code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase__ ( a ) -> Tuple: if isinstance(_lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCAmelCase : '''simple docstring''' def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : Any ): """simple docstring""" pass def __magic_name__ ( self : List[str] ): """simple docstring""" pass def __magic_name__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ): """simple docstring""" _A: List[str] = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _A: Optional[int] = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) _A: str = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : List[str] ): """simple docstring""" _A , _A: List[str] = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _A: Optional[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} _A: List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _A: Any = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A , _A: Any = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _A: str = {'''vision_model''': vision_model, '''text_model''': text_model} _A: str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _A: Optional[Any] = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _A: str = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _A: List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _A: List[str] = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _A: Optional[int] = after_output[0] _A: Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-3 ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A , _A: str = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _A: Union[str, Any] = {'''vision_model''': vision_model, '''text_model''': text_model} _A: int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _A: Any = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _A: Dict = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _A: str = to_atuple(vision_model.config.image_size ) _A: Any = to_atuple(vision_model.config.patch_size ) _A: Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _A: List[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _A: Optional[int] = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" pt_model.to(_lowerCAmelCase ) pt_model.eval() # prepare inputs _A: List[Any] = inputs_dict _A: str = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _A: List[str] = pt_model(**_lowerCAmelCase ).to_tuple() _A: List[Any] = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) _A: int = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase ) _A: int = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) _A: List[str] = VisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase ) pt_model_loaded.to(_lowerCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): _A: int = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCAmelCase , pt_output_loaded.numpy() , 4e-2 ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _A: int = VisionTextDualEncoderModel(_lowerCAmelCase ) _A: Dict = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) _A: Any = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase ) _A: Optional[int] = fx_state self.check_pt_flax_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): """simple docstring""" _A: List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _A: Optional[Any] = VisionTextDualEncoderModel(_lowerCAmelCase ) _A: int = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) _A: Dict = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params ) self.check_pt_flax_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Any = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @is_pt_flax_cross_test def __magic_name__ ( self : Any ): """simple docstring""" _A: Any = self.prepare_config_and_inputs() _A: int = config_inputs_dict.pop('''vision_config''' ) _A: str = config_inputs_dict.pop('''text_config''' ) _A: Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.check_equivalence_flax_to_pt(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @slow def __magic_name__ ( self : str ): """simple docstring""" _A , _A: Union[str, Any] = self.get_pretrained_model_and_inputs() _A: Any = model_a(**_lowerCAmelCase ) _A: Union[str, Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) _A: Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _A: List[str] = model_a(**_lowerCAmelCase ) _A: Tuple = after_outputs[0] _A: str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_lowerCAmelCase , text_from_pt=_lowerCAmelCase , ) _A: int = 1_3 _A: List[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _A: Optional[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _A: int = random_attention_mask([batch_size, 4] ) _A: List[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __magic_name__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" _A: List[Any] = FlaxViTModel(_lowerCAmelCase ) _A: Optional[int] = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def __magic_name__ ( self : Dict ): """simple docstring""" _A: Union[str, Any] = FlaxViTModelTester(self ) _A: Union[str, Any] = FlaxBertModelTester(self ) _A: int = vit_model_tester.prepare_config_and_inputs() _A: Optional[Any] = bert_model_tester.prepare_config_and_inputs() _A , _A: int = vision_config_and_inputs _A , _A , _A , _A: Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_lowerCAmelCase , text_from_pt=_lowerCAmelCase , ) _A: List[Any] = 1_3 _A: List[str] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _A: int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _A: Any = random_attention_mask([batch_size, 4] ) _A: Tuple = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Dict = FlaxCLIPVisionModel(_lowerCAmelCase ) _A: List[Any] = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = FlaxCLIPVisionModelTester(self ) _A: List[Any] = FlaxBertModelTester(self ) _A: Any = clip_model_tester.prepare_config_and_inputs() _A: List[str] = bert_model_tester.prepare_config_and_inputs() _A , _A: Dict = vision_config_and_inputs _A , _A , _A , _A: str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _A: Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _A: str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A: Tuple = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='''np''' ) _A: List[str] = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _A: List[str] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1e-3 ) )
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCAmelCase__ : Any = logging.getLogger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ): """simple docstring""" _A: Any = False def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ): """simple docstring""" if not self.initialized: _A: Optional[int] = RagRetriever( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=_SCREAMING_SNAKE_CASE , generator_tokenizer=_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , init_retrieval=_SCREAMING_SNAKE_CASE , ) _A: List[str] = True def __magic_name__ ( self : str ): """simple docstring""" self.retriever.index.init_index() def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A , _A: Optional[Any] = self.retriever._main_retrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str]=None ): """simple docstring""" if index is not None and index.is_initialized() and len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=_SCREAMING_SNAKE_CASE , generator_tokenizer=_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , init_retrieval=_SCREAMING_SNAKE_CASE , ) _A: Union[str, Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for worker in self.retrieval_workers ] ) def __magic_name__ ( self : List[Any] ): """simple docstring""" logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _A: List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] _A , _A: List[Any] = ray.get(random_worker.retrieve.remote(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: _A , _A: Tuple = self._main_retrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_SCREAMING_SNAKE_CASE ) @classmethod def __magic_name__ ( cls : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): """simple docstring""" return super(_SCREAMING_SNAKE_CASE , cls ).get_tokenizers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def __magic_name__ ( cls : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: int = kwargs.pop('''config''' , _SCREAMING_SNAKE_CASE ) or RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _A: Optional[Any] = RagTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) _A: str = rag_tokenizer.question_encoder _A: Dict = rag_tokenizer.generator if indexed_dataset is not None: _A: List[Any] = '''custom''' _A: Dict = CustomHFIndex(config.retrieval_vector_size , _SCREAMING_SNAKE_CASE ) else: _A: Dict = cls._build_index(_SCREAMING_SNAKE_CASE ) return cls( _SCREAMING_SNAKE_CASE , question_encoder_tokenizer=_SCREAMING_SNAKE_CASE , generator_tokenizer=_SCREAMING_SNAKE_CASE , retrieval_workers=_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , )
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase ( snake_case_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = ReformerTokenizer __UpperCamelCase : Tuple = ReformerTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : Tuple = False __UpperCamelCase : Tuple = True def __magic_name__ ( self : int ): """simple docstring""" super().setUp() _A: Dict = ReformerTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = '<s>' _A: Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(lowerCAmelCase_ ) , 1_0_0_0 ) def __magic_name__ ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __magic_name__ ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return _A: Any = self.get_tokenizer() _A: List[str] = self.get_rust_tokenizer() _A: Union[str, Any] = 'I was born in 92000, and this is falsé.' _A: Dict = tokenizer.tokenize(lowerCAmelCase_ ) _A: Dict = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Any = self.get_rust_tokenizer() _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # Simple input _A: int = 'This is a simple input' _A: List[Any] = ['This is a simple input 1', 'This is a simple input 2'] _A: List[Any] = ('This is a simple input', 'This is a pair') _A: Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) def __magic_name__ ( self : str ): """simple docstring""" pass def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = ReformerTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _A: Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) _A: int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _A: Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) _A: Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __magic_name__ ( self : List[Any] ): """simple docstring""" return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = 'Hello World!' _A: Optional[Any] = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Union[str, Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _A: Union[str, Any] = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @require_torch @slow def __magic_name__ ( self : int ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _A: Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] _A: List[str] = ' '.join(lowerCAmelCase_ ) _A: int = self.big_tokenizer.encode_plus(lowerCAmelCase_ , return_tensors='''pt''' ) _A: Union[str, Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) _A: Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _A: List[Any] = encoded_sequence['input_ids'].shape _A: int = ReformerModel(lowerCAmelCase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase_ ) model(**lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _A: Tuple = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=lowerCAmelCase_ , sequences=lowerCAmelCase_ , )
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)] ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: int = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , config_name=lowerCamelCase__ ) _A: Optional[int] = GenerationConfig.from_pretrained(lowerCamelCase__ , config_name=lowerCamelCase__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowerCamelCase__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , lowerCamelCase__ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Dict = AutoConfig.from_pretrained('''gpt2''' ) _A: Tuple = GenerationConfig.from_model_config(lowerCamelCase__ ) _A: Tuple = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[str] = GenerationConfig() _A: Optional[Any] = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } _A: Dict = copy.deepcopy(lowerCamelCase__ ) _A: List[Any] = generation_config.update(**lowerCamelCase__ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCamelCase__ , {'''foo''': '''bar'''} ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[int] = GenerationConfig() _A: Union[str, Any] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(lowerCamelCase__ ) _A: Optional[Any] = GenerationConfig.from_pretrained(lowerCamelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) _A: Dict = GenerationConfig.from_model_config(lowerCamelCase__ ) assert not hasattr(lowerCamelCase__ , '''foo''' ) # no new kwargs should be initialized if from config def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowerCamelCase__ ) self.assertEqual(default_config.num_beams , 1 ) _A: List[Any] = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowerCamelCase__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) _A: Tuple = GenerationConfig.from_pretrained(lowerCamelCase__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowerCamelCase__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__ ( cls : Union[str, Any] ): """simple docstring""" _A: int = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def __magic_name__ ( cls : Union[str, Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def __magic_name__ ( self : int ): """simple docstring""" _A: Any = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) _A: List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id='''test-generation-config''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _A: Tuple = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: str = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) _A: Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _A: Dict = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCAmelCase__ : Dict = logging.get_logger(__name__) class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ['pixel_values'] def __init__( self : Any , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**lowercase__ ) _A: List[str] = size if size is not None else {'''shortest_edge''': 2_2_4} _A: List[str] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _A: List[str] = crop_size if crop_size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _A: Dict = get_size_dict(lowercase__ , param_name='''crop_size''' ) _A: str = do_resize _A: Union[str, Any] = size _A: Optional[Any] = resample _A: Optional[int] = do_rescale _A: Union[str, Any] = rescale_factor _A: Any = do_center_crop _A: str = crop_size _A: List[str] = do_flip_channel_order def __magic_name__ ( self : Any , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PIL.Image.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: str = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) _A: Optional[Any] = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ): """simple docstring""" _A: Tuple = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__ ) def __magic_name__ ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" return flip_channel_order(lowercase__ , data_format=lowercase__ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" _A: Optional[Any] = do_resize if do_resize is not None else self.do_resize _A: Any = resample if resample is not None else self.resample _A: Tuple = do_rescale if do_rescale is not None else self.do_rescale _A: Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A: Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _A: List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _A: List[str] = size if size is not None else self.size _A: str = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _A: Tuple = crop_size if crop_size is not None else self.crop_size _A: Tuple = get_size_dict(lowercase__ , param_name='''crop_size''' ) _A: str = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _A: Dict = [to_numpy_array(lowercase__ ) for image in images] if do_resize: _A: str = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: _A: Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: _A: Union[str, Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _A: Any = [self.flip_channel_order(image=lowercase__ ) for image in images] _A: Dict = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _A: List[Any] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Tuple] = None ): """simple docstring""" _A: Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase__ ): _A: Union[str, Any] = target_sizes.numpy() _A: Optional[Any] = [] for idx in range(len(lowercase__ ) ): _A: Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase__ ) _A: int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: _A: Any = logits.argmax(dim=1 ) _A: List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = '''EncodecFeatureExtractor''' __UpperCamelCase : Dict = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = self.feature_extractor _A: Dict = False def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase_ , language=lowerCAmelCase_ , no_timestamps=lowerCAmelCase_ ) def __call__( self : Dict , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Optional[int] = kwargs.pop('''audio''' , lowerCAmelCase_ ) _A: List[str] = kwargs.pop('''sampling_rate''' , lowerCAmelCase_ ) _A: Dict = kwargs.pop('''text''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _A: Union[str, Any] = args[0] _A: Tuple = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _A: Tuple = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) if audio is not None: _A: int = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) if audio is None: return inputs elif text is None: return audio_inputs else: _A: Optional[Any] = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _A: Optional[Any] = audio_inputs['padding_mask'] return inputs def __magic_name__ ( self : Tuple , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: str = kwargs.pop('''audio''' , lowerCAmelCase_ ) _A: Any = kwargs.pop('''padding_mask''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _A: Union[str, Any] = args[0] _A: List[str] = args[1:] if audio_values is not None: return self._decode_audio(lowerCAmelCase_ , padding_mask=lowerCAmelCase_ ) else: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional = None ): """simple docstring""" _A: Dict = to_numpy(lowerCAmelCase_ ) _A: Union[str, Any] = audio_values.shape if padding_mask is None: return list(lowerCAmelCase_ ) _A: Any = to_numpy(lowerCAmelCase_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _A: Dict = seq_len - padding_mask.shape[-1] _A: Tuple = 1 - self.feature_extractor.padding_value _A: List[Any] = np.pad(lowerCAmelCase_ , ((0, 0), (0, difference)) , '''constant''' , constant_values=lowerCAmelCase_ ) _A: int = audio_values.tolist() for i in range(lowerCAmelCase_ ): _A: Dict = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _A: Any = sliced_audio.reshape(lowerCAmelCase_ , -1 ) return audio_values
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase ( _lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase ( __lowercase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = '''openai/whisper-base''' __UpperCamelCase : str = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) __UpperCamelCase : Dict = '''transcriber''' __UpperCamelCase : Any = WhisperProcessor __UpperCamelCase : Union[str, Any] = WhisperForConditionalGeneration __UpperCamelCase : Union[str, Any] = ['''audio'''] __UpperCamelCase : Optional[int] = ['''text'''] def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self.pre_processor(UpperCAmelCase__ , return_tensors='''pt''' ).input_features def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.model.generate(inputs=UpperCAmelCase__ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )[0]
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration UpperCAmelCase__ : int = HfArgumentParser(InitializationArguments) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks UpperCAmelCase__ : List[str] = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) UpperCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config UpperCAmelCase__ : Union[str, Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase__ : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase__ ( a ) -> Any: _A: List[str] = EfficientNetConfig() _A: List[Any] = CONFIG_MAP[model_name]['''hidden_dim'''] _A: str = CONFIG_MAP[model_name]['''width_coef'''] _A: Optional[int] = CONFIG_MAP[model_name]['''depth_coef'''] _A: int = CONFIG_MAP[model_name]['''image_size'''] _A: Union[str, Any] = CONFIG_MAP[model_name]['''dropout_rate'''] _A: Dict = CONFIG_MAP[model_name]['''dw_padding'''] _A: str = '''huggingface/label-files''' _A: Any = '''imagenet-1k-id2label.json''' _A: Dict = 10_00 _A: int = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) _A: Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _A: List[Any] = idalabel _A: Optional[int] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A: Tuple = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def lowerCamelCase__ ( a ) -> List[str]: _A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] _A: Optional[int] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=lowercase__ , ) return preprocessor def lowerCamelCase__ ( a ) -> Optional[int]: _A: Union[str, Any] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] _A: str = sorted(set(lowercase__ ) ) _A: int = len(lowercase__ ) _A: List[Any] = {b: str(lowercase__ ) for b, i in zip(lowercase__ , range(lowercase__ ) )} _A: List[str] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: _A: List[str] = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) _A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: _A: Tuple = '''efficientnet.''' + item[1] _A: Union[str, Any] = '''classifier.weight''' _A: Union[str, Any] = '''classifier.bias''' return key_mapping def lowerCamelCase__ ( a , a , a ) -> Optional[int]: for key, value in tf_params.items(): if "normalization" in key: continue _A: List[str] = key_mapping[key] if "_conv" in key and "kernel" in key: _A: Union[str, Any] = torch.from_numpy(lowercase__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _A: Optional[int] = torch.from_numpy(lowercase__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _A: Any = torch.from_numpy(np.transpose(lowercase__ ) ) else: _A: Any = torch.from_numpy(lowercase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase__ ) @torch.no_grad() def lowerCamelCase__ ( a , a , a , a ) -> Optional[int]: _A: List[str] = model_classes[model_name]( include_top=lowercase__ , weights='''imagenet''' , input_tensor=lowercase__ , input_shape=lowercase__ , pooling=lowercase__ , classes=10_00 , classifier_activation='''softmax''' , ) _A: Tuple = original_model.trainable_variables _A: Dict = original_model.non_trainable_variables _A: int = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _A: Optional[int] = param.numpy() _A: List[str] = list(tf_params.keys() ) # Load HuggingFace model _A: List[str] = get_efficientnet_config(lowercase__ ) _A: Tuple = EfficientNetForImageClassification(lowercase__ ).eval() _A: Optional[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) _A: Any = rename_keys(lowercase__ ) replace_params(lowercase__ , lowercase__ , lowercase__ ) # Initialize preprocessor and preprocess input image _A: int = convert_image_processor(lowercase__ ) _A: str = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): _A: Optional[Any] = hf_model(**lowercase__ ) _A: Optional[int] = outputs.logits.detach().numpy() # Original model inference _A: Dict = False _A: int = CONFIG_MAP[model_name]['''image_size'''] _A: Union[str, Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _A: Dict = image.img_to_array(lowercase__ ) _A: Optional[Any] = np.expand_dims(lowercase__ , axis=0 ) _A: str = original_model.predict(lowercase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase__ , lowercase__ , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(lowercase__ ): os.mkdir(lowercase__ ) # Save converted model and image processor hf_model.save_pretrained(lowercase__ ) preprocessor.save_pretrained(lowercase__ ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) _A: List[str] = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowercase__ ) hf_model.push_to_hub(lowercase__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase__ : List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[Any] = tempfile.mkdtemp() _A: Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A: List[Any] = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } _A: Tuple = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : List[Any] , **lowerCAmelCase_ : str ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : int , **lowerCAmelCase_ : List[str] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : List[Any] ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _A: Any = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Dict = self.get_tokenizer() _A: Optional[int] = self.get_rust_tokenizer() _A: Any = self.get_image_processor() _A: Union[str, Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) _A: str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) _A: Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) _A: str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A: Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A: Union[str, Any] = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) _A: Dict = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : str ): """simple docstring""" _A: Dict = self.get_image_processor() _A: List[Any] = self.get_tokenizer() _A: Optional[int] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _A: Tuple = self.prepare_image_inputs() _A: int = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) _A: str = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = self.get_image_processor() _A: str = self.get_tokenizer() _A: Tuple = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _A: Tuple = "lower newer" _A: int = processor(text=_SCREAMING_SNAKE_CASE ) _A: Optional[Any] = tokenizer(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=6_4 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Any = self.get_image_processor() _A: str = self.get_tokenizer() _A: Union[str, Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _A: Any = "lower newer" _A: Dict = self.prepare_image_inputs() _A: Dict = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[Any] = self.get_image_processor() _A: Any = self.get_tokenizer() _A: Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _A: Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A: List[Any] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) _A: str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = self.get_image_processor() _A: str = self.get_tokenizer() _A: List[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _A: Union[str, Any] = "lower newer" _A: Optional[int] = self.prepare_image_inputs() _A: Any = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Tuple = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class UpperCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __UpperCamelCase : bool = None __UpperCamelCase : bool = None class UpperCAmelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __UpperCamelCase : Dict = datasets.Audio() __UpperCamelCase : List[str] = """audio""" __UpperCamelCase : str = AudioFolderConfig __UpperCamelCase : List[str] # definition at the bottom of the script __UpperCamelCase : Tuple = AudioClassification(audio_column='''audio''' , label_column='''label''' ) UpperCAmelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] UpperCAmelCase__ : Dict = AUDIO_EXTENSIONS
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int ): """simple docstring""" _A: Tuple = order # a_{0} ... a_{k} _A: str = [1.0] + [0.0] * order # b_{0} ... b_{k} _A: Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _A: Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] _A: int = [0.0] * self.order def __magic_name__ ( self : int , lowerCAmelCase_ : list[float] , lowerCAmelCase_ : list[float] ): """simple docstring""" if len(_UpperCAmelCase ) < self.order: _A: List[Any] = [1.0, *a_coeffs] if len(_UpperCAmelCase ) != self.order + 1: _A: str = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != self.order + 1: _A: Optional[Any] = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) _A: Union[str, Any] = a_coeffs _A: Dict = b_coeffs def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : float ): """simple docstring""" _A: Optional[int] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _A: List[Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _A: List[str] = self.input_history[:-1] _A: List[str] = self.output_history[:-1] _A: int = sample _A: Tuple = result return result
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase__ ( a ) -> List[Any]: for param in module.parameters(): _A: int = False def lowerCamelCase__ ( ) -> Optional[int]: _A: List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _A: List[Any] = """mps""" if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowerCamelCase__ ( a ) -> Union[str, Any]: _A: Any = plt.imshow(a ) fig.axes.get_xaxis().set_visible(a ) fig.axes.get_yaxis().set_visible(a ) plt.show() def lowerCamelCase__ ( ) -> Dict: _A: Tuple = datetime.now() _A: Dict = current_time.strftime('''%H:%M:%S''' ) return timestamp
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
def lowerCamelCase__ ( a ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCamelCase__ ( a ) -> list[tuple[int, int]]: _A: List[Any] = 0 _A: Optional[Any] = len(a__ ) # No of vertices in graph _A: int = [0] * n _A: str = [False] * n def dfs(a , a , a , a ): _A: Optional[Any] = True _A: Optional[int] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(a__ , a__ , a__ , id_ ) _A: Optional[Any] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _A: Any = min(low[at] , low[to] ) _A: Optional[int] = [] for i in range(a__ ): if not visited[i]: dfs(a__ , -1 , a__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" debug_launcher(test_script.main ) def __magic_name__ ( self : str ): """simple docstring""" debug_launcher(test_ops.main )
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" def lowerCamelCase__ ( a ) -> str: return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowerCamelCase__ ( a ) -> Dict: _A: Optional[int] = credit_card_number _A: Tuple = 0 _A: Tuple = len(a ) - 2 for i in range(a , -1 , -2 ): # double the value of every second digit _A: Union[str, Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _A: List[Any] = cc_number[:i] + str(a ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase__ ( a ) -> Optional[int]: _A: Optional[Any] = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(a ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(a ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(a ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase ( a_ ): '''simple docstring''' __UpperCamelCase : Dict = "Salesforce/blip-image-captioning-base" __UpperCamelCase : Any = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) __UpperCamelCase : Tuple = "image_captioner" __UpperCamelCase : List[Any] = AutoModelForVisionaSeq __UpperCamelCase : Any = ["image"] __UpperCamelCase : Tuple = ["text"] def __init__( self : Tuple , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.pre_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" return self.model.generate(**lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ )[0].strip()
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" import numpy as np def lowerCamelCase__ ( a ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" def lowerCamelCase__ ( a ) -> List[Any]: _A: Tuple = [] _A: List[Any] = [] _A: List[str] = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator _A: Dict = len(UpperCamelCase__ ) if (len(UpperCamelCase__ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(UpperCamelCase__ ) , '''Postfix'''.center(UpperCamelCase__ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCamelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCamelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCamelCase__ ) == 0: stack.append(UpperCamelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCamelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCamelCase__ ) # push x to stack print( x.center(8 ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=''' | ''' , ) # Output in tabular format while len(UpperCamelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=''' | ''' , ) # Output in tabular format return "".join(UpperCamelCase__ ) # return Postfix as str def lowerCamelCase__ ( a ) -> Optional[Any]: _A: int = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCamelCase__ ) ): if infix[i] == "(": _A: Any = ''')''' # change "(" to ")" elif infix[i] == ")": _A: List[str] = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(UpperCamelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCAmelCase__ : Any = input('\nEnter an Infix Equation = ') # Input an Infix equation UpperCAmelCase__ : Tuple = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase : '''simple docstring''' pass
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( a , a , a , a , a ) -> str: # Load configuration defined in the metadata file with open(_lowerCAmelCase ) as metadata_file: _A: Dict = json.load(_lowerCAmelCase ) _A: List[Any] = LukeConfig(use_entity_aware_attention=_lowerCAmelCase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _A: List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )["module"] # Load the entity vocab file _A: List[Any] = load_original_entity_vocab(_lowerCAmelCase ) # add an entry for [MASK2] _A: Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _A: Tuple = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _A: str = AddedToken('''<ent>''' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) _A: Any = AddedToken('''<ent2>''' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , '''tokenizer_config.json''' ) , '''r''' ) as f: _A: Optional[int] = json.load(_lowerCAmelCase ) _A: Dict = "MLukeTokenizer" with open(os.path.join(_lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) _A: Dict = MLukeTokenizer.from_pretrained(_lowerCAmelCase ) # Initialize the embeddings of the special tokens _A: List[str] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _A: Optional[Any] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _A: Any = state_dict["embeddings.word_embeddings.weight"] _A: str = word_emb[ent_init_index].unsqueeze(0 ) _A: Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) _A: int = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _A: List[str] = state_dict[bias_name] _A: Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _A: List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) _A: Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _A: Dict = f"""encoder.layer.{layer_index}.attention.self.""" _A: Union[str, Any] = state_dict[prefix + matrix_name] _A: Optional[int] = state_dict[prefix + matrix_name] _A: Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _A: List[str] = state_dict["entity_embeddings.entity_embeddings.weight"] _A: List[Any] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _A: int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _A: List[str] = state_dict["entity_predictions.bias"] _A: List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _A: str = torch.cat([entity_prediction_bias, entity_mask_bias] ) _A: str = LukeForMaskedLM(config=_lowerCAmelCase ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _A: str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _A: Dict = state_dict[key] else: _A: Optional[int] = state_dict[key] _A: Optional[int] = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if set(_lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(_lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _A: List[Any] = MLukeTokenizer.from_pretrained(_lowerCAmelCase , task='''entity_classification''' ) _A: Optional[Any] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _A: int = (0, 9) _A: Dict = tokenizer(_lowerCAmelCase , entity_spans=[span] , return_tensors='''pt''' ) _A: Any = model(**_lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _A: Dict = torch.Size((1, 33, 7_68) ) _A: List[str] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _A: Union[str, Any] = torch.Size((1, 1, 7_68) ) _A: Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _A: Tuple = MLukeTokenizer.from_pretrained(_lowerCAmelCase ) _A: Any = "Tokyo is the capital of <mask>." _A: List[Any] = (24, 30) _A: Dict = tokenizer(_lowerCAmelCase , entity_spans=[span] , return_tensors='''pt''' ) _A: Any = model(**_lowerCAmelCase ) _A: Optional[Any] = encoding["input_ids"][0].tolist() _A: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _A: List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowerCAmelCase ) _A: int = outputs.entity_logits[0][0].argmax().item() _A: Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_lowerCAmelCase ) ) model.save_pretrained(_lowerCAmelCase ) def lowerCamelCase__ ( a ) -> Any: _A: Optional[Any] = ["[MASK]", "[PAD]", "[UNK]"] _A: int = [json.loads(_lowerCAmelCase ) for line in open(_lowerCAmelCase )] _A: str = {} for entry in data: _A: str = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _A: str = entity_id break _A: Any = f"""{language}:{entity_name}""" _A: List[Any] = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) UpperCAmelCase__ : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[str] = ['''pixel_values'''] def __init__( self : Tuple , lowerCAmelCase_ : List[Any] = True , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Optional[int] = PIL.Image.BICUBIC , lowerCAmelCase_ : int = True , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Any = 1 / 2_5_5 , lowerCAmelCase_ : str = True , lowerCAmelCase_ : Tuple = True , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) _A: List[Any] = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _A: Optional[Any] = get_size_dict(lowerCamelCase_ ) _A: Optional[int] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _A: Union[str, Any] = get_size_dict(lowerCamelCase_ , param_name='''crop_size''' ) _A: Any = do_resize _A: Union[str, Any] = size _A: int = resample _A: Any = do_center_crop _A: Optional[int] = crop_size _A: Optional[int] = do_rescale _A: Tuple = rescale_factor _A: Dict = do_normalize _A: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A: Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict = PIL.Image.BICUBIC , lowerCAmelCase_ : Union[str, Any] = None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: Any = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}""" ) return resize( lowerCamelCase_ , size=(size['''height'''], size['''width''']) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int = None , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" _A: Tuple = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}""" ) return center_crop(lowerCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int = None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple = None , **lowerCAmelCase_ : Any , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" _A: Optional[Any] = do_resize if do_resize is not None else self.do_resize _A: Optional[int] = resample if resample is not None else self.resample _A: int = do_center_crop if do_center_crop is not None else self.do_center_crop _A: int = do_rescale if do_rescale is not None else self.do_rescale _A: Any = rescale_factor if rescale_factor is not None else self.rescale_factor _A: Dict = do_normalize if do_normalize is not None else self.do_normalize _A: str = image_mean if image_mean is not None else self.image_mean _A: Any = image_std if image_std is not None else self.image_std _A: Dict = size if size is not None else self.size _A: Tuple = get_size_dict(lowerCamelCase_ ) _A: List[str] = crop_size if crop_size is not None else self.crop_size _A: Dict = get_size_dict(lowerCamelCase_ , param_name='''crop_size''' ) _A: Optional[int] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _A: Optional[int] = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: _A: str = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: _A: Dict = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: _A: Any = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: _A: Union[str, Any] = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] _A: int = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] _A: List[str] = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
from math import sqrt def lowerCamelCase__ ( a ) -> bool: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" _A: Any = True # 0 and 1 are none primes. if number <= 1: _A: Optional[int] = False for divisor in range(2 , int(round(sqrt(__UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _A: Optional[Any] = False break # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'status' must been from type bool" return status def lowerCamelCase__ ( a ) -> Any: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _A: int = list(range(2 , n + 1 ) ) _A: int = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__UpperCAmelCase ) ): for j in range(i + 1 , len(__UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _A: int = 0 # filters actual prime numbers. _A: Optional[Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( a ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" _A: Optional[int] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__UpperCAmelCase ): ans.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( a ) -> Union[str, Any]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" _A: List[Any] = [] # this list will be returns of the function. # potential prime number factors. _A: Union[str, Any] = 2 _A: Any = number if number == 0 or number == 1: ans.append(__UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__UpperCAmelCase ): while quotient != 1: if is_prime(__UpperCAmelCase ) and (quotient % factor == 0): ans.append(__UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( a ) -> Union[str, Any]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _A: Optional[int] = 0 # prime factorization of 'number' _A: int = prime_factorization(__UpperCAmelCase ) _A: int = max(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( a ) -> Tuple: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _A: Tuple = 0 # prime factorization of 'number' _A: Dict = prime_factorization(__UpperCAmelCase ) _A: Optional[int] = min(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( a ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , __UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase__ ( a ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , __UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase__ ( a ) -> Dict: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (number > 2) and is_even(__UpperCAmelCase ) ), "'number' must been an int, even and > 2" _A: Any = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _A: Tuple = get_prime_numbers(__UpperCAmelCase ) _A: int = len(__UpperCAmelCase ) # run variable for while-loops. _A: List[Any] = 0 _A: Tuple = None # exit variable. for break up the loops _A: int = True while i < len_pn and loop: _A: Tuple = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _A: Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (len(__UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase__ ( a , a ) -> Union[str, Any]: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _A: Tuple = 0 while numbera != 0: _A: List[str] = numbera % numbera _A: Any = numbera _A: Tuple = rest # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase__ ( a , a ) -> Optional[int]: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _A: Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _A: List[Any] = prime_factorization(__UpperCAmelCase ) _A: Any = prime_factorization(__UpperCAmelCase ) elif numbera == 1 or numbera == 1: _A: Tuple = [] _A: Tuple = [] _A: List[str] = max(__UpperCAmelCase , __UpperCAmelCase ) _A: Optional[Any] = 0 _A: int = 0 _A: List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _A: str = prime_fac_a.count(__UpperCAmelCase ) _A: Optional[Any] = prime_fac_a.count(__UpperCAmelCase ) for _ in range(max(__UpperCAmelCase , __UpperCAmelCase ) ): ans *= n else: _A: List[str] = prime_fac_a.count(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): ans *= n done.append(__UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _A: Tuple = prime_fac_a.count(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): ans *= n done.append(__UpperCAmelCase ) # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase__ ( a ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" _A: int = 0 _A: Dict = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__UpperCAmelCase ): ans += 1 # precondition assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and is_prime( __UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase__ ( a , a ) -> str: assert ( is_prime(__UpperCAmelCase ) and is_prime(__UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _A: List[Any] = p_number_a + 1 # jump to the next number _A: Tuple = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(__UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(__UpperCAmelCase ): number += 1 # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ans[0] != p_number_a and ans[len(__UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase__ ( a ) -> str: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" _A: List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(__UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase__ ( a ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" _A: Tuple = get_divisors(__UpperCAmelCase ) # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(__UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase__ ( a , a ) -> Optional[int]: assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _A: List[Any] = gcd(abs(__UpperCAmelCase ) , abs(__UpperCAmelCase ) ) # precondition assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase__ ( a ) -> Optional[int]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" _A: Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase__ ( a ) -> Tuple: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" _A: Dict = 0 _A: int = 1 _A: int = 1 # this will be return for _ in range(n - 1 ): _A: int = ans ans += fiba _A: Tuple = tmp return ans
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
def lowerCamelCase__ ( a ) -> "list[int]": if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) _A: Optional[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _A: str = 1 if upper_limit > 0: _A: Optional[Any] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: UpperCAmelCase__ : int = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
from __future__ import annotations def lowerCamelCase__ ( a , a , a , ) -> Union[str, Any]: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ : Optional[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Any = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase__ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase__ : List[str] = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowerCamelCase__ ( a , a , a , a ) -> Any: _A: str = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _A: Union[str, Any] = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _lowercase , ) is not None ): _A: Any = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _A: List[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _A: str = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] _A: str = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed _A: Optional[Any] = True if not attribute_used: _A: int = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _A: Optional[int] = True elif attribute in ["tie_word_embeddings"] and default_value is False: _A: str = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _A: Any = True elif attribute.endswith('''_token_id''' ): _A: int = True # configuration class specific cases if not case_allowed: _A: Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _A: Dict = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase__ ( a ) -> Any: _A: int = dict(inspect.signature(config_class.__init__ ).parameters ) _A: List[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] _A: Optional[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _A: List[str] = {} if len(config_class.attribute_map ) > 0: _A: Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _A: Union[str, Any] = inspect.getsourcefile(_lowercase ) _A: str = os.path.dirname(_lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _A: List[Any] = [os.path.join(_lowercase , _lowercase ) for fn in os.listdir(_lowercase ) if fn.startswith('''modeling_''' )] # Get the source code strings _A: int = [] for path in modeling_paths: if os.path.isfile(_lowercase ): with open(_lowercase ) as fp: modeling_sources.append(fp.read() ) _A: Optional[Any] = [] for config_param, default_value in zip(_lowercase , _lowercase ): # `attributes` here is all the variant names for `config_param` _A: Union[str, Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_lowercase , _lowercase , _lowercase , _lowercase ): unused_attributes.append(attributes[0] ) return sorted(_lowercase ) def lowerCamelCase__ ( ) -> Optional[int]: _A: Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _A: Dict = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda a : inspect.isclass(_lowercase ) and issubclass(_lowercase , _lowercase ) and inspect.getmodule(_lowercase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _A: List[Any] = check_config_attributes_being_used(_lowercase ) if len(_lowercase ) > 0: _A: Tuple = unused_attributes if len(_lowercase ) > 0: _A: Union[str, Any] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_lowercase ) if __name__ == "__main__": check_config_attributes()
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
UpperCAmelCase__ : str = "Tobias Carryer" from time import time class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=int(time() ) ): # noqa: B008 """simple docstring""" _A: Any = multiplier _A: List[str] = increment _A: List[str] = modulo _A: Tuple = seed def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCAmelCase__ : Tuple = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
import math import flax.linen as nn import jax.numpy as jnp def lowerCamelCase__ ( a , a , a = 1 , a = 1 , a = 1.0E4 , a = False , a = 1.0 , ) -> Union[str, Any]: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" _A: str = float(embedding_dim // 2 ) _A: Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _A: str = min_timescale * jnp.exp(jnp.arange(_a , dtype=jnp.floataa ) * -log_timescale_increment ) _A: Dict = jnp.expand_dims(_a , 1 ) * jnp.expand_dims(_a , 0 ) # scale embeddings _A: Any = scale * emb if flip_sin_to_cos: _A: List[str] = jnp.concatenate([jnp.cos(_a ), jnp.sin(_a )] , axis=1 ) else: _A: Any = jnp.concatenate([jnp.sin(_a ), jnp.cos(_a )] , axis=1 ) _A: Union[str, Any] = jnp.reshape(_a , [jnp.shape(_a )[0], embedding_dim] ) return signal class UpperCAmelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : Dict = 32 __UpperCamelCase : Optional[int] = jnp.floataa @nn.compact def __call__( self : Any , lowerCAmelCase_ : str ): """simple docstring""" _A: Tuple = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(lowerCamelCase_ ) _A: Any = nn.silu(lowerCamelCase_ ) _A: int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(lowerCamelCase_ ) return temb class UpperCAmelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : Dict = 32 __UpperCamelCase : Tuple = False __UpperCamelCase : int = 1 @nn.compact def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return get_sinusoidal_embeddings( lowerCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=9_9 , lowerCAmelCase_ : Optional[Any]=3_2 , lowerCAmelCase_ : Optional[int]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=6_4 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Tuple=5_1_2 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : str=1 , ): """simple docstring""" _A: Any = parent _A: Any = batch_size _A: Union[str, Any] = seq_length _A: Union[str, Any] = is_training _A: Tuple = use_input_mask _A: List[Any] = use_token_type_ids _A: str = use_labels _A: Optional[int] = vocab_size _A: Optional[int] = hidden_size _A: int = num_hidden_layers _A: Union[str, Any] = num_attention_heads _A: Optional[Any] = intermediate_size _A: List[str] = hidden_act _A: str = hidden_dropout_prob _A: List[Any] = attention_probs_dropout_prob _A: List[Any] = max_position_embeddings _A: Optional[Any] = type_vocab_size _A: Union[str, Any] = type_sequence_label_size _A: Any = initializer_range _A: Optional[int] = num_labels _A: int = num_choices _A: int = scope _A: Tuple = q_groups _A: Optional[int] = k_groups _A: int = v_groups _A: Optional[Any] = post_attention_groups _A: Optional[int] = intermediate_groups _A: Dict = output_groups def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: Union[str, Any] = None if self.use_input_mask: _A: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _A: List[str] = None _A: List[str] = None _A: List[str] = None if self.use_labels: _A: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A: Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _A: List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Tuple ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: Any = SqueezeBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _A: Optional[int] = model(snake_case__ , snake_case__ ) _A: Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[Any] = SqueezeBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() _A: Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ): """simple docstring""" _A: List[str] = SqueezeBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() _A: Union[str, Any] = model( snake_case__ , attention_mask=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: List[str] = SqueezeBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _A: str = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): """simple docstring""" _A: List[Any] = self.num_labels _A: List[str] = SqueezeBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() _A: Dict = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[str] = self.num_choices _A: Optional[int] = SqueezeBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() _A: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A: str = model( snake_case__ , attention_mask=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.prepare_config_and_inputs() (_A): Tuple = config_and_inputs _A: Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCamelCase : Any = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : Optional[Any] = False __UpperCamelCase : int = True __UpperCamelCase : Any = False def __magic_name__ ( self : Any ): """simple docstring""" _A: Union[str, Any] = SqueezeBertModelTester(self ) _A: Optional[Any] = ConfigTester(self , config_class=snake_case__ , dim=3_7 ) def __magic_name__ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case__ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case__ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case__ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case__ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case__ ) def __magic_name__ ( self : int ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case__ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Optional[int] = SqueezeBertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) _A: Union[str, Any] = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) _A: Dict = model(snake_case__ )[0] _A: int = torch.Size((1, 3) ) self.assertEqual(output.shape , snake_case__ ) _A: Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-4 ) )
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( a , a = None , a = None ) -> None: if start is None: _A: Tuple = 0 if end is None: _A: Tuple = len(_lowercase ) - 1 if start >= end: return _A: Optional[Any] = (start + end) // 2 slowsort(_lowercase , _lowercase , _lowercase ) slowsort(_lowercase , mid + 1 , _lowercase ) if sequence[end] < sequence[mid]: _A: Optional[Any] = sequence[mid], sequence[end] slowsort(_lowercase , _lowercase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = OpenAIGPTTokenizer __UpperCamelCase : Dict = OpenAIGPTTokenizerFast __UpperCamelCase : Optional[Any] = True __UpperCamelCase : str = False def __magic_name__ ( self : Tuple ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A: Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _A: Union[str, Any] = dict(zip(a__ , range(len(a__ ) ) ) ) _A: Any = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] _A: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(a__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(a__ ) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Dict ): """simple docstring""" return "lower newer", "lower newer" def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _A: List[str] = '''lower''' _A: Any = ['''low''', '''er</w>'''] _A: List[str] = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _A: Any = tokens + ['''<unk>'''] _A: str = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: Any = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _A: Tuple = '''This is a simple input''' _A: Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _A: str = ('''This is a simple input''', '''This is a pair''') _A: Any = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''' ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''' ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''' ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''' ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) def __magic_name__ ( self : List[str] ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' pass
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Any = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase ( __lowerCAmelCase ): '''simple docstring''' __UpperCamelCase : List[Any] = '''cvt''' def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Dict=[7, 3, 3] , lowerCAmelCase_ : Union[str, Any]=[4, 2, 2] , lowerCAmelCase_ : int=[2, 1, 1] , lowerCAmelCase_ : Tuple=[6_4, 1_9_2, 3_8_4] , lowerCAmelCase_ : List[Any]=[1, 3, 6] , lowerCAmelCase_ : Union[str, Any]=[1, 2, 1_0] , lowerCAmelCase_ : Optional[Any]=[4.0, 4.0, 4.0] , lowerCAmelCase_ : Optional[int]=[0.0, 0.0, 0.0] , lowerCAmelCase_ : Optional[int]=[0.0, 0.0, 0.0] , lowerCAmelCase_ : List[str]=[0.0, 0.0, 0.1] , lowerCAmelCase_ : Any=[True, True, True] , lowerCAmelCase_ : List[Any]=[False, False, True] , lowerCAmelCase_ : Optional[Any]=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase_ : List[str]=[3, 3, 3] , lowerCAmelCase_ : List[Any]=[1, 1, 1] , lowerCAmelCase_ : List[Any]=[2, 2, 2] , lowerCAmelCase_ : List[str]=[1, 1, 1] , lowerCAmelCase_ : Dict=[1, 1, 1] , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Union[str, Any]=1e-12 , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: int = num_channels _A: List[Any] = patch_sizes _A: Tuple = patch_stride _A: Dict = patch_padding _A: Optional[Any] = embed_dim _A: Union[str, Any] = num_heads _A: List[str] = depth _A: Dict = mlp_ratio _A: Union[str, Any] = attention_drop_rate _A: Union[str, Any] = drop_rate _A: int = drop_path_rate _A: Any = qkv_bias _A: List[str] = cls_token _A: Tuple = qkv_projection_method _A: Dict = kernel_qkv _A: List[Any] = padding_kv _A: Any = stride_kv _A: Union[str, Any] = padding_q _A: Optional[int] = stride_q _A: Tuple = initializer_range _A: Optional[Any] = layer_norm_eps
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCAmelCase ( _lowerCAmelCase ): '''simple docstring''' __UpperCamelCase : List[str] = '''unispeech''' def __init__( self : Optional[int] , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Tuple=7_6_8 , lowerCAmelCase_ : Union[str, Any]=1_2 , lowerCAmelCase_ : Optional[Any]=1_2 , lowerCAmelCase_ : Dict=3_0_7_2 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : List[str]=1e-5 , lowerCAmelCase_ : List[str]="group" , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase_ : List[str]=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=1_2_8 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str=0.05 , lowerCAmelCase_ : str=1_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : List[Any]=3_2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : List[Any]=1_0_0 , lowerCAmelCase_ : Optional[Any]=2_5_6 , lowerCAmelCase_ : Optional[int]=2_5_6 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Tuple="mean" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : int=2_5_6 , lowerCAmelCase_ : Optional[Any]=8_0 , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[int]=0.5 , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) _A: Union[str, Any] = hidden_size _A: Optional[Any] = feat_extract_norm _A: Optional[int] = feat_extract_activation _A: Dict = list(SCREAMING_SNAKE_CASE_ ) _A: str = list(SCREAMING_SNAKE_CASE_ ) _A: Any = list(SCREAMING_SNAKE_CASE_ ) _A: List[Any] = conv_bias _A: Tuple = num_conv_pos_embeddings _A: str = num_conv_pos_embedding_groups _A: List[Any] = len(self.conv_dim ) _A: Tuple = num_hidden_layers _A: Optional[int] = intermediate_size _A: Optional[Any] = hidden_act _A: str = num_attention_heads _A: Tuple = hidden_dropout _A: Dict = attention_dropout _A: Optional[int] = activation_dropout _A: List[str] = feat_proj_dropout _A: int = final_dropout _A: Dict = layerdrop _A: Optional[int] = layer_norm_eps _A: Optional[int] = initializer_range _A: Optional[int] = num_ctc_classes _A: Any = vocab_size _A: int = do_stable_layer_norm _A: Optional[int] = use_weighted_layer_sum _A: List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A: Any = apply_spec_augment _A: List[Any] = mask_time_prob _A: Any = mask_time_length _A: Any = mask_time_min_masks _A: Union[str, Any] = mask_feature_prob _A: List[Any] = mask_feature_length _A: Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _A: int = num_codevectors_per_group _A: List[Any] = num_codevector_groups _A: Optional[int] = contrastive_logits_temperature _A: str = feat_quantizer_dropout _A: List[str] = num_negatives _A: Optional[Any] = codevector_dim _A: Any = proj_codevector_dim _A: Union[str, Any] = diversity_loss_weight # ctc loss _A: Optional[Any] = ctc_loss_reduction _A: List[Any] = ctc_zero_infinity # pretraining loss _A: Tuple = replace_prob @property def __magic_name__ ( self : str ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase : Dict = ['''note_seq'''] def __init__( self : List[Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ): """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def __magic_name__ ( cls : Any , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def __magic_name__ ( cls : List[str] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" requires_backends(cls , ['''note_seq'''] )
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( _a , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = LEDTokenizer __UpperCamelCase : Optional[int] = LEDTokenizerFast __UpperCamelCase : Union[str, Any] = True def __magic_name__ ( self : Tuple ): """simple docstring""" super().setUp() _A: Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _A: Union[str, Any] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _A: Any = {'unk_token': '<unk>'} _A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def __magic_name__ ( self : Tuple , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" return "lower newer", "lower newer" @cached_property def __magic_name__ ( self : List[str] ): """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _A: Optional[int] = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A: Dict = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _A: Any = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A: Optional[Any] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIn('''input_ids''' , lowerCAmelCase_ ) self.assertIn('''attention_mask''' , lowerCAmelCase_ ) self.assertNotIn('''labels''' , lowerCAmelCase_ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ ) @require_torch def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A: List[Any] = tokenizer(text_target=lowerCAmelCase_ , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) @require_torch def __magic_name__ ( self : List[Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A: List[str] = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = ['A long paragraph for summarization.'] _A: Dict = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A: int = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' ) _A: Dict = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' ) _A: str = inputs['input_ids'] _A: Optional[int] = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __magic_name__ ( self : Dict ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A: Union[str, Any] = ['Summary of the text.', 'Another summary.'] _A: List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _A: str = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: List[Any] = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _A: Optional[Any] = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" pass def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: Tuple = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Dict = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _A: int = 'A, <mask> AllenNLP sentence.' _A: int = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _A: List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _A: Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase__ : Dict = logging.getLogger(__name__) def lowerCamelCase__ ( a , a , a = None , a = None , a = None , a = None , a = None , a = False , ) -> List[str]: _A: Optional[Any] = bnb_quantization_config.load_in_abit _A: List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) _A: Union[str, Any] = [] # custom device map if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(device_map.keys() ) > 1: _A: Union[str, Any] = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _A: Any = get_keys_to_not_convert(__UpperCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__UpperCamelCase ) _A: Optional[int] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _A: Optional[int] = [] _A: List[str] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__UpperCamelCase ) # compatibility with peft _A: Tuple = load_in_abit _A: Union[str, Any] = load_in_abit _A: Optional[Any] = get_parameter_device(__UpperCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) _A: Dict = replace_with_bnb_layers(__UpperCamelCase , __UpperCamelCase , modules_to_not_convert=__UpperCamelCase ) # convert param to the right dtype _A: Tuple = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _A: str = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) _A: str = getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__UpperCamelCase ): param.to(__UpperCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): _A: Tuple = replace_with_bnb_layers( __UpperCamelCase , __UpperCamelCase , modules_to_not_convert=__UpperCamelCase ) _A: Optional[int] = get_quantized_model_device_map( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , max_memory=__UpperCamelCase , no_split_module_classes=__UpperCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _A: Tuple = True _A: List[str] = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__UpperCamelCase , offload_state_dict=__UpperCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__UpperCamelCase , device_map=__UpperCamelCase , offload_dir=__UpperCamelCase ) def lowerCamelCase__ ( a , a , a=None , a=None , a=None ) -> int: if device_map is None: if torch.cuda.is_available(): _A: Tuple = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__UpperCamelCase , __UpperCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) _A: Optional[int] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _A: Any = {} _A: Union[str, Any] = special_dtypes _A: List[Any] = no_split_module_classes _A: str = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _A: List[str] = get_balanced_memory( __UpperCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__UpperCamelCase , **__UpperCamelCase , ) _A: List[str] = max_memory _A: List[str] = infer_auto_device_map(__UpperCamelCase , **__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): # check if don't have any quantized module on the cpu _A: int = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _A: Optional[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def lowerCamelCase__ ( a , a , a=None , a=None ) -> Tuple: if modules_to_not_convert is None: _A: Dict = [] _A , _A: str = _replace_with_bnb_layers( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowerCamelCase__ ( a , a , a=None , a=None , ) -> Dict: _A: List[str] = False for name, module in model.named_children(): if current_key_name is None: _A: Dict = [] current_key_name.append(__UpperCamelCase ) if isinstance(__UpperCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _A: List[str] = '''.'''.join(__UpperCamelCase ) _A: List[Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _A: Dict = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _A: int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__UpperCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _A: Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) _A: Union[str, Any] = module.weight.data if module.bias is not None: _A: Optional[Any] = module.bias.data bnb_module.requires_grad_(__UpperCamelCase ) setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _A: int = True if len(list(module.children() ) ) > 0: _A , _A: Any = _replace_with_bnb_layers( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _A: List[Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase__ ( a ) -> List[str]: with init_empty_weights(): _A: Optional[Any] = deepcopy(__UpperCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _A: int = find_tied_parameters(__UpperCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__UpperCamelCase , __UpperCamelCase ): _A: str = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _A: Any = sum(__UpperCamelCase , [] ) _A: int = len(__UpperCamelCase ) > 0 # Check if it is a base model _A: Tuple = False if hasattr(__UpperCamelCase , '''base_model_prefix''' ): _A: Any = not hasattr(__UpperCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A: Optional[Any] = list(model.named_children() ) _A: str = [list_modules[-1][0]] # add last module together with tied weights _A: Dict = set(__UpperCamelCase ) - set(__UpperCamelCase ) _A: List[Any] = list(set(__UpperCamelCase ) ) + list(__UpperCamelCase ) # remove ".weight" from the keys _A: Tuple = ['''.weight''', '''.bias'''] _A: int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A: Union[str, Any] = name.replace(__UpperCamelCase , '''''' ) filtered_module_names.append(__UpperCamelCase ) return filtered_module_names def lowerCamelCase__ ( a ) -> Union[str, Any]: for m in model.modules(): if isinstance(__UpperCamelCase , bnb.nn.Linearabit ): return True return False def lowerCamelCase__ ( a ) -> int: return next(parameter.parameters() ).device def lowerCamelCase__ ( a , a , a , a , a , a , a ) -> List[Any]: if fpaa_statistics is None: set_module_tensor_to_device(__UpperCamelCase , __UpperCamelCase , 0 , dtype=__UpperCamelCase , value=__UpperCamelCase ) _A: str = param_name _A: Optional[int] = model if "." in tensor_name: _A: int = tensor_name.split('''.''' ) for split in splits[:-1]: _A: Tuple = getattr(__UpperCamelCase , __UpperCamelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _A: Dict = new_module _A: str = splits[-1] # offload weights _A: str = False offload_weight(module._parameters[tensor_name] , __UpperCamelCase , __UpperCamelCase , index=__UpperCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __UpperCamelCase , index=__UpperCamelCase , ) else: offload_weight(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , index=__UpperCamelCase ) offload_weight(__UpperCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __UpperCamelCase , index=__UpperCamelCase ) set_module_tensor_to_device(__UpperCamelCase , __UpperCamelCase , '''meta''' , dtype=__UpperCamelCase , value=torch.empty(*param.size() ) )
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
def lowerCamelCase__ ( a = 10**9 ) -> Tuple: _A: Any = 1 _A: Dict = 2 _A: str = 0 _A: Union[str, Any] = 0 _A: str = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase__ ( a , a=False ) -> int: _A: List[Any] = OmegaConf.load(a__ ) if display: print(yaml.dump(OmegaConf.to_container(a__ ) ) ) return config def lowerCamelCase__ ( a , a=None , a=None ) -> Tuple: if conf_path is None: _A: str = '''./model_checkpoints/vqgan_only.yaml''' _A: int = load_config(a__ , display=a__ ) _A: Any = VQModel(**config.model.params ) if ckpt_path is None: _A: Dict = '''./model_checkpoints/vqgan_only.pt''' _A: Optional[int] = torch.load(a__ , map_location=a__ ) if ".ckpt" in ckpt_path: _A: Any = sd['''state_dict'''] model.load_state_dict(a__ , strict=a__ ) model.to(a__ ) del sd return model def lowerCamelCase__ ( a , a ) -> Tuple: _A , _A , _A: List[str] = model.encode(a__ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) _A: Dict = model.decode(a__ ) return xrec def lowerCamelCase__ ( a , a=False ) -> Union[str, Any]: _A , _A: Optional[int] = string.rsplit('''.''' , 1 ) if reload: _A: List[Any] = importlib.import_module(a__ ) importlib.reload(a__ ) return getattr(importlib.import_module(a__ , package=a__ ) , cls ) def lowerCamelCase__ ( a ) -> Union[str, Any]: if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def lowerCamelCase__ ( a , a , a=True , a=True ) -> Union[str, Any]: _A: List[Any] = instantiate_from_config(a__ ) if sd is not None: model.load_state_dict(a__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase__ ( a , a , a , a ) -> Tuple: if ckpt: _A: Optional[Any] = torch.load(a__ , map_location='''cpu''' ) _A: Tuple = pl_sd['''global_step'''] print(f"""loaded model from global step {global_step}.""" ) else: _A: Tuple = {'''state_dict''': None} _A: Optional[Any] = None _A: Optional[Any] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=a__ , eval_mode=a__ )['''model'''] return model, global_step
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple=1_3 , lowerCAmelCase_ : Any=3_2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Any=1_6 , lowerCAmelCase_ : Dict=[1, 2, 1] , lowerCAmelCase_ : str=[2, 2, 4] , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Union[str, Any]=2.0 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Tuple=1e-5 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : str=8 , lowerCAmelCase_ : List[str]=["stage1", "stage2", "stage3"] , lowerCAmelCase_ : List[str]=[1, 2, 3] , ): """simple docstring""" _A: Optional[int] = parent _A: int = batch_size _A: Optional[Any] = image_size _A: Any = patch_size _A: List[str] = num_channels _A: int = embed_dim _A: Optional[int] = depths _A: Union[str, Any] = num_heads _A: int = window_size _A: Optional[int] = mlp_ratio _A: Union[str, Any] = qkv_bias _A: Optional[int] = hidden_dropout_prob _A: Optional[int] = attention_probs_dropout_prob _A: Dict = drop_path_rate _A: List[str] = hidden_act _A: Tuple = use_absolute_embeddings _A: str = patch_norm _A: int = layer_norm_eps _A: Union[str, Any] = initializer_range _A: Tuple = is_training _A: Union[str, Any] = scope _A: Union[str, Any] = use_labels _A: Union[str, Any] = type_sequence_label_size _A: List[str] = encoder_stride _A: List[Any] = out_features _A: int = out_indices def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Dict = None if self.use_labels: _A: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : List[Any] ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Dict = MaskFormerSwinModel(config=_A ) model.to(_A ) model.eval() _A: Any = model(_A ) _A: Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _A: Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): """simple docstring""" _A: Union[str, Any] = MaskFormerSwinBackbone(config=_A ) model.to(_A ) model.eval() _A: str = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(_A ): _A: int = ['stem'] _A: List[str] = MaskFormerSwinBackbone(config=_A ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Dict = self.prepare_config_and_inputs() _A: Union[str, Any] = config_and_inputs _A: str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __UpperCamelCase : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[str] = False __UpperCamelCase : Tuple = False __UpperCamelCase : int = False __UpperCamelCase : Optional[int] = False def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = MaskFormerSwinModelTester(self ) _A: str = ConfigTester(self , config_class=_A , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __magic_name__ ( self : str ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : Dict ): """simple docstring""" return def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : Tuple ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: str = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A: int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: str = model_class(_A ) _A: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: int = [*signature.parameters.keys()] _A: int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __magic_name__ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __magic_name__ ( self : List[str] ): """simple docstring""" pass def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _A: Any = model(**self._prepare_for_class(_A , _A ) ) _A: str = outputs.hidden_states _A: List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_A ) , _A ) # Swin has a different seq_length _A: Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A: List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() _A: Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A: Tuple = True self.check_hidden_states_output(_A , _A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: List[Any] = True self.check_hidden_states_output(_A , _A , _A , _A ) def __magic_name__ ( self : str ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() _A: List[Any] = 3 _A: Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _A: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A: Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A: Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A: Dict = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: Tuple = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase_ : Tuple ): _A: List[Any] = 0 return t def check_equivalence(lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]={} ): with torch.no_grad(): _A: str = model(**_A , return_dict=_A , **_A ) _A: Tuple = model(**_A , return_dict=_A , **_A ).to_tuple() def recursive_check(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): if isinstance(_A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A , _A ): recursive_check(_A , _A ) elif isinstance(_A , _A ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_A , _A ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_A ) , set_nan_tensor_to_zero(_A ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}. Dict has""" F""" `nan`: {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}.""" ) , ) recursive_check(_A , _A ) for model_class in self.all_model_classes: _A: Any = model_class(_A ) model.to(_A ) model.eval() _A: Dict = self._prepare_for_class(_A , _A ) _A: List[str] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A ) _A: Union[str, Any] = self._prepare_for_class(_A , _A , return_labels=_A ) _A: Any = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A ) _A: str = self._prepare_for_class(_A , _A ) _A: Union[str, Any] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A , {'''output_hidden_states''': True} ) _A: int = self._prepare_for_class(_A , _A , return_labels=_A ) _A: Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A , {'''output_hidden_states''': True} ) @require_torch class UpperCAmelCase ( unittest.TestCase , snake_case_ ): '''simple docstring''' __UpperCamelCase : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () __UpperCamelCase : int = MaskFormerSwinConfig def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = MaskFormerSwinModelTester(self ) def __magic_name__ ( self : Any ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs_for_common() _A: Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _A: str = backbone_class(_A ) backbone.to(_A ) backbone.eval() _A: List[str] = backbone(**_A ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _A ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _A: Any = backbone(**_A , output_hidden_states=_A ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A: Any = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _A: Any = backbone(**_A , output_attentions=_A ) self.assertIsNotNone(outputs.attentions )
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = BarthezTokenizer __UpperCamelCase : Optional[int] = BarthezTokenizerFast __UpperCamelCase : Any = True __UpperCamelCase : List[Any] = True def __magic_name__ ( self : Optional[Any] ): """simple docstring""" super().setUp() _A: Dict = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_ ) _A: List[Any] = tokenizer def __magic_name__ ( self : Any ): """simple docstring""" _A: str = """<pad>""" _A: Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase_ ) , 1_0_1_1_2_2 ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def __magic_name__ ( self : str ): """simple docstring""" _A: int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _A: Any = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _A: Any = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _A: Any = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _A: Union[str, Any] = self.get_tokenizer() _A: Union[str, Any] = self.get_rust_tokenizer() _A: Union[str, Any] = """I was born in 92000, and this is falsé.""" _A: Dict = tokenizer.tokenize(lowerCAmelCase_ ) _A: Optional[Any] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: int = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: int = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = self.get_rust_tokenizer() _A: Optional[Any] = tokenizer.encode(lowerCAmelCase_ ) _A: Any = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Dict ): """simple docstring""" # fmt: off _A: int = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _A: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=lowerCAmelCase_ , )
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Dict = logging.get_logger(__name__) def lowerCamelCase__ ( a , a=False ) -> List[str]: _A: List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _A: Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def lowerCamelCase__ ( a , a , a=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: _A: str = '''''' else: _A: Union[str, Any] = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A: Union[str, Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _A: Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _A: List[str] = in_proj_weight[ : config.hidden_size, : ] _A: Any = in_proj_bias[: config.hidden_size] _A: Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A: List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _A: List[str] = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( a , a , a ) -> str: _A: List[Any] = dct.pop(lowerCAmelCase__ ) _A: List[str] = val def lowerCamelCase__ ( ) -> Optional[int]: _A: Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A: Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( a , a ) -> Union[str, Any]: _A: Tuple = DeiTConfig() # all deit models have fine-tuned heads _A: Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _A: str = 10_00 _A: List[str] = '''huggingface/label-files''' _A: Tuple = '''imagenet-1k-id2label.json''' _A: Any = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) _A: Optional[int] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} _A: List[Any] = idalabel _A: Any = {v: k for k, v in idalabel.items()} _A: Dict = int(deit_name[-6:-4] ) _A: str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): _A: List[str] = 1_92 _A: List[Any] = 7_68 _A: Optional[int] = 12 _A: Optional[Any] = 3 elif deit_name[9:].startswith('''small''' ): _A: Optional[Any] = 3_84 _A: List[str] = 15_36 _A: Optional[int] = 12 _A: Optional[Any] = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): _A: List[str] = 10_24 _A: List[Any] = 40_96 _A: Any = 24 _A: Optional[int] = 16 # load original model from timm _A: Union[str, Any] = timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _A: Union[str, Any] = timm_model.state_dict() _A: int = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model _A: Union[str, Any] = DeiTForImageClassificationWithTeacher(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor _A: List[Any] = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _A: Tuple = DeiTImageProcessor(size=lowerCAmelCase__ , crop_size=config.image_size ) _A: Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) _A: List[Any] = encoding['''pixel_values'''] _A: str = model(lowerCAmelCase__ ) _A: Tuple = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase__ : List[Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = "openai-gpt" __UpperCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[Any]=4_0_4_7_8 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Tuple=1_2 , lowerCAmelCase_ : int=1_2 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Tuple=1e-5 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Optional[int]="cls_index" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=0.1 , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: List[Any] = vocab_size _A: List[str] = n_positions _A: Optional[Any] = n_embd _A: Optional[Any] = n_layer _A: Dict = n_head _A: List[str] = afn _A: str = resid_pdrop _A: List[str] = embd_pdrop _A: str = attn_pdrop _A: Any = layer_norm_epsilon _A: Optional[int] = initializer_range _A: int = summary_type _A: Optional[Any] = summary_use_proj _A: Optional[Any] = summary_activation _A: Tuple = summary_first_dropout _A: int = summary_proj_to_labels super().__init__(**lowerCAmelCase_ )
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
import argparse import os import re import packaging.version UpperCAmelCase__ : Any = "examples/" UpperCAmelCase__ : Any = { "examples": (re.compile(R'^check_min_version\(\"[^\"]+\"\)\s*$', re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R'^__version__\s+=\s+\"([^\"]+)\"\s*$', re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R'^(\s*)version\s*=\s*\"[^\"]+\",', re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(R'^(\s*)release\s*=\s*\"[^\"]+\"$', re.MULTILINE), "release = \"VERSION\"\n"), } UpperCAmelCase__ : Tuple = { "init": "src/transformers/__init__.py", "setup": "setup.py", } UpperCAmelCase__ : Optional[int] = "README.md" def lowerCamelCase__ ( a , a , a ) -> Optional[int]: with open(a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A: List[str] = f.read() _A , _A: int = REPLACE_PATTERNS[pattern] _A: int = replace.replace('''VERSION''' , a ) _A: Optional[Any] = re_pattern.sub(a , a ) with open(a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(a ) def lowerCamelCase__ ( a ) -> Optional[int]: for folder, directories, fnames in os.walk(a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(a , a ) , a , pattern='''examples''' ) def lowerCamelCase__ ( a , a=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a , a , a ) if not patch: update_version_in_examples(a ) def lowerCamelCase__ ( ) -> Optional[Any]: _A: Optional[int] = '''🤗 Transformers currently provides the following architectures''' _A: Tuple = '''1. Want to contribute a new model?''' with open(a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A: Tuple = f.readlines() # Find the start of the list. _A: Any = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _A: Tuple = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _A: Optional[int] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a ) def lowerCamelCase__ ( ) -> str: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: _A: List[str] = f.read() _A: List[str] = REPLACE_PATTERNS['''init'''][0].search(a ).groups()[0] return packaging.version.parse(a ) def lowerCamelCase__ ( a=False ) -> Tuple: _A: Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _A: str = default_version.base_version elif patch: _A: Optional[Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _A: Optional[Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _A: Optional[int] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(a ) == 0: _A: List[Any] = default_version print(f"""Updating version to {version}.""" ) global_version_update(a , patch=a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ) -> Optional[Any]: _A: int = get_version() _A: Optional[Any] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _A: int = current_version.base_version # Check with the user we got that right. _A: List[str] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(a ) == 0: _A: Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase__ : List[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' __UpperCamelCase : List[Any] = '''lxmert''' __UpperCamelCase : Any = {} def __init__( self : Any , lowerCAmelCase_ : List[Any]=3_0_5_2_2 , lowerCAmelCase_ : int=7_6_8 , lowerCAmelCase_ : Optional[Any]=1_2 , lowerCAmelCase_ : Dict=9_5_0_0 , lowerCAmelCase_ : List[Any]=1_6_0_0 , lowerCAmelCase_ : List[Any]=4_0_0 , lowerCAmelCase_ : List[str]=3_0_7_2 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : List[Any]=9 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : str=2_0_4_8 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Any=6.67 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" _A: List[str] = vocab_size _A: Union[str, Any] = hidden_size _A: int = num_attention_heads _A: Union[str, Any] = hidden_act _A: Optional[Any] = intermediate_size _A: str = hidden_dropout_prob _A: Dict = attention_probs_dropout_prob _A: Optional[int] = max_position_embeddings _A: Tuple = type_vocab_size _A: int = initializer_range _A: Optional[int] = layer_norm_eps _A: Union[str, Any] = num_qa_labels _A: Any = num_object_labels _A: Dict = num_attr_labels _A: Any = l_layers _A: List[Any] = x_layers _A: Tuple = r_layers _A: str = visual_feat_dim _A: int = visual_pos_dim _A: Optional[int] = visual_loss_normalizer _A: Union[str, Any] = task_matched _A: int = task_mask_lm _A: int = task_obj_predict _A: List[Any] = task_qa _A: Any = visual_obj_loss _A: Union[str, Any] = visual_attr_loss _A: Tuple = visual_feat_loss _A: Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase_ )
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = BioGptTokenizer __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A: str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _A: Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _A: Dict = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: Tuple = '''lower newer''' _A: Union[str, Any] = '''lower newer''' return input_text, output_text def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = BioGptTokenizer(self.vocab_file , self.merges_file ) _A: Optional[Any] = '''lower''' _A: Tuple = ['''low''', '''er</w>'''] _A: Tuple = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _A: Any = tokens + ['''<unk>'''] _A: Union[str, Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: str = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _A: Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCamelCase ) _A: Optional[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCamelCase ) _A: Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) _A: int = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
def lowerCamelCase__ ( a ) -> list: _A: List[Any] = [0] * len(UpperCAmelCase_ ) for i in range(1 , len(UpperCAmelCase_ ) ): # use last results for better performance - dynamic programming _A: Optional[int] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _A: Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _A: List[str] = j return prefix_result def lowerCamelCase__ ( a ) -> int: return max(prefix_function(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase__ ( a ) -> int: _A: Tuple = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _A: Dict = 1_92 _A: Optional[Any] = 7_68 _A: Optional[int] = 12 _A: Any = 3 _A: List[Any] = [8_00, 13_33] _A: Tuple = False elif yolos_name == "yolos_s_dWr": _A: Dict = 3_30 _A: Any = 14 _A: Tuple = 6 _A: Any = 13_20 elif "yolos_s" in yolos_name: _A: Any = 3_84 _A: int = 15_36 _A: List[Any] = 12 _A: Tuple = 6 elif "yolos_b" in yolos_name: _A: Tuple = [8_00, 13_44] _A: Dict = 91 _A: Any = 'huggingface/label-files' _A: List[str] = 'coco-detection-id2label.json' _A: Union[str, Any] = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) _A: List[str] = {int(_A ): v for k, v in idalabel.items()} _A: Tuple = idalabel _A: Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( a , a , a = False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A: List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _A: int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _A: List[Any] = in_proj_weight[: config.hidden_size, :] _A: Dict = in_proj_bias[: config.hidden_size] _A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A: Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A: Optional[int] = in_proj_weight[-config.hidden_size :, :] _A: str = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( a ) -> Optional[int]: if "backbone" in name: _A: Tuple = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: _A: List[str] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: _A: List[str] = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: _A: Dict = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: _A: Union[str, Any] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _A: Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: _A: Dict = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _A: Dict = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _A: Any = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _A: Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _A: int = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _A: List[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _A: Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: _A: List[str] = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: _A: List[Any] = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: _A: List[str] = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def lowerCamelCase__ ( a , a ) -> Any: for key in orig_state_dict.copy().keys(): _A: Dict = orig_state_dict.pop(_A ) if "qkv" in key: _A: Tuple = key.split('''.''' ) _A: Any = int(key_split[2] ) _A: Union[str, Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _A: List[Any] = val[:dim, :] _A: List[Any] = val[ dim : dim * 2, : ] _A: int = val[-dim:, :] else: _A: Any = val[:dim] _A: Optional[int] = val[dim : dim * 2] _A: Dict = val[-dim:] else: _A: Any = val return orig_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: _A: Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _A: List[Any] = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( a , a , a , a = False ) -> Dict: _A: int = get_yolos_config(_A ) # load original state_dict _A: Dict = torch.load(_A , map_location='''cpu''' )['model'] # load 🤗 model _A: str = YolosForObjectDetection(_A ) model.eval() _A: Any = convert_state_dict(_A , _A ) model.load_state_dict(_A ) # Check outputs on an image, prepared by YolosImageProcessor _A: Dict = 8_00 if yolos_name != 'yolos_ti' else 5_12 _A: str = YolosImageProcessor(format='''coco_detection''' , size=_A ) _A: List[str] = image_processor(images=prepare_img() , return_tensors='''pt''' ) _A: List[Any] = model(**_A ) _A: List[Any] = outputs.logits, outputs.pred_boxes _A: List[str] = None, None if yolos_name == "yolos_ti": _A: List[str] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _A: Optional[int] = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _A: List[str] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _A: Tuple = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _A: Tuple = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _A: str = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _A: str = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _A: Dict = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _A: int = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _A: str = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , _A , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: _A: List[Any] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('''Pushing to the hub...''' ) _A: List[str] = model_mapping[yolos_name] image_processor.push_to_hub(_A , organization='''hustvl''' ) model.push_to_hub(_A , organization='''hustvl''' ) if __name__ == "__main__": UpperCAmelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase__ : Dict = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase__ ( a="" ) -> int: _A: List[Any] = tempfile.mkdtemp() return os.path.join(lowerCAmelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" _A: int = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _A: Union[str, Any] = AgentAudio(A__ ) _A: Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(A__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(A__ ) ) # Ensure that the file contains the same value as the original tensor _A , _A: str = sf.read(A__ ) self.assertTrue(torch.allclose(A__ , torch.tensor(A__ ) , atol=1e-4 ) ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _A: Tuple = get_new_path(suffix='''.wav''' ) sf.write(A__ , A__ , 1_6_0_0_0 ) _A: List[str] = AgentAudio(A__ ) self.assertTrue(torch.allclose(A__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , A__ ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: int = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _A: Union[str, Any] = AgentImage(A__ ) _A: Any = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(A__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A__ ) ) def __magic_name__ ( self : str ): """simple docstring""" _A: Tuple = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _A: List[str] = Image.open(A__ ) _A: int = AgentImage(A__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A__ ) ) def __magic_name__ ( self : str ): """simple docstring""" _A: int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _A: Optional[int] = Image.open(A__ ) _A: int = AgentImage(A__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A__ ) ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: int = '''Hey!''' _A: List[Any] = AgentText(A__ ) self.assertEqual(A__ , agent_type.to_string() ) self.assertEqual(A__ , agent_type.to_raw() ) self.assertEqual(A__ , A__ )
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
def lowerCamelCase__ ( a ) -> bool: return str(a ) == str(a )[::-1] def lowerCamelCase__ ( a ) -> int: return int(a ) + int(str(a )[::-1] ) def lowerCamelCase__ ( a = 1_00_00 ) -> int: _A: List[Any] = [] for num in range(1 , a ): _A: List[Any] = 0 _A: int = num while iterations < 50: _A: List[str] = sum_reverse(a ) iterations += 1 if is_palindrome(a ): break else: lychrel_nums.append(a ) return len(a ) if __name__ == "__main__": print(F"""{solution() = }""")
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : List[str]=3_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Tuple=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Union[str, Any]=2 , ): """simple docstring""" _A: Tuple = parent _A: Any = batch_size _A: Optional[Any] = image_size _A: Any = patch_size _A: Any = num_channels _A: Dict = is_training _A: List[Any] = use_labels _A: int = hidden_size _A: Optional[int] = num_hidden_layers _A: Tuple = num_attention_heads _A: Optional[Any] = intermediate_size _A: List[Any] = hidden_act _A: Tuple = hidden_dropout_prob _A: Optional[int] = attention_probs_dropout_prob _A: str = type_sequence_label_size _A: List[Any] = initializer_range _A: int = scope _A: Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _A: str = (image_size // patch_size) ** 2 _A: str = num_patches + 2 def __magic_name__ ( self : Any ): """simple docstring""" _A: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Tuple = None if self.use_labels: _A: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Union[str, Any] = DeiTModel(config=__A ) model.to(__A ) model.eval() _A: Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[int] = DeiTForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _A: Optional[Any] = model(__A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _A: str = 1 _A: Union[str, Any] = DeiTForMaskedImageModeling(__A ) model.to(__A ) model.eval() _A: List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A: str = model(__A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: str = self.type_sequence_label_size _A: Tuple = DeiTForImageClassification(__A ) model.to(__A ) model.eval() _A: Any = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A: Optional[Any] = 1 _A: int = DeiTForImageClassification(__A ) model.to(__A ) model.eval() _A: int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A: Union[str, Any] = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = self.prepare_config_and_inputs() ( _A ): int = config_and_inputs _A: Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __UpperCamelCase : Dict = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Dict = False def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = DeiTModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __magic_name__ ( self : List[str] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: List[str] = model_class(__A ) _A: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Optional[int] = [*signature.parameters.keys()] _A: str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=False ): """simple docstring""" _A: Optional[Any] = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __magic_name__ ( self : List[Any] ): """simple docstring""" if not self.model_tester.is_training: return _A: int = self.model_tester.prepare_config_and_inputs_for_common() _A: int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _A: Tuple = model_class(__A ) model.to(__A ) model.train() _A: List[str] = self._prepare_for_class(__A , __A , return_labels=__A ) _A: Union[str, Any] = model(**__A ).loss loss.backward() def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A: List[str] = False _A: List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _A: Any = model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() _A: Dict = self._prepare_for_class(__A , __A , return_labels=__A ) _A: Tuple = model(**__A ).loss loss.backward() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A: Tuple = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), *get_values(__A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): _A: Optional[int] = problem_type['''title'''] _A: Union[str, Any] = problem_type['''num_labels'''] _A: Optional[Any] = model_class(__A ) model.to(__A ) model.train() _A: List[Any] = self._prepare_for_class(__A , __A , return_labels=__A ) if problem_type["num_labels"] > 1: _A: int = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _A: Optional[int] = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: _A: List[Any] = model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __magic_name__ ( self : int ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Tuple = DeiTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ) -> List[str]: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Tuple ): """simple docstring""" _A: List[Any] = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( __A ) _A: int = self.default_image_processor _A: List[Any] = prepare_img() _A: Any = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A: List[Any] = model(**__A ) # verify the logits _A: Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) _A: List[str] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __magic_name__ ( self : str ): """simple docstring""" _A: Dict = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) _A: Tuple = self.default_image_processor _A: Optional[Any] = prepare_img() _A: int = image_processor(images=__A , return_tensors='''pt''' ) _A: Dict = inputs.pixel_values.to(__A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _A: List[Any] = model(__A )
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : str=1_8 , lowerCAmelCase_ : List[Any]=3_0 , lowerCAmelCase_ : Tuple=4_0_0 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[str]=[0.5, 0.5, 0.5] , ): """simple docstring""" _A: Union[str, Any] = size if size is not None else {'''shortest_edge''': 1_8} _A: int = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} _A: List[str] = parent _A: List[str] = batch_size _A: Tuple = num_channels _A: Tuple = image_size _A: List[str] = min_resolution _A: Union[str, Any] = max_resolution _A: Union[str, Any] = do_resize _A: List[str] = size _A: Union[str, Any] = do_center_crop _A: str = crop_size _A: Any = do_normalize _A: Optional[Any] = image_mean _A: Dict = image_std def __magic_name__ ( self : List[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = LevitImageProcessor if is_vision_available() else None def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = LevitImageProcessingTester(self ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , '''image_mean''' ) ) self.assertTrue(hasattr(__a , '''image_std''' ) ) self.assertTrue(hasattr(__a , '''do_normalize''' ) ) self.assertTrue(hasattr(__a , '''do_resize''' ) ) self.assertTrue(hasattr(__a , '''do_center_crop''' ) ) self.assertTrue(hasattr(__a , '''size''' ) ) def __magic_name__ ( self : int ): """simple docstring""" _A: Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) _A: List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input _A: Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A: int = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input _A: Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A: Union[str, Any] = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input _A: Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A: Any = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> int: _A: Optional[int] = 10 _A: Union[str, Any] = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) _A: Union[str, Any] = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(UpperCAmelCase__ ) ), } , features=UpperCAmelCase__ , ) return dataset @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> Union[str, Any]: _A: Any = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=UpperCAmelCase__ ) return filename # FILE_CONTENT + files UpperCAmelCase__ : List[str] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> str: _A: Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' _A: List[str] = FILE_CONTENT with open(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ ) return filename @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Any: import bza _A: Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' _A: List[Any] = bytes(UpperCAmelCase__ , '''utf-8''' ) with bza.open(UpperCAmelCase__ , '''wb''' ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Optional[int]: import gzip _A: List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) _A: Tuple = bytes(UpperCAmelCase__ , '''utf-8''' ) with gzip.open(UpperCAmelCase__ , '''wb''' ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> List[str]: if datasets.config.LZ4_AVAILABLE: import lza.frame _A: List[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' _A: List[Any] = bytes(UpperCAmelCase__ , '''utf-8''' ) with lza.frame.open(UpperCAmelCase__ , '''wb''' ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> int: if datasets.config.PY7ZR_AVAILABLE: import pyazr _A: Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(UpperCAmelCase__ , '''w''' ) as archive: archive.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> List[Any]: import tarfile _A: Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(UpperCAmelCase__ , '''w''' ) as f: f.add(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Any: import lzma _A: List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' _A: Optional[int] = bytes(UpperCAmelCase__ , '''utf-8''' ) with lzma.open(UpperCAmelCase__ , '''wb''' ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> int: import zipfile _A: List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Any: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _A: List[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' _A: Optional[Any] = bytes(UpperCAmelCase__ , '''utf-8''' ) with zstd.open(UpperCAmelCase__ , '''wb''' ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Any: _A: Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' _A: Optional[Any] = textwrap.dedent( '''\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ ) return filename UpperCAmelCase__ : str = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] UpperCAmelCase__ : Optional[int] = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] UpperCAmelCase__ : Optional[int] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } UpperCAmelCase__ : List[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] UpperCAmelCase__ : Optional[Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> List[str]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Tuple: _A: List[str] = datasets.Dataset.from_dict(UpperCAmelCase__ ) _A: Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> int: _A: str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(UpperCAmelCase__ ) ) as con: _A: str = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Any: _A: int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(UpperCAmelCase__ , '''w''' , newline='''''' ) as f: _A: Tuple = csv.DictWriter(UpperCAmelCase__ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> str: _A: Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(UpperCAmelCase__ , '''w''' , newline='''''' ) as f: _A: List[Any] = csv.DictWriter(UpperCAmelCase__ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> Tuple: import bza _A: List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(UpperCAmelCase__ , '''rb''' ) as f: _A: List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCAmelCase__ , '''wb''' ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> List[Any]: _A: Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> Dict: _A: str = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(UpperCAmelCase__ , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> Optional[int]: _A: List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCAmelCase__ ) ) ) f.write(UpperCAmelCase__ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Union[str, Any]: _A: Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) _A: Optional[int] = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(UpperCAmelCase__ , '''wb''' ) as f: _A: Any = pq.ParquetWriter(UpperCAmelCase__ , schema=UpperCAmelCase__ ) _A: Optional[Any] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCAmelCase__ ) )] for k in DATA[0]} , schema=UpperCAmelCase__ ) writer.write_table(UpperCAmelCase__ ) writer.close() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> str: _A: Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _A: str = {'''data''': DATA} with open(UpperCAmelCase__ , '''w''' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Dict: _A: str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _A: Optional[int] = {'''data''': DATA_DICT_OF_LISTS} with open(UpperCAmelCase__ , '''w''' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Optional[int]: _A: Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(UpperCAmelCase__ , '''w''' ) as f: for item in DATA: f.write(json.dumps(UpperCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> int: _A: List[str] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(UpperCAmelCase__ , '''w''' ) as f: for item in DATA: f.write(json.dumps(UpperCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Union[str, Any]: _A: List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(UpperCAmelCase__ , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(UpperCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> List[Any]: _A: Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(UpperCAmelCase__ , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(UpperCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> List[Any]: import gzip _A: Optional[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(UpperCAmelCase__ , '''rb''' ) as orig_file: with gzip.open(UpperCAmelCase__ , '''wb''' ) as zipped_file: zipped_file.writelines(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> Dict: import gzip _A: str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(UpperCAmelCase__ , '''rb''' ) as orig_file: with gzip.open(UpperCAmelCase__ , '''wb''' ) as zipped_file: zipped_file.writelines(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> Optional[Any]: _A: List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a , a ) -> Dict: _A: Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.join('''nested''' , os.path.basename(UpperCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> Any: _A: int = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCAmelCase__ ) ) ) f.write(UpperCAmelCase__ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> Tuple: _A: Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(UpperCAmelCase__ , '''w''' ) as f: f.add(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) f.add(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a , a ) -> Dict: _A: List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(UpperCAmelCase__ , '''w''' ) as f: f.add(UpperCAmelCase__ , arcname=os.path.join('''nested''' , os.path.basename(UpperCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] _A: Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(UpperCAmelCase__ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> int: _A: List[str] = ['''0''', '''1''', '''2''', '''3'''] _A: Optional[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(UpperCAmelCase__ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> str: _A: Optional[Any] = ['''0''', '''1''', '''2''', '''3'''] _A: Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(UpperCAmelCase__ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> List[str]: _A: Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> Tuple: _A: int = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCAmelCase__ ) ) ) f.write(UpperCAmelCase__ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a , a ) -> Optional[int]: _A: List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(UpperCAmelCase__ , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> str: _A: Any = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) _A: int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> int: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> Optional[int]: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a , a ) -> Optional[int]: _A: Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(UpperCAmelCase__ , '''w''' ) as f: f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ) ) f.write(UpperCAmelCase__ , arcname=os.path.basename(UpperCAmelCase__ ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( a ) -> Dict: _A: Union[str, Any] = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
UpperCAmelCase__ : Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( a , a , a=None , **a ) -> Union[str, Any]: _A: Union[str, Any] = [x.strip() for x in open(snake_case__ ).readlines()] _A: Dict = [x.strip() for x in open(snake_case__ ).readlines()][: len(snake_case__ )] _A: List[str] = calculate_rouge(snake_case__ , snake_case__ , **snake_case__ ) if save_path is not None: save_json(snake_case__ , snake_case__ , indent=snake_case__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
from collections.abc import Iterable from typing import Generic, TypeVar UpperCAmelCase__ : List[Any] = TypeVar('_T') class UpperCAmelCase ( Generic[_T] ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : str = None ): """simple docstring""" _A: Optional[int] = list(iterable or [] ) _A: Optional[Any] = [] def __len__( self : int ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ): """simple docstring""" return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def __magic_name__ ( self : Dict , lowerCAmelCase_ : Any ): """simple docstring""" self._stacka.append(lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = self._stacka.pop _A: Dict = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _A: List[str] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase , cache_dir=__lowercase ) _A: int = [t[-1] for t in os.walk(os.path.join(__lowercase , os.listdir(__lowercase )[0] , '''snapshots''' ) )] _A: Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Dict ): """simple docstring""" _A: int = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase ) _A: Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _A: Any = jax.random.PRNGKey(0 ) _A: Dict = 4 _A: int = jax.device_count() _A: Any = num_samples * [prompt] _A: List[str] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _A: Union[str, Any] = replicate(__lowercase ) _A: str = jax.random.split(__lowercase , __lowercase ) _A: int = shard(__lowercase ) _A: str = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(__lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 _A: Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowercase ) == num_samples def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__lowercase ) _A: Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _A: Any = jax.random.PRNGKey(0 ) _A: Union[str, Any] = 5_0 _A: Union[str, Any] = jax.device_count() _A: int = num_samples * [prompt] _A: Dict = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _A: Any = replicate(__lowercase ) _A: Optional[Any] = jax.random.split(__lowercase , __lowercase ) _A: str = shard(__lowercase ) _A: Optional[int] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __magic_name__ ( self : Any ): """simple docstring""" _A: Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase ) _A: Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _A: Union[str, Any] = jax.random.PRNGKey(0 ) _A: Optional[int] = 5_0 _A: Optional[int] = jax.device_count() _A: int = num_samples * [prompt] _A: str = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _A: Dict = replicate(__lowercase ) _A: Optional[int] = jax.random.split(__lowercase , __lowercase ) _A: List[str] = shard(__lowercase ) _A: int = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) _A: Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _A: Any = jax.random.PRNGKey(0 ) _A: Dict = 5_0 _A: Union[str, Any] = jax.device_count() _A: str = num_samples * [prompt] _A: Tuple = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _A: Optional[int] = replicate(__lowercase ) _A: int = jax.random.split(__lowercase , __lowercase ) _A: List[str] = shard(__lowercase ) _A: int = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) _A: List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__lowercase , safety_checker=__lowercase , ) _A: Dict = scheduler.create_state() _A: Optional[Any] = scheduler_state _A: List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _A: int = jax.random.PRNGKey(0 ) _A: List[Any] = 5_0 _A: Optional[int] = jax.device_count() _A: int = num_samples * [prompt] _A: Dict = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _A: Dict = replicate(__lowercase ) _A: Optional[int] = jax.random.split(__lowercase , __lowercase ) _A: List[str] = shard(__lowercase ) _A: Optional[Any] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __magic_name__ ( self : int ): """simple docstring""" _A: int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _A: Any = jax.device_count() _A: Dict = num_samples * [prompt] _A: List[Any] = jax.random.split(jax.random.PRNGKey(0 ) , __lowercase ) _A: List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , ) _A: str = replicate(__lowercase ) _A: str = pipeline.prepare_inputs(__lowercase ) _A: Union[str, Any] = shard(__lowercase ) _A: Union[str, Any] = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _A: List[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention _A: Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , use_memory_efficient_attention=__lowercase , ) _A: Optional[int] = replicate(__lowercase ) _A: List[str] = pipeline.prepare_inputs(__lowercase ) _A: Any = shard(__lowercase ) _A: Any = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _A: List[str] = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
def lowerCamelCase__ ( a , a ) -> int: while b: _A , _A: Union[str, Any] = b, a % b return a def lowerCamelCase__ ( a , a ) -> int: return a if b == 0 else euclidean_gcd_recursive(snake_case_ , a % b ) def lowerCamelCase__ ( ) -> Optional[Any]: print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase__ : Union[str, Any] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : int = 1_4 ): """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _A: str = primes[group]['prime'] _A: Optional[int] = primes[group]['generator'] _A: Tuple = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def __magic_name__ ( self : Dict ): """simple docstring""" return hex(self.__private_key )[2:] def __magic_name__ ( self : List[str] ): """simple docstring""" _A: int = pow(self.generator , self.__private_key , self.prime ) return hex(_UpperCAmelCase )[2:] def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = int(_UpperCAmelCase , base=1_6 ) if not self.is_valid_public_key(_UpperCAmelCase ): raise ValueError('''Invalid public key''' ) _A: Any = pow(_UpperCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() @staticmethod def __magic_name__ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCAmelCase , (prime - 1) // 2 , _UpperCAmelCase ) == 1 ) @staticmethod def __magic_name__ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int = 1_4 ): """simple docstring""" _A: str = int(_UpperCAmelCase , base=1_6 ) _A: int = int(_UpperCAmelCase , base=1_6 ) _A: Any = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('''Invalid public key''' ) _A: List[str] = pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase__ : Dict = get_logger(__name__) UpperCAmelCase__ : str = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class UpperCAmelCase : '''simple docstring''' @add_start_docstrings(__snake_case ) def __call__( self : Dict , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCAmelCase : '''simple docstring''' @add_start_docstrings(__snake_case ) def __call__( self : List[str] , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' @add_start_docstrings(__snake_case ) def __call__( self : Dict , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int , **lowerCAmelCase_ : Any ): """simple docstring""" for processor in self: _A: Optional[Any] = inspect.signature(processor.__call__ ).parameters if len(__snake_case ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) _A: Optional[Any] = processor(__snake_case , __snake_case , __snake_case , **__snake_case ) else: _A: List[str] = processor(__snake_case , __snake_case , __snake_case ) return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : float ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) _A: Optional[Any] = temperature def __call__( self : Optional[int] , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" _A: str = scores / self.temperature return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : float , lowerCAmelCase_ : float = -float('''Inf''' ) , lowerCAmelCase_ : int = 1 ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(__snake_case , __snake_case ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) _A: Dict = top_p _A: int = filter_value _A: Tuple = min_tokens_to_keep def __call__( self : Optional[int] , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" _A , _A: Union[str, Any] = lax.top_k(__snake_case , scores.shape[-1] ) _A: Optional[int] = jnp.full_like(__snake_case , self.filter_value ) _A: str = jax.nn.softmax(__snake_case , axis=-1 ).cumsum(axis=-1 ) _A: Dict = cumulative_probs < self.top_p # include the token that is higher than top_p as well _A: str = jnp.roll(__snake_case , 1 ) score_mask |= score_mask.at[:, 0].set(__snake_case ) # min tokens to keep _A: Optional[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(__snake_case ) _A: Dict = jnp.where(__snake_case , __snake_case , __snake_case ) _A: List[Any] = jax.lax.sort_key_val(__snake_case , __snake_case )[-1] return next_scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : float = -float('''Inf''' ) , lowerCAmelCase_ : int = 1 ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) _A: Optional[int] = max(__snake_case , __snake_case ) _A: Tuple = filter_value def __call__( self : int , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" _A , _A: Optional[Any] = scores.shape _A: Dict = jnp.full(batch_size * vocab_size , self.filter_value ) _A: List[Any] = min(self.top_k , scores.shape[-1] ) # Safety check _A , _A: List[Any] = lax.top_k(__snake_case , __snake_case ) _A: Tuple = jnp.broadcast_to((jnp.arange(__snake_case ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _A: Tuple = topk_scores.flatten() _A: Union[str, Any] = topk_indices.flatten() + shift _A: Optional[int] = next_scores_flat.at[topk_indices_flat].set(__snake_case ) _A: Union[str, Any] = next_scores_flat.reshape(__snake_case , __snake_case ) return next_scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : int ): """simple docstring""" _A: List[Any] = bos_token_id def __call__( self : List[Any] , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" _A: Any = jnp.full(scores.shape , -float('''inf''' ) ) _A: Dict = 1 - jnp.bool_(cur_len - 1 ) _A: int = jnp.where(__snake_case , new_scores.at[:, self.bos_token_id].set(0 ) , __snake_case ) return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[Any] = max_length _A: List[Any] = eos_token_id def __call__( self : int , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" _A: List[str] = jnp.full(scores.shape , -float('''inf''' ) ) _A: Any = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _A: Union[str, Any] = jnp.where(__snake_case , new_scores.at[:, self.eos_token_id].set(0 ) , __snake_case ) return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(__snake_case , __snake_case ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) _A: int = min_length _A: Dict = eos_token_id def __call__( self : Any , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" # create boolean flag to decide if min length penalty should be applied _A: Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _A: Any = jnp.where(__snake_case , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , __snake_case ) return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: Any = list(__snake_case ) _A: List[str] = begin_index def __call__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): """simple docstring""" _A: Tuple = 1 - jnp.bool_(cur_len - self.begin_index ) _A: str = jnp.where(__snake_case , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , __snake_case ) return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : list ): """simple docstring""" _A: List[str] = list(__snake_case ) def __call__( self : Dict , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" _A: Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: Optional[Any] = dict(__snake_case ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _A: Tuple = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _A: int = force_token_array.at[index].set(__snake_case ) _A: Union[str, Any] = jnp.intaa(__snake_case ) def __call__( self : Optional[int] , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int ): """simple docstring""" def _force_token(lowerCAmelCase_ : Optional[Any] ): _A: Tuple = scores.shape[0] _A: Optional[int] = self.force_token_array[generation_idx] _A: List[Any] = jnp.ones_like(__snake_case , dtype=scores.dtype ) * -float('''inf''' ) _A: Optional[int] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _A: Optional[int] = lax.dynamic_update_slice(__snake_case , __snake_case , (0, current_token) ) return new_scores _A: Union[str, Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__snake_case ) , lambda: scores , ) , ) return scores class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Union[str, Any] = generate_config.eos_token_id _A: List[str] = generate_config.no_timestamps_token_id _A: List[str] = generate_config.no_timestamps_token_id + 1 _A: Optional[int] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__snake_case , '''max_initial_timestamp_index''' ): _A: str = generate_config.max_initial_timestamp_index else: _A: Optional[int] = model_config.vocab_size if self.max_initial_timestamp_index is None: _A: List[Any] = model_config.vocab_size def __call__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" # suppress <|notimestamps|> which is handled by without_timestamps _A: Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ): _A: Optional[Any] = jnp.where((cur_len - self.begin_index) >= 1 , __snake_case , __snake_case ) _A: Union[str, Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __snake_case , ) _A: Optional[Any] = jnp.where((cur_len - self.begin_index) < 2 , __snake_case , __snake_case ) _A: List[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __snake_case , __snake_case , ) return jnp.where( __snake_case , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , __snake_case , ) _A: List[str] = jax.vmap(__snake_case )(__snake_case , __snake_case ) _A: List[Any] = jnp.where(cur_len == self.begin_index , __snake_case , __snake_case ) _A: List[str] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __snake_case , ) _A: Union[str, Any] = self.timestamp_begin + self.max_initial_timestamp_index _A: List[str] = jnp.where( __snake_case , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , __snake_case , ) # if sum of probability over timestamps is above any other token, sample timestamp _A: Tuple = jax.nn.log_softmax(__snake_case , axis=-1 ) def handle_cumulative_probs(lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] ): _A: str = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _A: str = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , __snake_case , ) _A: List[str] = jax.vmap(__snake_case )(__snake_case , __snake_case ) return scores
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" from PIL import Image def lowerCamelCase__ ( a , a ) -> Image: def brightness(a ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(a ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCAmelCase__ : List[Any] = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Tuple = '''umt5''' __UpperCamelCase : Tuple = ['''past_key_values'''] def __init__( self : str , lowerCAmelCase_ : Any=2_5_0_1_1_2 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : List[Any]=6_4 , lowerCAmelCase_ : List[Any]=1_0_2_4 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Any=1_2_8 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=1e-6 , lowerCAmelCase_ : int=1.0 , lowerCAmelCase_ : Dict="gated-gelu" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="T5Tokenizer" , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Any=0 , **lowerCAmelCase_ : Dict , ): """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase_ , tokenizer_class=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: List[Any] = vocab_size _A: Dict = d_model _A: int = d_kv _A: List[str] = d_ff _A: Any = num_layers _A: List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _A: int = num_heads _A: str = relative_attention_num_buckets _A: Optional[Any] = relative_attention_max_distance _A: Tuple = dropout_rate _A: Union[str, Any] = layer_norm_epsilon _A: Optional[int] = initializer_factor _A: List[Any] = feed_forward_proj _A: int = use_cache _A: Tuple = self.feed_forward_proj.split('''-''' ) _A: List[Any] = act_info[-1] _A: int = act_info[0] == '''gated''' if len(lowerCAmelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": _A: Tuple = '''gelu_new''' @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.d_model @property def __magic_name__ ( self : Dict ): """simple docstring""" return self.num_heads @property def __magic_name__ ( self : str ): """simple docstring""" return self.num_layers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _A: List[str] = '''past_encoder_sequence + sequence''' _A: Optional[Any] = {0: '''batch'''} _A: List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _A: Any = {0: '''batch''', 1: '''decoder_sequence'''} _A: List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __magic_name__ ( self : int ): """simple docstring""" return 1_3 @property def __magic_name__ ( self : Tuple ): """simple docstring""" return 5e-4
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = ShapEImgaImgPipeline __UpperCamelCase : int = ['''image'''] __UpperCamelCase : Any = ['''image'''] __UpperCamelCase : List[str] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __UpperCamelCase : List[str] = False @property def __magic_name__ ( self : str ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Tuple ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Any ): """simple docstring""" return self.time_input_dim * 4 @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return 8 @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A: str = CLIPVisionModel(lowerCAmelCase_ ) return model @property def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Any = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_2_4 , ) return image_processor @property def __magic_name__ ( self : int ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _A: Optional[Any] = PriorTransformer(**lowerCAmelCase_ ) return model @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _A: Dict = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } _A: Dict = ShapERenderer(**lowerCAmelCase_ ) return model def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Union[str, Any] = self.dummy_prior _A: Tuple = self.dummy_image_encoder _A: Tuple = self.dummy_image_processor _A: List[str] = self.dummy_renderer _A: Union[str, Any] = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_0_2_4 , prediction_type='''sample''' , use_karras_sigmas=lowerCAmelCase_ , clip_sample=lowerCAmelCase_ , clip_sample_range=1.0 , ) _A: List[str] = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=0 ): """simple docstring""" _A: Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: Union[str, Any] = torch.manual_seed(lowerCAmelCase_ ) else: _A: Optional[int] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Optional[int] = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : str ): """simple docstring""" _A: int = '''cpu''' _A: int = self.get_dummy_components() _A: int = self.pipeline_class(**lowerCAmelCase_ ) _A: Dict = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: List[str] = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _A: Any = output.images[0] _A: str = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) _A: Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : Optional[int] ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: str = torch_device == '''cpu''' _A: int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase_ , relax_max_difference=lowerCAmelCase_ , ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Dict = self.get_dummy_components() _A: Union[str, Any] = self.pipeline_class(**lowerCAmelCase_ ) _A: Optional[Any] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Any = 1 _A: Dict = 2 _A: int = self.get_dummy_inputs(lowerCAmelCase_ ) for key in inputs.keys(): if key in self.batch_params: _A: Optional[int] = batch_size * [inputs[key]] _A: str = pipe(**lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) _A: List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) _A: Dict = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) _A: Optional[int] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Dict = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _A: Optional[Any] = pipe( lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='''np''' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = CodeGenTokenizer __UpperCamelCase : Union[str, Any] = CodeGenTokenizerFast __UpperCamelCase : Optional[Any] = True __UpperCamelCase : List[Any] = {'''add_prefix_space''': True} __UpperCamelCase : Any = False def __magic_name__ ( self : Tuple ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A: str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _A: Union[str, Any] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _A: Any = {'''unk_token''': '''<unk>'''} _A: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def __magic_name__ ( self : str , **lowerCAmelCase_ : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , **lowerCAmelCase_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[int] = '''lower newer''' _A: Dict = '''lower newer''' return input_text, output_text def __magic_name__ ( self : str ): """simple docstring""" _A: str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A: int = '''lower newer''' _A: int = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _A: Any = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[int] = tokens + [tokenizer.unk_token] _A: int = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _A: List[str] = self.get_tokenizer() _A: List[str] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ ) _A: Optional[int] = '''lower newer''' # Testing tokenization _A: str = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _A: Tuple = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _A: Tuple = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Optional[Any] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ ) _A: Tuple = tokenizer.encode(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _A: int = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing the unknown token _A: Dict = tokens + [rust_tokenizer.unk_token] _A: Tuple = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Any ): """simple docstring""" pass def __magic_name__ ( self : int , lowerCAmelCase_ : Union[str, Any]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # Simple input _A: Optional[int] = '''This is a simple input''' _A: Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _A: Tuple = ('''This is a simple input''', '''This is a pair''') _A: str = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) def __magic_name__ ( self : int ): """simple docstring""" _A: Union[str, Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _A: Union[str, Any] = '''This is a simple input''' _A: Union[str, Any] = ['''This is a simple input looooooooong''', '''This is a simple input'''] _A: Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _A: Optional[int] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _A: Dict = tokenizer.pad_token_id _A: Any = tokenizer(lowerCAmelCase_ , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = tokenizer(*lowerCAmelCase_ , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _A: Union[str, Any] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Tuple = '''$$$''' _A: Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase_ , add_bos_token=lowerCAmelCase_ ) _A: Tuple = '''This is a simple input''' _A: Any = ['''This is a simple input 1''', '''This is a simple input 2'''] _A: List[str] = tokenizer.bos_token_id _A: int = tokenizer(lowerCAmelCase_ ) _A: int = tokenizer(lowerCAmelCase_ ) self.assertEqual(out_s.input_ids[0] , lowerCAmelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _A: List[Any] = tokenizer.decode(out_s.input_ids ) _A: Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCAmelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[Any] = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) _A: List[Any] = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' _A: Optional[Any] = '''\nif len_a > len_b: result = a\nelse: result = b''' _A: Optional[Any] = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] _A: str = tokenizer.decode(lowerCAmelCase_ , truncate_before_pattern=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( a ) -> Optional[int]: # getting number of pixels in the image _A: Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a ): for j in range(a ): _A: int = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase__ : Union[str, Any] = imread('image_data/lena.jpg', 1) # convert to its negative UpperCAmelCase__ : str = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCamelCase__ ( a , a=() , a=None , a="no" , a="29500" ) -> int: _A: Dict = False _A: Dict = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): _A: Any = True elif "IPython" in sys.modules: _A: Any = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: _A: Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , a ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: _A: Dict = 8 _A: Tuple = PrepareForLaunch(a , distributed_type='''TPU''' ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(a , args=a , nprocs=a , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*a ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a , master_addr='''127.0.01''' , master_port=a , mixed_precision=a ): _A: Optional[Any] = PrepareForLaunch(a , distributed_type='''MULTI_GPU''' ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(a , args=a , nprocs=a , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _A: Any = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*a ) def lowerCamelCase__ ( a , a=() , a=2 ) -> List[str]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): _A: int = PrepareForLaunch(a , debug=a ) start_processes(a , args=a , nprocs=a , start_method='''fork''' )
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCAmelCase__ : str = logging.get_logger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Dict=6.0 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str="fp4" , lowerCAmelCase_ : Tuple=False , **lowerCAmelCase_ : List[str] , ): """simple docstring""" _A: Dict = load_in_abit _A: List[Any] = load_in_abit _A: int = llm_inta_threshold _A: Tuple = llm_inta_skip_modules _A: Optional[Any] = llm_inta_enable_fpaa_cpu_offload _A: Any = llm_inta_has_fpaa_weight _A: str = bnb_abit_quant_type _A: Tuple = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _A: int = torch.floataa elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , torch.dtype ): _A: Dict = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def __magic_name__ ( self : Dict ): """simple docstring""" if not isinstance(self.llm_inta_threshold , lowerCAmelCase_ ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase_ ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase_ ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase_ ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase_ ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase_ ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def __magic_name__ ( self : Dict ): """simple docstring""" return self.load_in_abit or self.load_in_abit def __magic_name__ ( self : List[Any] ): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __magic_name__ ( cls : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : int ): """simple docstring""" _A: Any = cls(**lowerCAmelCase_ ) _A: List[Any] = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) to_remove.append(lowerCAmelCase_ ) for key in to_remove: kwargs.pop(lowerCAmelCase_ , lowerCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[str, os.PathLike] ): """simple docstring""" with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: _A: Optional[int] = self.to_dict() _A: List[str] = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '''\n''' writer.write(lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = copy.deepcopy(self.__dict__ ) _A: Any = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : str ): """simple docstring""" return F"""{self.__class__.__name__} {self.to_json_string()}""" def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : bool = True ): """simple docstring""" if use_diff is True: _A: Any = self.to_diff_dict() else: _A: List[str] = self.to_dict() return json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.to_dict() # get the default config dict _A: Dict = BitsAndBytesConfig().to_dict() _A: Tuple = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _A: str = value return serializable_config_dict
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
import tensorflow as tf from ...tf_utils import shape_list class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : int=False , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: Dict = vocab_size _A: Union[str, Any] = d_embed _A: Union[str, Any] = d_proj _A: Optional[Any] = cutoffs + [vocab_size] _A: Union[str, Any] = [0] + self.cutoffs _A: Optional[Any] = div_val _A: Optional[Any] = self.cutoffs[0] _A: Optional[int] = len(self.cutoffs ) - 1 _A: Optional[int] = self.shortlist_size + self.n_clusters _A: Optional[int] = keep_order _A: List[Any] = [] _A: Optional[int] = [] def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int ): """simple docstring""" if self.n_clusters > 0: _A: Union[str, Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name='''cluster_weight''' ) _A: Dict = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _A: Union[str, Any] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_projs_._{i}""" , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _A: Optional[int] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._weight""" , ) _A: str = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _A: Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A: str = self.d_embed // (self.div_val**i) _A: Union[str, Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_projs_._{i}""" ) self.out_projs.append(lowerCAmelCase_ ) _A: str = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._weight""" , ) _A: int = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def __magic_name__ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict=None ): """simple docstring""" _A: str = x if proj is not None: _A: List[str] = tf.einsum('''ibd,ed->ibe''' , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum('''ibd,nd->ibn''' , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def __magic_name__ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[Any] = shape_list(lowerCAmelCase_ ) _A: str = tf.range(lp_size[0] , dtype=target.dtype ) _A: Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=False ): """simple docstring""" _A: str = 0 if self.n_clusters == 0: _A: Any = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _A: Tuple = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _A: str = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _A: Optional[int] = shape_list(lowerCAmelCase_ ) _A: str = [] _A: int = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _A: str = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _A: List[Any] = (target >= l_idx) & (target < r_idx) _A: Any = tf.where(lowerCAmelCase_ ) _A: Dict = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _A: str = self.out_layers[0][0][l_idx:r_idx] _A: Union[str, Any] = self.out_layers[0][1][l_idx:r_idx] else: _A: Dict = self.out_layers[i][0] _A: Union[str, Any] = self.out_layers[i][1] if i == 0: _A: Union[str, Any] = tf.concat([cur_W, self.cluster_weight] , 0 ) _A: Dict = tf.concat([cur_b, self.cluster_bias] , 0 ) _A: Optional[int] = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _A: Union[str, Any] = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _A: List[str] = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _A: Union[str, Any] = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _A: Union[str, Any] = tf.nn.log_softmax(lowerCAmelCase_ ) _A: Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster _A: Tuple = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _A: Tuple = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[int] = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _A: Optional[int] = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _A: Optional[Any] = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import sys import turtle def lowerCamelCase__ ( a , a ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase__ ( a , a , a , a , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(a , get_mid(a , a ) , get_mid(a , a ) , depth - 1 ) triangle(a , get_mid(a , a ) , get_mid(a , a ) , depth - 1 ) triangle(a , get_mid(a , a ) , get_mid(a , a ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) UpperCAmelCase__ : Union[str, Any] = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') UpperCAmelCase__ : Union[str, Any] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) UpperCAmelCase__ : str = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : int = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] UpperCAmelCase__ : int = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowerCamelCase__ ( a , a ) -> int: _A: Union[str, Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _A: Tuple = int(re.match(R'''.*layer_(\d*).*''' , a )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def lowerCamelCase__ ( a ) -> Optional[Any]: if dtype == torch.bool: return 1 / 8 _A: Tuple = re.search(R'''[^\d](\d+)$''' , str(a ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) _A: Any = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( a , a , a , a , a ) -> Tuple: # Construct model if bloom_config_file == "": _A: Union[str, Any] = BloomConfig() else: _A: Optional[Any] = BloomConfig.from_json_file(a ) if shard_model: _A: Dict = os.listdir(a ) _A: Optional[Any] = sorted(filter(lambda a : s.startswith('''layer''' ) and "model_00" in s , a ) ) _A: Tuple = {'''weight_map''': {}, '''metadata''': {}} _A: Optional[Any] = 0 _A: int = None _A: str = BloomConfig() for j, file in enumerate(a ): print('''Processing file: {}'''.format(a ) ) _A: Tuple = None for i in range(a ): # load all TP files _A: str = file.replace('''model_00''' , f"""model_0{i}""" ) _A: str = torch.load(os.path.join(a , a ) , map_location='''cpu''' ) # Rename keys in the transformers names _A: str = list(temp.keys() ) for key in keys: _A: str = temp.pop(a ) if tensors is None: _A: int = temp else: for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _A: Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _A: int = torch.cat([tensors[key], temp[key]] , dim=a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _A: str = tensors[key] / pretraining_tp torch.save( a , os.path.join( a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): _A: Dict = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _A: Union[str, Any] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(a ) ).zfill(5 ) ) _A: Union[str, Any] = BloomConfig() _A: str = pytorch_dump_folder_path + '''/''' + CONFIG_NAME _A: Optional[int] = total_size with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: _A: Optional[Any] = json.dumps(a , indent=2 , sort_keys=a ) + '''\n''' f.write(a ) else: _A: int = BloomModel(a ) _A: Tuple = os.listdir(a ) _A: str = sorted(filter(lambda a : s.startswith('''layer''' ) and "model_00" in s , a ) ) _A: Optional[Any] = None for i, file in enumerate(a ): _A: str = None for i in range(a ): # load all TP files _A: Tuple = file.replace('''model_00''' , f"""model_0{i}""" ) _A: List[Any] = torch.load(os.path.join(a , a ) , map_location='''cpu''' ) # Rename keys in the transformers names _A: Tuple = list(temp.keys() ) for key in keys: _A: int = temp.pop(a ) if tensors is None: _A: Union[str, Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _A: Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _A: Optional[int] = torch.cat([tensors[key], temp[key]] , dim=a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _A: List[Any] = tensors[key] / pretraining_tp _A: str = model.load_state_dict(a , strict=a ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: _A: Union[str, Any] = set(other_keys.missing_keys ) else: _A: Any = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(a , exist_ok=a ) _A: Optional[Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _A: Optional[int] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: _A: List[str] = model.to(config.torch_dtype ) torch.save(model.state_dict() , a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) UpperCAmelCase__ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" def lowerCamelCase__ ( a ) -> int: _A: list[list[int]] = [[0 for _ in range(a )] for _ in range(m + 1 )] for i in range(m + 1 ): _A: Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , a ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase__ : Any = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase__ : Any = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
from math import pi, sqrt def lowerCamelCase__ ( a ) -> float: if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(a ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(a ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase__ ( ) -> None: assert gamma(0.5 ) == sqrt(a ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ : Dict = 1.0 while num: UpperCAmelCase__ : Optional[Any] = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : List[str] = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = KandinskyInpaintPipeline __UpperCamelCase : Union[str, Any] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __UpperCamelCase : List[Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __UpperCamelCase : Dict = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __UpperCamelCase : List[str] = False @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Tuple ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.time_input_dim * 4 @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return 1_0_0 @property def __magic_name__ ( self : int ): """simple docstring""" _A: Tuple = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __magic_name__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) _A: Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _A: int = MultilingualCLIP(lowerCAmelCase_ ) _A: Tuple = text_encoder.eval() return text_encoder @property def __magic_name__ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _A: Dict = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def __magic_name__ ( self : str ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.dummy_text_encoder _A: Dict = self.dummy_tokenizer _A: Union[str, Any] = self.dummy_unet _A: Dict = self.dummy_movq _A: int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase_ , ) _A: Optional[int] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple=0 ): """simple docstring""" _A: Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase_ ) # create init_image _A: Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A: Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _A: Any = np.ones((6_4, 6_4) , dtype=np.floataa ) _A: str = 0 if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: Optional[Any] = torch.manual_seed(lowerCAmelCase_ ) else: _A: Dict = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Optional[int] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : Any ): """simple docstring""" _A: str = '''cpu''' _A: int = self.get_dummy_components() _A: List[Any] = self.pipeline_class(**lowerCAmelCase_ ) _A: Union[str, Any] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Optional[Any] = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _A: Dict = output.images _A: str = pipe( **self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0] _A: Union[str, Any] = image[0, -3:, -3:, -1] _A: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _A: List[str] = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _A: List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _A: str = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _A: Any = 0 _A: List[Any] = '''a hat''' _A: Tuple = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase_ ) _A: Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _A: List[Any] = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A: Optional[Any] = pipe_prior( lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _A: Optional[Any] = pipeline( lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _A: List[str] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
from __future__ import annotations from math import pi def lowerCamelCase__ ( a , a , a ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : Dict=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=1_0_0_0 , ): """simple docstring""" _A: str = parent _A: Optional[Any] = batch_size _A: Tuple = seq_length _A: Union[str, Any] = is_training _A: Any = use_input_mask _A: Tuple = use_token_type_ids _A: Optional[Any] = use_labels _A: List[Any] = vocab_size _A: Optional[int] = hidden_size _A: str = num_hidden_layers _A: int = num_attention_heads _A: Dict = intermediate_size _A: Optional[Any] = hidden_act _A: List[str] = hidden_dropout_prob _A: Optional[int] = attention_probs_dropout_prob _A: Union[str, Any] = max_position_embeddings _A: Any = type_vocab_size _A: Any = type_sequence_label_size _A: List[str] = initializer_range _A: Optional[int] = num_labels _A: int = num_choices _A: Optional[Any] = scope _A: Union[str, Any] = range_bbox def __magic_name__ ( self : Any ): """simple docstring""" _A: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _A: str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A: Union[str, Any] = bbox[i, j, 3] _A: Union[str, Any] = bbox[i, j, 1] _A: Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _A: Optional[Any] = bbox[i, j, 2] _A: Any = bbox[i, j, 0] _A: Union[str, Any] = t _A: Dict = tf.convert_to_tensor(lowerCAmelCase_ ) _A: Any = None if self.use_input_mask: _A: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _A: Any = None if self.use_token_type_ids: _A: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A: str = None _A: str = None _A: List[str] = None if self.use_labels: _A: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A: List[str] = ids_tensor([self.batch_size] , self.num_choices ) _A: str = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Dict = TFLayoutLMModel(config=lowerCAmelCase_ ) _A: Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _A: List[Any] = model(lowerCAmelCase_ , lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _A: List[str] = model(lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: Tuple = TFLayoutLMForMaskedLM(config=lowerCAmelCase_ ) _A: List[str] = model(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" _A: Tuple = self.num_labels _A: Dict = TFLayoutLMForSequenceClassification(config=lowerCAmelCase_ ) _A: List[str] = model(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: List[str] = self.num_labels _A: Dict = TFLayoutLMForTokenClassification(config=lowerCAmelCase_ ) _A: Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: List[Any] = TFLayoutLMForQuestionAnswering(config=lowerCAmelCase_ ) _A: Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Dict = self.prepare_config_and_inputs() ( _A ): List[str] = config_and_inputs _A: Union[str, Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase : Union[str, Any] = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = True __UpperCamelCase : Optional[int] = 10 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = TFLayoutLMModelTester(self ) _A: List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def __magic_name__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) @slow def __magic_name__ ( self : List[str] ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: List[str] = TFLayoutLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase__ ( ) -> int: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _A: Tuple = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 _A: List[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _A: Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 _A: Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _A: List[str] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) _A: Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _A: Union[str, Any] = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) # test the sequence output on [0, :3, :3] _A: Union[str, Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-3 ) ) # test the pooled output on [1, :3] _A: List[str] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowerCAmelCase_ , atol=1e-3 ) ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[str] = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) _A: List[str] = prepare_layoutlm_batch_inputs() # forward pass _A: Optional[Any] = model( input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _A: str = outputs.loss _A: Optional[Any] = (2,) self.assertEqual(loss.shape , lowerCAmelCase_ ) # test the shape of the logits _A: Tuple = outputs.logits _A: List[Any] = (2, 2) self.assertEqual(logits.shape , lowerCAmelCase_ ) @slow def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[int] = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=1_3 ) _A: Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _A: List[Any] = model( input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) # test the shape of the logits _A: Any = outputs.logits _A: Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: Any = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) _A: Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _A: Optional[Any] = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) # test the shape of the logits _A: List[str] = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , lowerCAmelCase_ ) self.assertEqual(outputs.end_logits.shape , lowerCAmelCase_ )
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" import math def lowerCamelCase__ ( a , a ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import operator as op def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Tuple = [] _A: Union[str, Any] = lambda a , a : int(x / y ) # noqa: E731 integer division operation _A: str = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(a ) , sep=''' | ''' ) else: _A: Dict = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(a ) , sep=''' | ''' ) _A: Tuple = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(a ) , sep=''' | ''' ) stack.append( str(opr[x](int(a ) , int(a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(a ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase__ : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase__ : Tuple = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase__ : Optional[Any] = 0 for log in Path().glob('*.log'): UpperCAmelCase__ : List[str] = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase__ : List[Any] = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase__ : Optional[Any] = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase__ : Dict = F"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase__ : Tuple = [] log.unlink() UpperCAmelCase__ : List[Any] = '' UpperCAmelCase__ : Dict = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Tuple = {} for test in failed_tests: UpperCAmelCase__ : int = test[0].split('::') UpperCAmelCase__ : Optional[int] = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase__ : Any = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase__ : Any = [test[0] for test in failed_table] UpperCAmelCase__ : str = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase__ : Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase__ : List[Any] = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCAmelCase__ : List[str] = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase__ : Optional[Any] = len(err) + 10 UpperCAmelCase__ : List[Any] = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCAmelCase__ : Optional[Any] = 'No failed tests! 🤗' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase__ : List[str] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase__ : Dict = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase__ : Union[str, Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase__ : List[Any] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase__ : List[Any] = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase__ : List[str] = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase__ : Optional[int] = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase__ : Optional[int] = row[0] else: UpperCAmelCase__ : int = '' UpperCAmelCase__ : Optional[int] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = XGLMTokenizer __UpperCamelCase : Optional[Any] = XGLMTokenizerFast __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = True def __magic_name__ ( self : List[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _A: Tuple = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = '''<pad>''' _A: str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(lowerCAmelCase_ ) , 1_0_0_8 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _A: str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _A: Dict = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _A: Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __magic_name__ ( self : Any ): """simple docstring""" return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __magic_name__ ( self : int ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase_ , f.name ) _A: Optional[Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase_ ) _A: List[Any] = pickle.dumps(lowerCAmelCase_ ) pickle.loads(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _A: int = self.get_tokenizer() _A: str = self.get_rust_tokenizer() _A: Union[str, Any] = '''I was born in 92000, and this is falsé.''' _A: List[str] = tokenizer.tokenize(lowerCAmelCase_ ) _A: str = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: List[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Any = self.get_rust_tokenizer() _A: List[Any] = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = '''Hello World!''' _A: Optional[Any] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off _A: List[str] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def __magic_name__ ( self : Dict ): """simple docstring""" _A: str = { '''input_ids''': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''facebook/xglm-564M''' , padding=lowerCAmelCase_ , )
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
import math def lowerCamelCase__ ( a ) -> list[int]: _A: Dict = [] _A: int = 2 _A: Any = int(math.sqrt(a ) ) # Size of every segment _A: int = [True] * (end + 1) _A: Any = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): _A: int = False start += 1 prime += in_prime _A: Union[str, Any] = end + 1 _A: List[Any] = min(2 * end , a ) while low <= n: _A: Any = [True] * (high - low + 1) for each in in_prime: _A: Optional[int] = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): _A: Union[str, Any] = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) _A: Optional[int] = high + 1 _A: Dict = min(high + end , a ) return prime print(sieve(10**6))
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
from manim import * class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = Rectangle(height=0.5 , width=0.5 ) _A: int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A: List[str] = [mem.copy() for i in range(6 )] _A: Optional[Any] = [mem.copy() for i in range(6 )] _A: Any = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) _A: Union[str, Any] = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) _A: Union[str, Any] = VGroup(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) _A: Union[str, Any] = Text('''CPU''' , font_size=2_4 ) _A: Union[str, Any] = Group(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0.5 , aligned_edge=lowerCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase_ ) _A: str = [mem.copy() for i in range(1 )] _A: List[str] = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) _A: Dict = Text('''GPU''' , font_size=2_4 ) _A: str = Group(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0.5 , aligned_edge=lowerCAmelCase_ ) gpu.align_to(lowerCAmelCase_ , lowerCAmelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCAmelCase_ ) _A: Optional[Any] = [mem.copy() for i in range(6 )] _A: str = VGroup(*lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0 ) _A: Union[str, Any] = Text('''Model''' , font_size=2_4 ) _A: Optional[Any] = Group(lowerCAmelCase_ , lowerCAmelCase_ ).arrange(lowerCAmelCase_ , buff=0.5 , aligned_edge=lowerCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCAmelCase_ , run_time=1 ) , Create(lowerCAmelCase_ , run_time=1 ) , Create(lowerCAmelCase_ , run_time=1 ) , ) _A: Optional[Any] = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=2_4 , ) _A: int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A: Dict = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase_ , run_time=2.5 ) , Write(lowerCAmelCase_ ) , Write(lowerCAmelCase_ ) ) self.add(lowerCAmelCase_ ) _A: List[Any] = [] _A: Union[str, Any] = [] _A: List[str] = [] for i, rect in enumerate(lowerCAmelCase_ ): _A: Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase_ , opacity=0.7 ) cpu_target.move_to(lowerCAmelCase_ ) cpu_target.generate_target() _A: Optional[int] = 0.46 / 4 _A: Any = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCAmelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCAmelCase_ , buff=0.0 ) cpu_targs.append(lowerCAmelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCAmelCase_ ) ) second_animations.append(MoveToTarget(lowerCAmelCase_ , run_time=1.5 ) ) self.play(*lowerCAmelCase_ ) self.play(*lowerCAmelCase_ ) self.wait()
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
from __future__ import annotations def lowerCamelCase__ ( a ) -> bool: _A: List[str] = len(a ) # We need to create solution object to save path. _A: Optional[Any] = [[0 for _ in range(a )] for _ in range(a )] _A: List[Any] = run_maze(a , 0 , 0 , a ) if solved: print('''\n'''.join(str(a ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def lowerCamelCase__ ( a , a , a , a ) -> bool: _A: Tuple = len(a ) # Final check point. if i == j == (size - 1): _A: List[str] = 1 return True _A: Optional[Any] = (not i < 0) and (not j < 0) # Check lower bounds _A: int = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _A: Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _A: Optional[Any] = 1 # check for directions if ( run_maze(a , i + 1 , a , a ) or run_maze(a , a , j + 1 , a ) or run_maze(a , i - 1 , a , a ) or run_maze(a , a , j - 1 , a ) ): return True _A: Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
from __future__ import annotations from statistics import mean def lowerCamelCase__ ( a , a , a ) -> list[int]: _A: List[str] = [0] * no_of_processes _A: Dict = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(a ): _A: Any = burst_time[i] _A: list[int] = [] _A: Tuple = 0 _A: Optional[int] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _A: List[Any] = [] _A: Union[str, Any] = -1 for i in range(a ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(a ) if len(a ) > 0: _A: List[str] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _A: List[str] = i total_time += burst_time[target_process] completed += 1 _A: Any = 0 _A: Dict = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCamelCase__ ( a , a , a ) -> list[int]: _A: Dict = [0] * no_of_processes for i in range(a ): _A: int = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') UpperCAmelCase__ : int = 4 UpperCAmelCase__ : int = [2, 5, 3, 7] UpperCAmelCase__ : Optional[Any] = [0, 0, 0, 0] UpperCAmelCase__ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase__ : Tuple = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase__ : Any = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def lowerCamelCase__ ( a , a ) -> Any: inspect_dataset(a , a ) _A: Any = path + '''.py''' assert script_name in os.listdir(a ) assert "__pycache__" not in os.listdir(a ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def lowerCamelCase__ ( a , a ) -> Tuple: inspect_metric(a , a ) _A: str = path + '''.py''' assert script_name in os.listdir(a ) assert "__pycache__" not in os.listdir(a ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowerCamelCase__ ( a , a , a ) -> List[Any]: _A: int = get_dataset_config_info(a , config_name=a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: with pytest.raises(a ): get_dataset_config_info(a , config_name=a ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: _A: Optional[Any] = get_dataset_config_names(a ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def lowerCamelCase__ ( a , a , a ) -> Tuple: _A: List[Any] = get_dataset_infos(a ) assert list(infos.keys() ) == expected_configs _A: Union[str, Any] = expected_configs[0] assert expected_config in infos _A: Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowerCamelCase__ ( a , a , a ) -> List[Any]: _A: Any = get_dataset_infos(a ) assert expected_config in infos _A: str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowerCamelCase__ ( a , a , a ) -> Optional[Any]: with pytest.raises(a ): get_dataset_split_names(a , config_name=a )
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup UpperCAmelCase__ : Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def lowerCamelCase__ ( a ) -> str: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') UpperCAmelCase__ : Dict = parser.parse_args() if args.check_lib: UpperCAmelCase__ : Any = importlib.import_module('transformers') UpperCAmelCase__ : Tuple = Path(transformers_module.__file__).parent else: UpperCAmelCase__ : List[Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py UpperCAmelCase__ : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Any = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. UpperCAmelCase__ : Optional[int] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') UpperCAmelCase__ : Union[str, Any] = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase__ : Optional[Any] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) UpperCAmelCase__ : List[Any] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCamelCase__ ( a ) -> List[Any]: _A: List[str] = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , a ) return [m.group(0 ) for m in matches] def lowerCamelCase__ ( ) -> Any: _A: int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _A: Any = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _A: Union[str, Any] = collections.defaultdict(a ) _A: List[str] = collections.defaultdict(a ) _A: int = collections.defaultdict(a ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(a ): _A: List[str] = None if _re_tf_models.match(a ) is not None: _A: List[Any] = tf_models _A: Union[str, Any] = _re_tf_models.match(a ).groups()[0] elif _re_flax_models.match(a ) is not None: _A: Optional[Any] = flax_models _A: str = _re_flax_models.match(a ).groups()[0] elif _re_pt_models.match(a ) is not None: _A: Any = pt_models _A: List[str] = _re_pt_models.match(a ).groups()[0] if lookup_dict is not None: while len(a ) > 0: if attr_name in model_prefix_to_model_type: _A: Tuple = True break # Try again after removing the last word in the name _A: List[Any] = ''''''.join(camel_case_split(a )[:-1] ) _A: str = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _A: Tuple = list(a ) all_models.sort() _A: str = {'''model_type''': all_models} _A: int = [pt_models[t] for t in all_models] _A: str = [tf_models[t] for t in all_models] _A: List[str] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _A: Tuple = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _A: Optional[int] = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _A: Any = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _A: Dict = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _A: List[Any] = '''AutoTokenizer''' _A: Optional[int] = [processors[t] for t in all_models] return pd.DataFrame(a ) def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Dict = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _A: Any = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] _A: Dict = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(a , a , a ): # The type of pipeline may not exist in this framework if not hasattr(a , a ): continue # First extract all model_names _A: List[str] = [] for name in getattr(a , a ).values(): if isinstance(a , a ): model_names.append(a ) else: model_names.extend(list(a ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCamelCase__ ( a , a ) -> List[Any]: _A: Optional[int] = get_frameworks_table() _A: List[Any] = Dataset.from_pandas(a ) _A: List[Any] = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=a ) _A: Any = Dataset.from_json(a ) _A: Tuple = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(a ) ) } _A: str = update_pipeline_and_auto_class_table(a ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _A: str = sorted(table.keys() ) _A: List[str] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) _A: Dict = Dataset.from_pandas(a ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(a , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(a , '''pipeline_tags.json''' ) ) if commit_sha is not None: _A: Union[str, Any] = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _A: str = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=a , repo_type='''dataset''' , token=a , commit_message=a , ) def lowerCamelCase__ ( ) -> List[Any]: _A: Optional[int] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _A: Union[str, Any] = transformers_module.pipelines.SUPPORTED_TASKS _A: int = [] for key in pipeline_tasks: if key not in in_table: _A: Dict = pipeline_tasks[key]['''pt'''] if isinstance(a , (list, tuple) ): _A: Optional[Any] = model[0] _A: Optional[int] = model.__name__ if model not in in_table.values(): missing.append(a ) if len(a ) > 0: _A: Optional[Any] = ''', '''.join(a ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') UpperCAmelCase__ : List[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
from __future__ import annotations def lowerCamelCase__ ( a ) -> list[int]: if len(a ) == 0: return array _A: List[str] = min(a ), max(a ) # Compute the variables _A: Optional[int] = _max - _min + 1 _A: List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _A: Any = i - _min _A: List[str] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _A: Optional[int] = 0 for i in range(a ): while holes_repeat[i] > 0: _A: List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : List[Any] = input('Enter numbers separated by comma:\n') UpperCAmelCase__ : Tuple = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" def lowerCamelCase__ ( a = 1_00_00_00 ) -> int: _A: Any = 1 _A: Dict = 1 _A: List[str] = {1: 1} for inputa in range(2 , a ): _A: Any = 0 _A: Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _A: int = (3 * number) + 1 counter += 1 if inputa not in counters: _A: Union[str, Any] = counter if counter > pre_counter: _A: Dict = inputa _A: Optional[Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
def lowerCamelCase__ ( a ) -> list: if len(a ) <= 1: return lst _A: int = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: _A: Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: _A: Optional[int] = 1 return lst if __name__ == "__main__": UpperCAmelCase__ : List[str] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : int = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0