiplier ,divisor=8 ) lowercase__ : Optional[int] = hidden_act lowercase__ : Dict = conv_kernel_size lowercase__ : Union[str, Any] = output_stride lowercase__ : Tuple = classifier_dropout_prob lowercase__ : Optional[Any] = use_labels lowercase__ : str = is_training lowercase__ : List[str] = num_labels lowercase__ : Any = initializer_range lowercase__ : int = scope lowercase__ : List[Any] = width_multiplier lowercase__ : Optional[int] = ffn_dropout lowercase__ : Any = attn_dropout def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : List[Any] = None lowercase__ : List[Any] = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowercase__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ,_snake_case : List[Any] ,_snake_case : Optional[int] ,_snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = MobileViTVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Union[str, Any] ,_snake_case : List[str] ,_snake_case : int ,_snake_case : int ) -> str: """simple docstring""" lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = MobileViTVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = self.num_labels lowercase__ : Optional[Any] = MobileViTVaForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) lowercase__ : Dict = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase : str = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[str] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[Any] = False def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = MobileViTVaModelTester(self ) lowercase__ : str = MobileViTVaConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Dict = [*signature.parameters.keys()] lowercase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" def check_hidden_states_output(_snake_case : int ,_snake_case : List[str] ,_snake_case : List[str] ): lowercase__ : List[str] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Any = outputs.hidden_states lowercase__ : Dict = 5 self.assertEqual(len(_snake_case ) ,_snake_case ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase__ : Any = 2 for i in range(len(_snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = MobileViTVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : List[Any] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _snake_case ) lowercase__ : str = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : List[Any] = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Any = model(**_snake_case ) # verify the logits lowercase__ : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Optional[int] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : Optional[Any] = model.to(_snake_case ) lowercase__ : List[str] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Any = model(**_snake_case ) lowercase__ : str = outputs.logits # verify the logits lowercase__ : Any = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,_snake_case ) lowercase__ : Optional[Any] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] ,device=_snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_snake_case ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : Any = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : Optional[Any] = model.to(_snake_case ) lowercase__ : Dict = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Any = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Any = model(**_snake_case ) lowercase__ : int = outputs.logits.detach().cpu() lowercase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_snake_case ,target_sizes=[(50, 60)] ) lowercase__ : Any = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,_snake_case ) lowercase__ : str = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) lowercase__ : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,_snake_case )
302
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
1
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "autoformer" lowerCAmelCase : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Optional[Any] ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,_snake_case : str = "student_t" ,_snake_case : str = "nll" ,_snake_case : int = 1 ,_snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] ,_snake_case : bool = True ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : Optional[List[int]] = None ,_snake_case : Optional[List[int]] = None ,_snake_case : int = 64 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 32 ,_snake_case : int = 32 ,_snake_case : str = "gelu" ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : int = 100 ,_snake_case : float = 0.02 ,_snake_case : bool = True ,_snake_case : List[Any]=True ,_snake_case : int = 10 ,_snake_case : int = 25 ,_snake_case : int = 3 ,**_snake_case : List[Any] ,) -> List[str]: """simple docstring""" lowercase__ : str = prediction_length lowercase__ : List[Any] = context_length if context_length is not None else prediction_length lowercase__ : str = distribution_output lowercase__ : Union[str, Any] = loss lowercase__ : Union[str, Any] = input_size lowercase__ : int = num_time_features lowercase__ : Optional[int] = lags_sequence lowercase__ : List[str] = scaling lowercase__ : List[Any] = num_dynamic_real_features lowercase__ : int = num_static_real_features lowercase__ : int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ : List[Any] = cardinality else: lowercase__ : int = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ : Any = embedding_dimension else: lowercase__ : Union[str, Any] = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] lowercase__ : str = num_parallel_samples # Transformer architecture configuration lowercase__ : str = input_size * len(self.lags_sequence ) + self._number_of_features lowercase__ : Optional[Any] = d_model lowercase__ : Dict = encoder_attention_heads lowercase__ : Dict = decoder_attention_heads lowercase__ : str = encoder_ffn_dim lowercase__ : Optional[Any] = decoder_ffn_dim lowercase__ : Optional[Any] = encoder_layers lowercase__ : Tuple = decoder_layers lowercase__ : str = dropout lowercase__ : Optional[Any] = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : Tuple = encoder_layerdrop lowercase__ : Tuple = decoder_layerdrop lowercase__ : Optional[int] = activation_function lowercase__ : Optional[int] = init_std lowercase__ : Dict = use_cache # Autoformer lowercase__ : str = label_length lowercase__ : Any = moving_average lowercase__ : List[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = "audio-spectrogram-transformer" def __init__( self : Dict ,_snake_case : Optional[int]=768 ,_snake_case : Any=12 ,_snake_case : List[str]=12 ,_snake_case : List[str]=3_072 ,_snake_case : Tuple="gelu" ,_snake_case : Any=0.0 ,_snake_case : Optional[Any]=0.0 ,_snake_case : Dict=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : List[str]=16 ,_snake_case : Optional[Any]=True ,_snake_case : str=10 ,_snake_case : Dict=10 ,_snake_case : List[str]=1_024 ,_snake_case : List[Any]=128 ,**_snake_case : int ,) -> List[str]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[Any] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : str = layer_norm_eps lowercase__ : Any = patch_size lowercase__ : List[Any] = qkv_bias lowercase__ : Optional[Any] = frequency_stride lowercase__ : List[str] = time_stride lowercase__ : List[Any] = max_length lowercase__ : Tuple = num_mel_bins
302
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[int] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : int = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[int] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Dict = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : int = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Tuple = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : List[Any] = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[str] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : int = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : int = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : int = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Tuple = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : List[str] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Optional[int] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = (IPNDMScheduler,) lowerCAmelCase : Optional[int] = (("num_inference_steps", 5_0),) def UpperCAmelCase ( self : Optional[Any] ,**_snake_case : str ) -> int: """simple docstring""" lowercase__ : Optional[Any] = {'''num_train_timesteps''': 1_000} config.update(**_snake_case ) return config def UpperCAmelCase ( self : List[Any] ,_snake_case : int=0 ,**_snake_case : str ) -> Tuple: """simple docstring""" lowercase__ : Dict = dict(self.forward_default_kwargs ) lowercase__ : Union[str, Any] = kwargs.pop('''num_inference_steps''' ,_snake_case ) lowercase__ : List[Any] = self.dummy_sample lowercase__ : Any = 0.1 * sample lowercase__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Optional[Any] = self.get_scheduler_config(**_snake_case ) lowercase__ : List[str] = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowercase__ : Dict = dummy_past_residuals[:] if time_step is None: lowercase__ : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowercase__ : Tuple = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowercase__ : Optional[Any] = dummy_past_residuals[:] lowercase__ : Optional[int] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : int = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : Optional[int] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : List[Any] = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, Any]=0 ,**_snake_case : Any ) -> Optional[Any]: """simple docstring""" lowercase__ : str = dict(self.forward_default_kwargs ) lowercase__ : Optional[int] = kwargs.pop('''num_inference_steps''' ,_snake_case ) lowercase__ : Dict = self.dummy_sample lowercase__ : Any = 0.1 * sample lowercase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : Any = dummy_past_residuals[:] if time_step is None: lowercase__ : Any = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowercase__ : Union[str, Any] = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : Optional[Any] = dummy_past_residuals[:] lowercase__ : Dict = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Optional[int] = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : Union[str, Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : List[str] = new_scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = self.scheduler_classes[0] lowercase__ : Optional[int] = self.get_scheduler_config(**_snake_case ) lowercase__ : Any = scheduler_class(**_snake_case ) lowercase__ : str = 10 lowercase__ : Any = self.dummy_model() lowercase__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : Union[str, Any] = model(_snake_case ,_snake_case ) lowercase__ : int = scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ : List[Any] = model(_snake_case ,_snake_case ) lowercase__ : Tuple = scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample return sample def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : Dict = dict(self.forward_default_kwargs ) lowercase__ : int = kwargs.pop('''num_inference_steps''' ,_snake_case ) for scheduler_class in self.scheduler_classes: lowercase__ : Optional[Any] = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**_snake_case ) lowercase__ : List[Any] = self.dummy_sample lowercase__ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case ,'''set_timesteps''' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case ,'''set_timesteps''' ): lowercase__ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ : str = dummy_past_residuals[:] lowercase__ : Optional[int] = scheduler.timesteps[5] lowercase__ : Union[str, Any] = scheduler.timesteps[6] lowercase__ : Optional[Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Tuple = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) lowercase__ : str = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample lowercase__ : Tuple = scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_snake_case ,time_step=_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=_snake_case ,time_step=_snake_case ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.full_loop() lowercase__ : Any = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
302
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
1
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = 'T5Config' class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "mt5" lowerCAmelCase : List[Any] = MTaConfig class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "mt5" lowerCAmelCase : str = MTaConfig class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = "mt5" lowerCAmelCase : List[Any] = MTaConfig
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: for attribute in key.split('''.''' ): lowercase__ : int = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase__ : Dict = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase__ : int = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Union[str, Any] = value elif weight_type == "weight_g": lowercase__ : List[str] = value elif weight_type == "weight_v": lowercase__ : int = value elif weight_type == "bias": lowercase__ : int = value else: lowercase__ : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = fairseq_model.state_dict() lowercase__ : Dict = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : str = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : int = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ : int = True if "*" in mapped_key: lowercase__ : Dict = name.split(__lowerCamelCase )[0].split('''.''' )[-2] lowercase__ : str = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: lowercase__ : List[Any] = '''weight_g''' elif "weight_v" in name: lowercase__ : Tuple = '''weight_v''' elif "weight" in name: lowercase__ : Optional[int] = '''weight''' elif "bias" in name: lowercase__ : Any = '''bias''' else: lowercase__ : List[str] = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : int = full_name.split('''conv_layers.''' )[-1] lowercase__ : Optional[int] = name.split('''.''' ) lowercase__ : Any = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__ : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : List[Any] = SEWConfig() if is_finetuned: lowercase__ : List[str] = model.wav_encoder.wav_model.cfg else: lowercase__ : Optional[int] = model.cfg lowercase__ : List[Any] = fs_config.conv_bias lowercase__ : Optional[Any] = eval(fs_config.conv_feature_layers ) lowercase__ : Dict = [x[0] for x in conv_layers] lowercase__ : List[str] = [x[1] for x in conv_layers] lowercase__ : Dict = [x[2] for x in conv_layers] lowercase__ : List[str] = '''gelu''' lowercase__ : str = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' lowercase__ : List[Any] = 0.0 lowercase__ : Optional[Any] = fs_config.activation_fn.name lowercase__ : Union[str, Any] = fs_config.encoder_embed_dim lowercase__ : Dict = 0.0_2 lowercase__ : Dict = fs_config.encoder_ffn_embed_dim lowercase__ : str = 1E-5 lowercase__ : int = fs_config.encoder_layerdrop lowercase__ : Any = fs_config.encoder_attention_heads lowercase__ : Any = fs_config.conv_pos_groups lowercase__ : Dict = fs_config.conv_pos lowercase__ : int = len(__lowerCamelCase ) lowercase__ : List[str] = fs_config.encoder_layers lowercase__ : Optional[Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase__ : Union[str, Any] = model.cfg lowercase__ : Optional[Any] = fs_config.final_dropout lowercase__ : Tuple = fs_config.layerdrop lowercase__ : int = fs_config.activation_dropout lowercase__ : Tuple = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase__ : List[str] = fs_config.attention_dropout lowercase__ : str = fs_config.dropout_input lowercase__ : str = fs_config.dropout lowercase__ : List[Any] = fs_config.mask_channel_length lowercase__ : Optional[int] = fs_config.mask_channel_prob lowercase__ : Optional[int] = fs_config.mask_length lowercase__ : Optional[Any] = fs_config.mask_prob lowercase__ : Optional[Any] = '''Wav2Vec2FeatureExtractor''' lowercase__ : int = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True ) -> Union[str, Any]: if is_finetuned: lowercase__ , lowercase__ , lowercase__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase__ : str = SEWConfig.from_pretrained(__lowerCamelCase ) else: lowercase__ : Tuple = convert_config(model[0] , __lowerCamelCase ) lowercase__ : Tuple = model[0].eval() lowercase__ : int = True if config.feat_extract_norm == '''layer''' else False lowercase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if is_finetuned: if dict_path: lowercase__ : int = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : int = target_dict.pad_index lowercase__ : int = target_dict.bos_index lowercase__ : Optional[Any] = target_dict.pad_index lowercase__ : Optional[int] = target_dict.bos_index lowercase__ : Optional[Any] = target_dict.eos_index lowercase__ : int = len(target_dict.symbols ) lowercase__ : str = os.path.join(__lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase ) lowercase__ : Union[str, Any] = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCamelCase , ) lowercase__ : str = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowercase__ : Dict = SEWForCTC(__lowerCamelCase ) else: lowercase__ : str = SEWModel(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
"""simple docstring""" import string import numpy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class __A : '''simple docstring''' lowerCAmelCase : List[str] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase : Tuple = numpy.vectorize(lambda A_ : x % 3_6 ) lowerCAmelCase : List[Any] = numpy.vectorize(A_ ) def __init__( self : Optional[Any] ,_snake_case : numpy.ndarray ) -> None: """simple docstring""" lowercase__ : Tuple = self.modulus(_snake_case ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase__ : Union[str, Any] = encrypt_key.shape[0] def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> int: """simple docstring""" return self.key_string.index(_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : int ) -> str: """simple docstring""" return self.key_string[round(_snake_case )] def UpperCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowercase__ : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase__ : Tuple = det % len(self.key_string ) lowercase__ : Any = len(self.key_string ) if greatest_common_divisor(_snake_case ,len(self.key_string ) ) != 1: lowercase__ : List[Any] = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(_snake_case ) def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : List[Any] = [char for char in text.upper() if char in self.key_string] lowercase__ : Optional[int] = chars[-1] while len(_snake_case ) % self.break_key != 0: chars.append(_snake_case ) return "".join(_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : int = self.process_text(text.upper() ) lowercase__ : List[Any] = '''''' for i in range(0 ,len(_snake_case ) - self.break_key + 1 ,self.break_key ): lowercase__ : Optional[Any] = text[i : i + self.break_key] lowercase__ : List[Any] = [self.replace_letters(_snake_case ) for char in batch] lowercase__ : Optional[int] = numpy.array([vec] ).T lowercase__ : List[Any] = self.modulus(self.encrypt_key.dot(_snake_case ) ).T.tolist()[ 0 ] lowercase__ : Union[str, Any] = ''''''.join( self.replace_digits(_snake_case ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase ( self : Any ) -> numpy.ndarray: """simple docstring""" lowercase__ : Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase__ : int = det % len(self.key_string ) lowercase__ : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase__ : Union[str, Any] = i break lowercase__ : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_snake_case ) ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : Optional[int] = self.make_decrypt_key() lowercase__ : List[Any] = self.process_text(text.upper() ) lowercase__ : Any = '''''' for i in range(0 ,len(_snake_case ) - self.break_key + 1 ,self.break_key ): lowercase__ : Optional[Any] = text[i : i + self.break_key] lowercase__ : List[Any] = [self.replace_letters(_snake_case ) for char in batch] lowercase__ : str = numpy.array([vec] ).T lowercase__ : int = self.modulus(decrypt_key.dot(_snake_case ) ).T.tolist()[0] lowercase__ : Union[str, Any] = ''''''.join( self.replace_digits(_snake_case ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __UpperCAmelCase ( ) -> None: lowercase__ : List[str] = int(input('''Enter the order of the encryption key: ''' ) ) lowercase__ : Any = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__lowerCamelCase ): lowercase__ : Dict = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) lowercase__ : Tuple = HillCipher(numpy.array(__lowerCamelCase ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) lowercase__ : Optional[int] = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": lowercase__ : Tuple = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": lowercase__ : List[Any] = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = s.rsplit(__lowerCamelCase , __lowerCamelCase ) return new.join(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Optional[int] = {} lowercase__ : str = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase__ : Dict = key.replace(f"""{group_key}.""" , f"""{group_key}.group.""" ) if "res_path" in key: lowercase__ : Optional[int] = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): lowercase__ : Dict = rreplace(__lowerCamelCase , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): lowercase__ : List[Any] = rreplace(__lowerCamelCase , '''.b''' , '''.bias''' , 1 ) lowercase__ : List[str] = value.float() return upgrade @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=True ) -> Dict: from dall_e import Encoder lowercase__ : Optional[int] = Encoder() if os.path.exists(__lowerCamelCase ): lowercase__ : int = torch.load(__lowerCamelCase ) else: lowercase__ : int = torch.hub.load_state_dict_from_url(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Optional[Any] = ckpt.state_dict() encoder.load_state_dict(__lowerCamelCase ) if config_path is not None: lowercase__ : Optional[int] = FlavaImageCodebookConfig.from_pretrained(__lowerCamelCase ) else: lowercase__ : Any = FlavaImageCodebookConfig() lowercase__ : Any = FlavaImageCodebook(__lowerCamelCase ).eval() lowercase__ : Optional[int] = encoder.state_dict() lowercase__ : str = upgrade_state_dict(__lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) lowercase__ : Union[str, Any] = hf_model.state_dict() lowercase__ : List[str] = count_parameters(__lowerCamelCase ) lowercase__ : List[str] = count_parameters(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
302
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Union[str, Any] = botoa.client('''iam''' ) lowercase__ : List[str] = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__lowerCamelCase , AssumeRolePolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) ) lowercase__ : List[Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=__lowerCamelCase , PolicyName=f"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(__lowerCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Any = botoa.client('''iam''' ) return iam_client.get_role(RoleName=__lowerCamelCase )["Role"]["Arn"] def __UpperCAmelCase ( ) -> Union[str, Any]: lowercase__ : Tuple = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , __lowerCamelCase , ) lowercase__ : Any = None if credentials_configuration == 0: lowercase__ : Tuple = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) lowercase__ : Optional[int] = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) lowercase__ : Dict = _ask_field('''AWS Access Key ID: ''' ) lowercase__ : Union[str, Any] = aws_access_key_id lowercase__ : Any = _ask_field('''AWS Secret Access Key: ''' ) lowercase__ : int = aws_secret_access_key lowercase__ : int = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) lowercase__ : Any = aws_region lowercase__ : List[str] = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , __lowerCamelCase , ) if role_management == 0: lowercase__ : Union[str, Any] = _ask_field('''Enter your IAM role name: ''' ) else: lowercase__ : Union[str, Any] = '''accelerate_sagemaker_execution_role''' print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(__lowerCamelCase ) lowercase__ : Optional[Any] = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , ) lowercase__ : Optional[int] = None if is_custom_docker_image: lowercase__ : Optional[Any] = _ask_field('''Enter your Docker image: ''' , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() ) lowercase__ : str = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , ) lowercase__ : Union[str, Any] = None if is_sagemaker_inputs_enabled: lowercase__ : Tuple = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) lowercase__ : List[str] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , ) lowercase__ : Optional[Any] = None if is_sagemaker_metrics_enabled: lowercase__ : List[str] = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , ) lowercase__ : Dict = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) lowercase__ : Optional[int] = {} lowercase__ : Tuple = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , ) if use_dynamo: lowercase__ : List[Any] = '''dynamo_''' lowercase__ : Optional[Any] = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowercase__ : Union[str, Any] = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , ) if use_custom_options: lowercase__ : Tuple = _ask_options( '''Which mode do you want to use?''' , __lowerCamelCase , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(__lowerCamelCase )] , default='''default''' , ) lowercase__ : List[str] = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , ) lowercase__ : Dict = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=__lowerCamelCase , error_message='''Please enter yes or no.''' , ) lowercase__ : Tuple = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: lowercase__ : Dict = _ask_options( __lowerCamelCase , __lowerCamelCase , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__lowerCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase__ : Any = _ask_field(__lowerCamelCase , lambda __lowerCamelCase : str(__lowerCamelCase ).lower() , default='''ml.p3.2xlarge''' ) lowercase__ : List[str] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase__ : Dict = _ask_field( '''How many machines do you want use? [1]: ''' , __lowerCamelCase , default=1 , ) lowercase__ : Union[str, Any] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=__lowerCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__lowerCamelCase , use_cpu=__lowerCamelCase , dynamo_config=__lowerCamelCase , eca_instance_type=__lowerCamelCase , profile=__lowerCamelCase , region=__lowerCamelCase , iam_role_name=__lowerCamelCase , mixed_precision=__lowerCamelCase , num_machines=__lowerCamelCase , sagemaker_inputs_file=__lowerCamelCase , sagemaker_metrics_file=__lowerCamelCase , )
302
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 10 , __lowerCamelCase = 22 ) -> int: lowercase__ : Optional[int] = range(1 , __lowerCamelCase ) lowercase__ : Tuple = range(1 , __lowerCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
302
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
1
"""simple docstring""" import doctest from collections import deque import numpy as np class __A : '''simple docstring''' def __init__( self : Any ) -> None: """simple docstring""" lowercase__ : Optional[int] = [2, 1, 2, -1] lowercase__ : Union[str, Any] = [1, 2, 3, 4] def UpperCAmelCase ( self : str ) -> list[float]: """simple docstring""" lowercase__ : List[str] = len(self.first_signal ) lowercase__ : int = len(self.second_signal ) lowercase__ : Optional[int] = max(_snake_case ,_snake_case ) # create a zero matrix of max_length x max_length lowercase__ : str = [[0] * max_length for i in range(_snake_case )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_snake_case ): lowercase__ : str = deque(self.second_signal ) rotated_signal.rotate(_snake_case ) for j, item in enumerate(_snake_case ): matrix[i][j] += item # multiply the matrix with the first signal lowercase__ : Tuple = np.matmul(np.transpose(_snake_case ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_snake_case ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
302
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
1
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase_ = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None ) -> str: lowercase__ : List[str] = True while ask_again: lowercase__ : List[str] = input(__lowerCamelCase ) try: if default is not None and len(__lowerCamelCase ) == 0: return default return convert_value(__lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=[] , __lowerCamelCase=None , __lowerCamelCase=0 ) -> Dict: lowercase__ : Optional[Any] = BulletMenu(__lowerCamelCase , __lowerCamelCase ) lowercase__ : str = menu.run(default_choice=__lowerCamelCase ) return convert_value(__lowerCamelCase ) if convert_value is not None else result def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : int = int(__lowerCamelCase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[str] = int(__lowerCamelCase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : Union[str, Any] = int(__lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[Any] = int(__lowerCamelCase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : int = int(__lowerCamelCase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class __A ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ,_snake_case : Any ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = super()._format_usage(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Tuple = usage.replace('''<command> [<args>] ''' ,'''''' ) return usage
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __A : '''simple docstring''' lowerCAmelCase : torch.Tensor # [batch_size x 3] lowerCAmelCase : torch.Tensor # [batch_size x 3] lowerCAmelCase : torch.Tensor # [batch_size x 3] lowerCAmelCase : torch.Tensor # [batch_size x 3] lowerCAmelCase : int lowerCAmelCase : int lowerCAmelCase : float lowerCAmelCase : float lowerCAmelCase : Tuple[int] def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa ) ) def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa ) ) def UpperCAmelCase ( self : Dict ) -> torch.Tensor: """simple docstring""" lowercase__ : Optional[Any] = torch.arange(self.height * self.width ) lowercase__ : Optional[int] = torch.stack( [ pixel_indices % self.width, torch.div(_snake_case ,self.width ,rounding_mode='''trunc''' ), ] ,axis=1 ,) return coords @property def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ , *lowercase__ : Dict = self.shape lowercase__ : Union[str, Any] = int(np.prod(_snake_case ) ) lowercase__ : str = self.get_image_coords() lowercase__ : Tuple = torch.broadcast_to(coords.unsqueeze(0 ) ,[batch_size * inner_batch_size, *coords.shape] ) lowercase__ : Union[str, Any] = self.get_camera_rays(_snake_case ) lowercase__ : str = rays.view(_snake_case ,inner_batch_size * self.height * self.width ,2 ,3 ) return rays def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ , *lowercase__ , lowercase__ : Any = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowercase__ : int = coords.view(_snake_case ,-1 ,2 ) lowercase__ : Optional[Any] = self.resolution() lowercase__ : List[str] = self.fov() lowercase__ : Dict = (flat.float() / (res - 1)) * 2 - 1 lowercase__ : List[str] = fracs * torch.tan(fov / 2 ) lowercase__ : Dict = fracs.view(_snake_case ,-1 ,2 ) lowercase__ : Tuple = ( self.z.view(_snake_case ,1 ,3 ) + self.x.view(_snake_case ,1 ,3 ) * fracs[:, :, :1] + self.y.view(_snake_case ,1 ,3 ) * fracs[:, :, 1:] ) lowercase__ : Tuple = directions / directions.norm(dim=-1 ,keepdim=_snake_case ) lowercase__ : Tuple = torch.stack( [ torch.broadcast_to(self.origin.view(_snake_case ,1 ,3 ) ,[batch_size, directions.shape[1], 3] ), directions, ] ,dim=2 ,) return rays.view(_snake_case ,*_snake_case ,2 ,3 ) def UpperCAmelCase ( self : int ,_snake_case : int ,_snake_case : int ) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=_snake_case ,height=_snake_case ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def __UpperCAmelCase ( __lowerCamelCase ) -> DifferentiableProjectiveCamera: lowercase__ : List[str] = [] lowercase__ : Dict = [] lowercase__ : Dict = [] lowercase__ : Dict = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowercase__ : Any = np.array([np.sin(__lowerCamelCase ), np.cos(__lowerCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowercase__ : int = -z * 4 lowercase__ : int = np.array([np.cos(__lowerCamelCase ), -np.sin(__lowerCamelCase ), 0.0] ) lowercase__ : Any = np.cross(__lowerCamelCase , __lowerCamelCase ) origins.append(__lowerCamelCase ) xs.append(__lowerCamelCase ) ys.append(__lowerCamelCase ) zs.append(__lowerCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , width=__lowerCamelCase , height=__lowerCamelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowerCamelCase )) , )
302
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCAmelCase_ = parse(importlib.metadata.version('torch')) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) lowercase__ : str = STR_OPERATION_TO_FUNC[operation] if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Union[str, Any] = parse(importlib.metadata.version(__lowerCamelCase ) ) return operation(__lowerCamelCase , parse(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: return compare_versions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
"""simple docstring""" from manim import * class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = Rectangle(height=0.5 ,width=0.5 ) lowercase__ : Dict = Rectangle(height=0.25 ,width=0.25 ) lowercase__ : Any = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowercase__ : List[Any] = [mem.copy() for i in range(6 )] lowercase__ : Tuple = [mem.copy() for i in range(6 )] lowercase__ : Optional[Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : List[str] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Optional[Any] = VGroup(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Optional[int] = Text('''CPU''' ,font_size=24 ) lowercase__ : Dict = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) lowercase__ : Optional[Any] = [mem.copy() for i in range(4 )] lowercase__ : List[Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : List[str] = Text('''GPU''' ,font_size=24 ) lowercase__ : int = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) gpu.move_to([-1, -1, 0] ) self.add(_snake_case ) lowercase__ : Tuple = [mem.copy() for i in range(6 )] lowercase__ : Dict = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : List[Any] = Text('''Model''' ,font_size=24 ) lowercase__ : Any = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.add(_snake_case ) lowercase__ : Dict = [] lowercase__ : Any = [] lowercase__ : Optional[int] = [] for i, rect in enumerate(_snake_case ): rect.set_stroke(_snake_case ) lowercase__ : Tuple = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] ,direction=_snake_case ,buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] ,direction=_snake_case ,buff=0.0 ) self.add(_snake_case ) model_cpu_arr.append(_snake_case ) self.add(*_snake_case ,*_snake_case ,*_snake_case ) lowercase__ : Any = [mem.copy() for i in range(6 )] lowercase__ : List[str] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : List[Any] = Text('''Loaded Checkpoint''' ,font_size=24 ) lowercase__ : List[Any] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(_snake_case ) lowercase__ : str = [] lowercase__ : Optional[Any] = [] for i, rect in enumerate(_snake_case ): lowercase__ : int = fill.copy().set_fill(_snake_case ,opacity=0.7 ) target.move_to(_snake_case ) ckpt_arr.append(_snake_case ) lowercase__ : str = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_snake_case ) self.add(*_snake_case ,*_snake_case ) lowercase__ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : str = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(_snake_case ,_snake_case ) lowercase__ : List[str] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,) blue_text.next_to(_snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(_snake_case ) lowercase__ : Dict = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" ,font_size=24 ,) step_a.move_to([2, 2, 0] ) lowercase__ : List[Any] = [meta_mem.copy() for i in range(6 )] lowercase__ : List[str] = [meta_mem.copy() for i in range(6 )] lowercase__ : Union[str, Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Union[str, Any] = VGroup(*_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Any = VGroup(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0 ) lowercase__ : Optional[Any] = Text('''Disk''' ,font_size=24 ) lowercase__ : Optional[Any] = Group(_snake_case ,_snake_case ).arrange(_snake_case ,buff=0.5 ,aligned_edge=_snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_snake_case ,run_time=3 ) ,Write(_snake_case ,run_time=1 ) ,Create(_snake_case ,run_time=1 ) ) lowercase__ : Optional[int] = [] for i, rect in enumerate(_snake_case ): lowercase__ : int = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_snake_case ,run_time=1.5 ) ) self.play(*_snake_case ) self.play(FadeOut(_snake_case ) ) lowercase__ : Optional[int] = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case ,run_time=3 ) ) self.play( FadeOut(_snake_case ,_snake_case ,*_snake_case ,*_snake_case ) ,) self.wait()
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "mobilenet_v1" def __init__( self : Tuple ,_snake_case : Dict=3 ,_snake_case : List[str]=224 ,_snake_case : Union[str, Any]=1.0 ,_snake_case : int=8 ,_snake_case : Any="relu6" ,_snake_case : Optional[int]=True ,_snake_case : List[Any]=0.999 ,_snake_case : List[str]=0.02 ,_snake_case : str=0.001 ,**_snake_case : Optional[int] ,) -> int: """simple docstring""" super().__init__(**_snake_case ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowercase__ : Tuple = num_channels lowercase__ : int = image_size lowercase__ : Optional[int] = depth_multiplier lowercase__ : List[Any] = min_depth lowercase__ : Optional[int] = hidden_act lowercase__ : int = tf_padding lowercase__ : List[str] = classifier_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = layer_norm_eps class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCAmelCase ( self : int ) -> float: """simple docstring""" return 1e-4
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "time_series_transformer" lowerCAmelCase : Optional[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : List[str] ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,_snake_case : str = "student_t" ,_snake_case : str = "nll" ,_snake_case : int = 1 ,_snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] ,_snake_case : Optional[Union[str, bool]] = "mean" ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : Optional[List[int]] = None ,_snake_case : Optional[List[int]] = None ,_snake_case : int = 32 ,_snake_case : int = 32 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : bool = True ,_snake_case : str = "gelu" ,_snake_case : int = 64 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : int = 100 ,_snake_case : float = 0.02 ,_snake_case : Optional[int]=True ,**_snake_case : Any ,) -> str: """simple docstring""" lowercase__ : Union[str, Any] = prediction_length lowercase__ : Any = context_length or prediction_length lowercase__ : Union[str, Any] = distribution_output lowercase__ : Optional[Any] = loss lowercase__ : Optional[int] = input_size lowercase__ : Union[str, Any] = num_time_features lowercase__ : Any = lags_sequence lowercase__ : Union[str, Any] = scaling lowercase__ : Union[str, Any] = num_dynamic_real_features lowercase__ : List[str] = num_static_real_features lowercase__ : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ : Tuple = cardinality else: lowercase__ : Optional[int] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ : int = embedding_dimension else: lowercase__ : List[str] = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] lowercase__ : Dict = num_parallel_samples # Transformer architecture configuration lowercase__ : List[Any] = input_size * len(_snake_case ) + self._number_of_features lowercase__ : List[str] = d_model lowercase__ : str = encoder_attention_heads lowercase__ : str = decoder_attention_heads lowercase__ : List[str] = encoder_ffn_dim lowercase__ : int = decoder_ffn_dim lowercase__ : Dict = encoder_layers lowercase__ : Optional[Any] = decoder_layers lowercase__ : int = dropout lowercase__ : str = attention_dropout lowercase__ : Any = activation_dropout lowercase__ : str = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : Tuple = activation_function lowercase__ : Any = init_std lowercase__ : Union[str, Any] = use_cache super().__init__(is_encoder_decoder=_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
1
"""simple docstring""" import numpy as np def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: return np.where(vector > 0 , __lowerCamelCase , (alpha * (np.exp(__lowerCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1