code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ): """simple docstring""" _A: Union[str, Any] = [ [], [], [], ] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(lowerCAmelCase_ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : Optional[Any] ): """simple docstring""" return "\n".join(F"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ): """simple docstring""" _A: List[Any] = [] def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" if len(self.queue ) == 1_0_0: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: _A: str = min(self.queue ) self.queue.remove(lowerCAmelCase_ ) return data def __str__( self : Union[str, Any] ): """simple docstring""" return str(self.queue ) def lowerCamelCase__ ( ) -> str: _A: Tuple = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def lowerCamelCase__ ( ) -> Tuple: _A: List[Any] = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase__ : Union[str, Any] = 'pt' elif is_tf_available(): UpperCAmelCase__ : int = 'tf' else: UpperCAmelCase__ : Any = 'jax' class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = PerceiverTokenizer __UpperCamelCase : Tuple = False def __magic_name__ ( self : Tuple ): """simple docstring""" super().setUp() _A: int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=2_0 , lowerCAmelCase_ : Dict=5 ): """simple docstring""" _A: List[Any] = [] for i in range(len(lowerCAmelCase_ ) ): try: _A: Dict = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _A: str = list(filter(lambda lowerCAmelCase_ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase_ ) ) _A: Union[str, Any] = list(filter(lambda lowerCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase_ ) , lowerCAmelCase_ ) ) if max_length is not None and len(lowerCAmelCase_ ) > max_length: _A: Tuple = toks[:max_length] if min_length is not None and len(lowerCAmelCase_ ) < min_length and len(lowerCAmelCase_ ) > 0: while len(lowerCAmelCase_ ) < min_length: _A: Dict = toks + toks # toks_str = [t[1] for t in toks] _A: Tuple = [t[0] for t in toks] # Ensure consistency _A: str = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) if " " not in output_txt and len(lowerCAmelCase_ ) > 1: _A: Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase_ ) ) if with_prefix_space: _A: Optional[int] = ''' ''' + output_txt _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) return output_txt, output_ids def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[Any] = self.perceiver_tokenizer _A: Dict = '''Unicode €.''' _A: str = tokenizer(lowerCAmelCase_ ) _A: Tuple = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase_ ) # decoding _A: str = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , '''[CLS]Unicode €.[SEP]''' ) _A: Dict = tokenizer('''e è é ê ë''' ) _A: Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase_ ) # decoding _A: int = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = self.perceiver_tokenizer _A: Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off _A: List[str] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _A: str = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) if FRAMEWORK != "jax": _A: Tuple = list(batch.input_ids.numpy()[0] ) else: _A: Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = self.perceiver_tokenizer _A: List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _A: Union[str, Any] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase_ ) self.assertIn('''attention_mask''' , lowerCAmelCase_ ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase_ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = self.perceiver_tokenizer _A: Tuple = [ '''Summary of the text.''', '''Another summary.''', ] _A: str = tokenizer( text_target=lowerCAmelCase_ , max_length=3_2 , padding='''max_length''' , truncation=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _A: str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _A: str = tempfile.mkdtemp() _A: Dict = ''' He is very happy, UNwant\u00E9d,running''' _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _A: List[Any] = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _A: str = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) _A: List[str] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _A: List[Any] = tempfile.mkdtemp() _A: Optional[int] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) _A: Dict = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _A: List[str] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _A: int = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _A: Union[str, Any] = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _A: Optional[Any] = tokenizer.__class__.from_pretrained(lowerCAmelCase_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _A: str = json.load(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _A: Union[str, Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] _A: Optional[int] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A: Any = tokenizer_class.from_pretrained( lowerCAmelCase_ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A: Tuple = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase_ )] _A: Optional[Any] = tokenizer_class.from_pretrained( lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def __magic_name__ ( self : Any ): """simple docstring""" pass def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : List[str] ): """simple docstring""" pass def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = self.get_tokenizers(fast=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _A: int = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] _A: Dict = tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Optional[int] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ : Dict = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ : int = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } UpperCAmelCase__ : List[Any] = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = RealmTokenizer def __init__( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Tuple="[UNK]" , lowerCAmelCase_ : Optional[int]="[SEP]" , lowerCAmelCase_ : List[Any]="[PAD]" , lowerCAmelCase_ : int="[CLS]" , lowerCAmelCase_ : Any="[MASK]" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A: Optional[Any] = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _A: Tuple = do_lower_case _A: Union[str, Any] = strip_accents _A: Dict = tokenize_chinese_chars _A: Optional[Any] = normalizer_class(**lowerCAmelCase_ ) _A: Optional[Any] = do_lower_case def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : int , **lowerCAmelCase_ : int ): """simple docstring""" _A: Dict = PaddingStrategy.MAX_LENGTH _A: Any = text _A: List[Any] = kwargs.pop('''text_pair''' , lowerCAmelCase_ ) _A: Optional[Any] = kwargs.pop('''return_tensors''' , lowerCAmelCase_ ) _A: List[str] = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(lowerCAmelCase_ ): if batch_text_pair is not None: _A: Any = batch_text_pair[idx] else: _A: List[str] = None _A: str = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) _A: int = encoded_candidates.get('''input_ids''' ) _A: Dict = encoded_candidates.get('''attention_mask''' ) _A: Optional[int] = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(lowerCAmelCase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCAmelCase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCAmelCase_ ) _A: List[str] = {key: item for key, item in output_data.items() if len(lowerCAmelCase_ ) != 0} return BatchEncoding(lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=None ): """simple docstring""" _A: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Tuple = [self.sep_token_id] _A: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" _A: List[str] = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Tuple = '''FlavaImageProcessor''' __UpperCamelCase : Optional[int] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase_ , ) _A: int = kwargs.pop('''feature_extractor''' ) _A: List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[ImageInput] = None , lowerCAmelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _A: Optional[Any] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: _A: List[Any] = self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def __magic_name__ ( self : Any , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Any , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Tuple = self.tokenizer.model_input_names _A: Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self : Tuple ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase_ , ) return self.image_processor_class @property def __magic_name__ ( self : int ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase_ , ) return self.image_processor
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = AudioClassificationPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) # test with a raw waveform _A: Optional[Any] = np.zeros((3_4_0_0_0,) ) _A: int = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __magic_name__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any ): """simple docstring""" _A: Any = examples _A: List[str] = audio_classifier(lowerCAmelCase_ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCAmelCase_ , [ {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, ] , ) _A: Optional[Any] = audio_classifier(lowerCAmelCase_ , top_k=1 ) self.assertEqual( lowerCAmelCase_ , [ {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, ] , ) self.run_torchaudio(lowerCAmelCase_ ) @require_torchaudio def __magic_name__ ( self : Any , lowerCAmelCase_ : Optional[int] ): """simple docstring""" import datasets # test with a local file _A: List[str] = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) _A: Any = dataset[0]['''audio''']['''array'''] _A: Optional[int] = audio_classifier(lowerCAmelCase_ ) self.assertEqual( lowerCAmelCase_ , [ {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, {'''score''': ANY(lowerCAmelCase_ ), '''label''': ANY(lowerCAmelCase_ )}, ] , ) @require_torch def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[Any] = '''anton-l/wav2vec2-random-tiny-classifier''' _A: Dict = pipeline('''audio-classification''' , model=lowerCAmelCase_ ) _A: List[str] = np.ones((8_0_0_0,) ) _A: str = audio_classifier(lowerCAmelCase_ , top_k=4 ) _A: Tuple = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] _A: str = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _A: Optional[int] = {'''array''': np.ones((8_0_0_0,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} _A: List[str] = audio_classifier(lowerCAmelCase_ , top_k=4 ) self.assertIn(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __magic_name__ ( self : str ): """simple docstring""" import datasets _A: Union[str, Any] = '''superb/wav2vec2-base-superb-ks''' _A: int = pipeline('''audio-classification''' , model=lowerCAmelCase_ ) _A: Union[str, Any] = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) _A: Optional[Any] = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) _A: Tuple = audio_classifier(lowerCAmelCase_ , top_k=4 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=3 ) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def __magic_name__ ( self : List[Any] ): """simple docstring""" pass
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Any = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = DebertaVaTokenizer __UpperCamelCase : List[str] = DebertaVaTokenizerFast __UpperCamelCase : Tuple = True __UpperCamelCase : Any = True def __magic_name__ ( self : Optional[int] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _A: int = DebertaVaTokenizer(lowerCAmelCase_ , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Optional[int] = '''this is a test''' _A: Any = '''this is a test''' return input_text, output_text def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Dict = '''<pad>''' _A: Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(lowerCAmelCase_ ) , 3_0_0_0_1 ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = ''' \tHeLLo!how \n Are yoU? ''' _A: Optional[Any] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _A: Optional[int] = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) _A: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Tuple = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) _A: Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def __magic_name__ ( self : List[Any] ): """simple docstring""" pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def __magic_name__ ( self : Dict ): """simple docstring""" pass def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = '''I was born in 92000, and this is falsé.''' _A: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _A: Optional[Any] = DebertaVaTokenizer(lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: int = DebertaVaTokenizerFast(lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = '''I was born in 92000, and this is falsé.''' _A: Optional[Any] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _A: Any = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: List[str] = '''I was born in 92000, and this is falsé.''' _A: Union[str, Any] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _A: Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: int = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: str = '''I was born in 92000, and this is falsé.''' _A: List[str] = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _A: Any = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: int = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: str = ''' \tHeLLo!how \n Are yoU? ''' _A: Union[str, Any] = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _A: int = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) _A: Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = self.get_tokenizer() _A: List[str] = self.get_rust_tokenizer() _A: str = '''I was born in 92000, and this is falsé.''' _A: Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) _A: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[int] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = self.get_rust_tokenizer() _A: int = tokenizer.encode(lowerCAmelCase_ ) _A: Any = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: Optional[Any] = '''This is a test''' _A: List[Any] = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] _A: Dict = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _A: Optional[int] = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _A: Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _A: Tuple = DebertaVaTokenizerFast(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _A: Optional[int] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: int = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: int = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: int = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # fmt: off _A: Tuple = '''I was born in 92000, and this is falsé.''' _A: str = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] _A: str = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _A: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _A: Optional[int] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Tuple = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Tuple = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: Tuple = DebertaVaTokenizer(lowerCAmelCase_ ) _A: List[Any] = tokenizer.encode('''sequence builders''' ) _A: Tuple = tokenizer.encode('''multi-sequence build''' ) _A: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _A: Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase_ , ) @slow def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Any = {'''input_ids''': [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
class UpperCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[bool]] ): """simple docstring""" _A: int = row _A: Any = col _A: List[Any] = graph def __magic_name__ ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[bool]] ): """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[bool]] ): """simple docstring""" _A: str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _A: List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] _A: List[str] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): # And finally, count all islands. """simple docstring""" _A: List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] _A: str = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += 1 return count
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
import argparse from collections import defaultdict def lowerCamelCase__ ( a , a , a , a , a ) -> Union[str, Any]: _A: Union[str, Any] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(a , '''r''' ) as f: _A: List[Any] = f.readlines() _A: Tuple = f"""class {class_name}(""" _A: Tuple = f"""{4 * ' '}def {test_name}(""" _A: Union[str, Any] = f"""{8 * ' '}{correct_line.split()[0]}""" _A: Any = f"""{16 * ' '}{correct_line.split()[0]}""" _A: List[Any] = False _A: int = False _A: List[str] = False _A: Dict = False _A: Union[str, Any] = 0 _A: Optional[Any] = 0 _A: Dict = [] for line in lines: if line.startswith(a ): _A: Union[str, Any] = True elif in_class and line.startswith(a ): _A: Any = True elif in_class and in_func and (line.startswith(a ) or line.startswith(a )): _A: int = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _A: List[str] = True if in_class and in_func and in_line: if ")" not in line: continue else: _A: List[str] = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) _A: List[Any] = False else: new_lines.append(a ) with open(a , '''w''' ) as f: for line in new_lines: f.write(a ) def lowerCamelCase__ ( a , a=None ) -> int: if fail is not None: with open(a , '''r''' ) as f: _A: Dict = {l.strip() for l in f.readlines()} else: _A: Any = None with open(a , '''r''' ) as f: _A: Union[str, Any] = f.readlines() _A: str = defaultdict(a ) for line in correct_lines: _A: Optional[int] = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(a , a , a , a , a ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) UpperCAmelCase__ : Optional[int] = parser.parse_args() main(args.correct_filename, args.fail_filename)
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = 0 __UpperCamelCase : bool = False __UpperCamelCase : float = 3.0 class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCAmelCase_ ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _A: int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _A: Optional[int] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , lowerCAmelCase_ ) @require_multi_gpu def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase__ : List[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase__ : Optional[int] = torch.nn.Linear(100, 200) UpperCAmelCase__ : List[Any] = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase__ : List[Any] = '' UpperCAmelCase__ : Optional[int] = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Tuple = LEDConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Optional[int] = '''gelu''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : int=9_9 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=2_0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Optional[Any]=4 , ): """simple docstring""" _A: List[str] = parent _A: int = batch_size _A: int = seq_length _A: Dict = is_training _A: Tuple = use_labels _A: Tuple = vocab_size _A: Tuple = hidden_size _A: Tuple = num_hidden_layers _A: Optional[int] = num_attention_heads _A: str = intermediate_size _A: Tuple = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Optional[int] = max_position_embeddings _A: Tuple = eos_token_id _A: str = pad_token_id _A: Dict = bos_token_id _A: str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _A: Optional[int] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _A: List[str] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __magic_name__ ( self : int ): """simple docstring""" _A: Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: str = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _A: Optional[Any] = prepare_led_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = tf.concat( [tf.zeros_like(lowerCAmelCase_ )[:, :-1], tf.ones_like(lowerCAmelCase_ )[:, -1:]] , axis=-1 , ) _A: Any = global_attention_mask return config, inputs_dict def __magic_name__ ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str ): """simple docstring""" _A: str = TFLEDModel(config=lowerCAmelCase_ ).get_decoder() _A: str = inputs_dict['''input_ids'''] _A: Union[str, Any] = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: Union[str, Any] = 1 # first forward pass _A: str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A: Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _A: List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A: Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _A: Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) _A: Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _A: List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _A: str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _A: List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _A: List[Any] = output_from_no_past[:, -3:, random_slice_idx] _A: Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , ) -> Optional[Any]: if attention_mask is None: _A: Tuple = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __UpperCamelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : Tuple = True __UpperCamelCase : Optional[Any] = False __UpperCamelCase : str = False __UpperCamelCase : str = False def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Union[str, Any] = TFLEDModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs_for_common() _A: Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _A: int = 2 _A: List[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _A: str = True _A: str = self.model_tester.seq_length _A: str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase_ : Dict ): _A: Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase_ : str ): _A: List[str] = [t.numpy() for t in outputs.encoder_attentions] _A: List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _A: Any = True _A: str = False _A: List[str] = False _A: Optional[Any] = model_class(lowerCAmelCase_ ) _A: List[Any] = model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Tuple = len(lowerCAmelCase_ ) self.assertEqual(config.output_hidden_states , lowerCAmelCase_ ) check_encoder_attentions_output(lowerCAmelCase_ ) if self.is_encoder_decoder: _A: Optional[int] = model_class(lowerCAmelCase_ ) _A: Optional[Any] = model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase_ ) check_decoder_attentions_output(lowerCAmelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _A: Dict = True _A: Optional[int] = model_class(lowerCAmelCase_ ) _A: List[str] = model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase_ ) check_encoder_attentions_output(lowerCAmelCase_ ) # Check attention is always last and order is fine _A: Union[str, Any] = True _A: Optional[int] = True _A: Tuple = model_class(lowerCAmelCase_ ) _A: Union[str, Any] = model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase_ ) check_encoder_attentions_output(lowerCAmelCase_ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __magic_name__ ( self : List[str] ): """simple docstring""" pass def __magic_name__ ( self : str ): """simple docstring""" pass def lowerCamelCase__ ( a ) -> str: return tf.constant(a , dtype=tf.intaa ) UpperCAmelCase__ : Union[str, Any] = 1E-4 @slow @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Tuple ): """simple docstring""" _A: List[Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _A: Any = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _A: Union[str, Any] = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _A: Optional[Any] = prepare_led_inputs_dict(model.config , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model(**lowerCAmelCase_ )[0] _A: Dict = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , lowerCAmelCase_ ) # change to expected output here _A: Optional[int] = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-3 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: int = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _A: List[str] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _A: Dict = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _A: Union[str, Any] = prepare_led_inputs_dict(model.config , lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = model(**lowerCAmelCase_ )[0] _A: Any = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , lowerCAmelCase_ ) # change to expected output here _A: List[Any] = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-3 , rtol=1e-3 )
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
import os def lowerCamelCase__ ( a = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: _A: List[str] = in_file.read() _A: Dict = [[int(a ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] _A: str = [[0 for cell in row] for row in grid] _A: Tuple = len(grid[0] ) _A: List[str] = [[0 for i in range(a )] for j in range(a )] _A: Union[str, Any] = grid[0][0] for i in range(1 , a ): _A: Any = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): _A: Any = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): _A: List[Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = StableDiffusionInstructPixaPixPipeline __UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) _A: int = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) _A: Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _A: List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _A: Any = CLIPTextModel(lowerCAmelCase_ ) _A: List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A: Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=0 ): """simple docstring""" _A: List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A: Dict = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ) if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: str = torch.manual_seed(lowerCAmelCase_ ) else: _A: Union[str, Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: str = self.get_dummy_components() _A: Any = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: Union[str, Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Optional[int] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: List[str] = sd_pipe(**lowerCAmelCase_ ).images _A: str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _A: int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: Tuple = self.get_dummy_components() _A: Optional[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: int = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Any = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Optional[Any] = '''french fries''' _A: Union[str, Any] = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _A: Optional[Any] = output.images _A: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _A: int = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: Optional[int] = self.get_dummy_components() _A: Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: Tuple = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Union[str, Any] = [inputs['''prompt''']] * 2 _A: str = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 _A: int = torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) _A: List[Any] = image / 2 + 0.5 _A: Optional[int] = image.permute(0 , 3 , 1 , 2 ) _A: Union[str, Any] = image.repeat(2 , 1 , 1 , 1 ) _A: Optional[Any] = sd_pipe(**lowerCAmelCase_ ).images _A: Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) _A: Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : str ): """simple docstring""" _A: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: Union[str, Any] = self.get_dummy_components() _A: Tuple = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) _A: Optional[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: Dict = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: int = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Optional[Any] = sd_pipe(**lowerCAmelCase_ ).images _A: Dict = image[0, -3:, -3:, -1] _A: List[str] = [round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) _A: Any = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: int = self.get_dummy_components() _A: int = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: List[Any] = VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) _A: Dict = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: List[Any] = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='''pt''' ) )[0] _A: List[Any] = components['''vae'''] _A: Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _A: List[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() _A: Optional[int] = pipe(**lowerCAmelCase_ )[0] _A: Any = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Union[str, Any]=0 ): """simple docstring""" _A: str = torch.manual_seed(lowerCAmelCase_ ) _A: Dict = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) _A: Any = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Dict = self.get_inputs() _A: Optional[Any] = pipe(**lowerCAmelCase_ ).images _A: Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: int = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ ) _A: int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Union[str, Any] = self.get_inputs() _A: Optional[int] = pipe(**lowerCAmelCase_ ).images _A: List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: Optional[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __magic_name__ ( self : str ): """simple docstring""" _A: List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ ) _A: List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: str = self.get_inputs() _A: Tuple = pipe(**lowerCAmelCase_ ).images _A: int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: str = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = 0 def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None: _A: str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _A: int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _A: Optional[int] = latents[0, -3:, -3:, -1] _A: str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _A: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _A: int = latents[0, -3:, -3:, -1] _A: Optional[int] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _A: Optional[Any] = False _A: Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _A: List[str] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Any = self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__ ( self : List[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A: Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _A: List[str] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A: int = self.get_inputs() _A: List[Any] = pipe(**lowerCAmelCase_ ) _A: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _A: List[str] = inputs['''image'''].resize((5_0_4, 5_0_4) ) _A: str = '''timbrooks/instruct-pix2pix''' _A: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Optional[Any] = pipe(**lowerCAmelCase_ ) _A: Tuple = output.images[0] _A: List[str] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) _A: Tuple = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
from timeit import timeit UpperCAmelCase__ : Optional[Any] = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCamelCase__ ( a ) -> bool: _A: str = 0 _A: Optional[Any] = len(a ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCamelCase__ ( a ) -> bool: _A: int = len(a ) // 2 _A: List[Any] = len(a ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(a ) ) def lowerCamelCase__ ( a ) -> bool: if len(a ) <= 2: return True if s[0] == s[len(a ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCamelCase__ ( a ) -> bool: return s == s[::-1] def lowerCamelCase__ ( a ) -> None: _A: Optional[Any] = f"""all({name}(key) is value for key, value in test_data.items())""" _A: Dict = f"""from __main__ import test_data, {name}""" _A: Union[str, Any] = 50_00_00 _A: Dict = timeit(stmt=a , setup=a , number=a ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = StableDiffusionXLImgaImgPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCamelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} __UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _A: Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) _A: Tuple = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) _A: str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _A: Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , ) _A: Dict = CLIPTextModel(lowerCAmelCase_ ) _A: Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowerCAmelCase_ ) _A: Dict = CLIPTextModelWithProjection(lowerCAmelCase_ ) _A: Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowerCAmelCase_ ) _A: List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str=0 ): """simple docstring""" _A: int = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Optional[Any] = image / 2 + 0.5 if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: List[str] = torch.manual_seed(lowerCAmelCase_ ) else: _A: List[str] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: List[Any] = self.get_dummy_components() _A: List[str] = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) _A: Optional[Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: str = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Dict = sd_pipe(**lowerCAmelCase_ ).images _A: str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _A: Any = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : str ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __magic_name__ ( self : List[str] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" pass def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Tuple = self.get_dummy_components() _A: Optional[int] = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) _A: Dict = sd_pipe.to(lowerCAmelCase_ ) _A: Optional[Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # forward without prompt embeds _A: str = self.get_dummy_inputs(lowerCAmelCase_ ) _A: int = 3 * ['''this is a negative prompt'''] _A: Union[str, Any] = negative_prompt _A: Dict = 3 * [inputs['''prompt''']] _A: List[str] = sd_pipe(**lowerCAmelCase_ ) _A: Optional[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _A: Optional[Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: List[Any] = 3 * ['''this is a negative prompt'''] _A: Any = 3 * [inputs.pop('''prompt''' )] ( _A ): Tuple = sd_pipe.encode_prompt(lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _A: List[Any] = sd_pipe( **lowerCAmelCase_ , prompt_embeds=lowerCAmelCase_ , negative_prompt_embeds=lowerCAmelCase_ , pooled_prompt_embeds=lowerCAmelCase_ , negative_pooled_prompt_embeds=lowerCAmelCase_ , ) _A: List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str="cpu" , lowerCAmelCase_ : Tuple=torch.floataa , lowerCAmelCase_ : Dict=0 ): """simple docstring""" _A: Tuple = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Any = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 6_4, 6_4) ) _A: Union[str, Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _A: Any = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Dict = self.get_inputs(lowerCAmelCase_ ) _A: List[Any] = pipe(**lowerCAmelCase_ ).images _A: List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: str = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[Any] = '''dpr''' def __init__( self : Tuple , lowerCAmelCase_ : str=3_0_5_2_2 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : int=3_0_7_2 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Optional[int]=1e-12 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : int = 0 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Tuple = vocab_size _A: Optional[Any] = hidden_size _A: int = num_hidden_layers _A: List[str] = num_attention_heads _A: Dict = hidden_act _A: Tuple = intermediate_size _A: Dict = hidden_dropout_prob _A: Optional[Any] = attention_probs_dropout_prob _A: str = max_position_embeddings _A: Any = type_vocab_size _A: Dict = initializer_range _A: str = layer_norm_eps _A: Union[str, Any] = projection_dim _A: Union[str, Any] = position_embedding_type
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
def lowerCamelCase__ ( a = 10_00 ) -> int: _A: Tuple = -1 _A: Optional[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _A: str = (n * n - 2 * a * n) // (2 * n - 2 * a) _A: str = n - a - b if c * c == (a * a + b * b): _A: Dict = a * b * c if candidate >= product: _A: List[str] = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''falcon''' __UpperCamelCase : List[Any] = ['''past_key_values'''] def __init__( self : Any , lowerCAmelCase_ : int=6_5_0_2_4 , lowerCAmelCase_ : str=4_5_4_4 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : List[Any]=7_1 , lowerCAmelCase_ : Tuple=1e-5 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=1_1 , lowerCAmelCase_ : int=1_1 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" _A: Tuple = vocab_size # Backward compatibility with n_embed kwarg _A: Dict = kwargs.pop('''n_embed''' , lowerCAmelCase_ ) _A: Tuple = hidden_size if n_embed is None else n_embed _A: int = num_hidden_layers _A: int = num_attention_heads _A: Optional[int] = layer_norm_epsilon _A: Dict = initializer_range _A: Optional[Any] = use_cache _A: Any = hidden_dropout _A: List[str] = attention_dropout _A: Dict = bos_token_id _A: Any = eos_token_id _A: Dict = num_attention_heads if num_kv_heads is None else num_kv_heads _A: int = alibi _A: Optional[Any] = new_decoder_architecture _A: Dict = multi_query # Ignored when new_decoder_architecture is True _A: int = parallel_attn _A: str = bias super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : int ): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return not self.alibi
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( a ) -> Optional[Any]: return getitem, k def lowerCamelCase__ ( a , a ) -> int: return setitem, k, v def lowerCamelCase__ ( a ) -> Tuple: return delitem, k def lowerCamelCase__ ( a , a , *a ) -> List[Any]: try: return fun(a , *a ), None except Exception as e: return None, e UpperCAmelCase__ : Any = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) UpperCAmelCase__ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] UpperCAmelCase__ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] UpperCAmelCase__ : Any = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] UpperCAmelCase__ : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCAmelCase__ : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def lowerCamelCase__ ( a ) -> Optional[int]: _A: str = HashMap(initial_block_size=4 ) _A: str = {} for _, (fun, *args) in enumerate(a ): _A: Dict = _run_operation(a , a , *a ) _A: Dict = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def lowerCamelCase__ ( ) -> Dict: def is_public(a ) -> bool: return not name.startswith('''_''' ) _A: Dict = {name for name in dir({} ) if is_public(a )} _A: str = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCAmelCase__ : Tuple = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = '''rag''' __UpperCamelCase : List[Any] = True def __init__( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=" / " , lowerCAmelCase_ : int=" // " , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Union[str, Any]=3_0_0 , lowerCAmelCase_ : Union[str, Any]=7_6_8 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : Optional[int]="wiki_dpr" , lowerCAmelCase_ : int="train" , lowerCAmelCase_ : Optional[Any]="compressed" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" super().__init__( bos_token_id=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , forced_eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , prefix=lowerCAmelCase_ , vocab_size=lowerCAmelCase_ , **lowerCAmelCase_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A: Optional[Any] = kwargs.pop('''question_encoder''' ) _A: Optional[int] = question_encoder_config.pop('''model_type''' ) _A: Tuple = kwargs.pop('''generator''' ) _A: int = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A: List[Any] = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Tuple = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) _A: List[str] = reduce_loss _A: Tuple = label_smoothing _A: Optional[Any] = exclude_bos_score _A: List[str] = do_marginalize _A: Dict = title_sep _A: List[Any] = doc_sep _A: Any = n_docs _A: Any = max_combined_length _A: Dict = dataset _A: int = dataset_split _A: int = index_name _A: Optional[Any] = retrieval_vector_size _A: Union[str, Any] = retrieval_batch_size _A: List[Any] = passages_path _A: List[str] = index_path _A: Dict = use_dummy_dataset _A: int = output_retrieved _A: Any = do_deduplication _A: str = use_cache if self.forced_eos_token_id is None: _A: List[str] = getattr(self.generator , '''forced_eos_token_id''' , lowerCAmelCase_ ) @classmethod def __magic_name__ ( cls : str , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = copy.deepcopy(self.__dict__ ) _A: Tuple = self.question_encoder.to_dict() _A: Any = self.generator.to_dict() _A: Optional[int] = self.__class__.model_type return output
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = '''wavlm''' def __init__( self : Tuple , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Any=7_6_8 , lowerCAmelCase_ : str=1_2 , lowerCAmelCase_ : Any=1_2 , lowerCAmelCase_ : Optional[int]=3_0_7_2 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : str="group" , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase_ : List[Any]=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : str=1_2_8 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : Tuple=3_2_0 , lowerCAmelCase_ : Union[str, Any]=8_0_0 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any=0.05 , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : Tuple=3_2_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=1_0_0 , lowerCAmelCase_ : Dict=2_5_6 , lowerCAmelCase_ : str=2_5_6 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]="mean" , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Dict=2_5_6 , lowerCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCAmelCase_ : List[str]=(5, 3, 3, 1, 1) , lowerCAmelCase_ : Union[str, Any]=(1, 2, 3, 1, 1) , lowerCAmelCase_ : Optional[int]=5_1_2 , lowerCAmelCase_ : str=8_0 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) _A: str = hidden_size _A: str = feat_extract_norm _A: Optional[Any] = feat_extract_activation _A: Optional[Any] = list(lowerCAmelCase_ ) _A: Optional[int] = list(lowerCAmelCase_ ) _A: str = list(lowerCAmelCase_ ) _A: int = conv_bias _A: Optional[Any] = num_buckets _A: Dict = max_bucket_distance _A: Optional[int] = num_conv_pos_embeddings _A: str = num_conv_pos_embedding_groups _A: Dict = len(self.conv_dim ) _A: Dict = num_hidden_layers _A: List[str] = intermediate_size _A: List[str] = hidden_act _A: Tuple = num_attention_heads _A: str = hidden_dropout _A: Any = attention_dropout _A: List[Any] = activation_dropout _A: int = feat_proj_dropout _A: List[str] = final_dropout _A: Optional[Any] = layerdrop _A: Any = layer_norm_eps _A: Optional[int] = initializer_range _A: Union[str, Any] = num_ctc_classes _A: Optional[int] = vocab_size _A: Any = do_stable_layer_norm _A: Dict = use_weighted_layer_sum _A: int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A: Dict = apply_spec_augment _A: Union[str, Any] = mask_time_prob _A: Optional[Any] = mask_time_length _A: List[Any] = mask_time_min_masks _A: Optional[Any] = mask_feature_prob _A: Any = mask_feature_length # parameters for pretraining with codevector quantized representations _A: Optional[Any] = num_codevectors_per_group _A: Tuple = num_codevector_groups _A: Any = contrastive_logits_temperature _A: List[Any] = num_negatives _A: Union[str, Any] = codevector_dim _A: List[str] = proj_codevector_dim _A: List[Any] = diversity_loss_weight # ctc loss _A: Optional[Any] = ctc_loss_reduction _A: str = ctc_zero_infinity # adapter _A: str = add_adapter _A: Optional[int] = adapter_kernel_size _A: str = adapter_stride _A: Dict = num_adapter_layers _A: Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A: Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A: Optional[Any] = list(lowerCAmelCase_ ) _A: Optional[Any] = list(lowerCAmelCase_ ) _A: Dict = list(lowerCAmelCase_ ) _A: Optional[int] = xvector_output_dim @property def __magic_name__ ( self : Dict ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase ( enum.Enum ): '''simple docstring''' __UpperCamelCase : Dict = 0 __UpperCamelCase : Tuple = 1 __UpperCamelCase : List[str] = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : str , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Dict ): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _A: Optional[int] = None if self.model.config.prefix is not None: _A: Optional[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _A: List[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _A: int = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _A: Optional[Any] = {**self._preprocess_params, **preprocess_params} _A: Tuple = {**self._forward_params, **forward_params} def __magic_name__ ( self : Any , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Any , ): """simple docstring""" _A: Optional[Any] = {} if prefix is not None: _A: int = prefix if prefix: _A: Tuple = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _A: Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _A: Optional[Any] = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _A: Optional[int] = generate_kwargs _A: List[str] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _A: Optional[int] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _A: Tuple = ReturnType.TENSORS if return_type is not None: _A: str = return_type if clean_up_tokenization_spaces is not None: _A: Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: _A: Tuple = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _A: Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __magic_name__ ( self : Optional[int] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self : Union[str, Any] , lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ): """simple docstring""" return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict="" , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Dict = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _A: Tuple = prompt_text if handle_long_generation == "hole": _A: Tuple = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _A: Union[str, Any] = generate_kwargs['''max_new_tokens'''] else: _A: List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _A: List[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _A: Optional[int] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _A: Any = inputs['''attention_mask'''][:, -keep_length:] return inputs def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ): """simple docstring""" _A: Tuple = model_inputs['''input_ids'''] _A: Any = model_inputs.get('''attention_mask''' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _A: Any = None _A: int = None _A: List[Any] = 1 else: _A: Any = input_ids.shape[0] _A: str = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _A: Any = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _A: Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _A: Dict = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _A: List[str] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _A: int = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Dict = generated_sequence.shape[0] if self.framework == "pt": _A: Tuple = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _A: List[str] = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=ReturnType.FULL_TEXT , lowerCAmelCase_ : Any=True ): """simple docstring""" _A: int = model_outputs['''generated_sequence'''][0] _A: List[str] = model_outputs['''input_ids'''] _A: List[str] = model_outputs['''prompt_text'''] _A: Any = generated_sequence.numpy().tolist() _A: Optional[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _A: int = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _A: int = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _A: Dict = 0 else: _A: Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _A: List[str] = prompt_text + text[prompt_length:] else: _A: List[str] = text[prompt_length:] _A: List[str] = {'''generated_text''': all_text} records.append(lowerCAmelCase_ ) return records
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCAmelCase__ : int = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' UpperCAmelCase__ : Any = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' UpperCAmelCase__ : int = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : str="auto" , lowerCAmelCase_ : Optional[Any]=-1 , lowerCAmelCase_ : int=0.9 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Any=5_0_0 , lowerCAmelCase_ : Union[str, Any]="gpt2-large" , lowerCAmelCase_ : List[Any]=-1 , lowerCAmelCase_ : Tuple=1_0_2_4 , lowerCAmelCase_ : Optional[int]=2_5 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Union[str, Any]=2_5 , ): """simple docstring""" _A: str = compute_mauve( p_text=lowerCAmelCase_ , q_text=lowerCAmelCase_ , p_features=lowerCAmelCase_ , q_features=lowerCAmelCase_ , p_tokens=lowerCAmelCase_ , q_tokens=lowerCAmelCase_ , num_buckets=lowerCAmelCase_ , pca_max_data=lowerCAmelCase_ , kmeans_explained_var=lowerCAmelCase_ , kmeans_num_redo=lowerCAmelCase_ , kmeans_max_iter=lowerCAmelCase_ , featurize_model_name=lowerCAmelCase_ , device_id=lowerCAmelCase_ , max_text_length=lowerCAmelCase_ , divergence_curve_discretization_size=lowerCAmelCase_ , mauve_scaling_factor=lowerCAmelCase_ , verbose=lowerCAmelCase_ , seed=lowerCAmelCase_ , ) return out
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : Optional[Any]=1_7 , lowerCAmelCase_ : Union[str, Any]=2_3 , lowerCAmelCase_ : List[Any]=1_1 , lowerCAmelCase_ : List[str]=True , ): """simple docstring""" _A: Any = parent _A: str = batch_size _A: Optional[Any] = seq_length _A: List[str] = act_dim _A: Union[str, Any] = state_dim _A: str = hidden_size _A: List[str] = max_length _A: Tuple = is_training def __magic_name__ ( self : int ): """simple docstring""" _A: str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _A: Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _A: List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _A: Optional[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _A: Dict = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) _A: str = random_attention_mask((self.batch_size, self.seq_length) ) _A: Optional[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __magic_name__ ( self : List[Any] ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: str = DecisionTransformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.prepare_config_and_inputs() ( _A ): str = config_and_inputs _A: Optional[int] = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = (DecisionTransformerModel,) if is_torch_available() else () __UpperCamelCase : Dict = () __UpperCamelCase : str = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __UpperCamelCase : Any = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __UpperCamelCase : Dict = False __UpperCamelCase : Any = False __UpperCamelCase : Tuple = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[str] = False __UpperCamelCase : List[str] = False __UpperCamelCase : str = False __UpperCamelCase : str = False def __magic_name__ ( self : str ): """simple docstring""" _A: str = DecisionTransformerModelTester(self ) _A: List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Dict = DecisionTransformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Any = model_class(lowerCAmelCase_ ) _A: List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Union[str, Any] = [*signature.parameters.keys()] _A: Tuple = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : int ): """simple docstring""" _A: Any = 2 # number of steps of autoregressive prediction we will perform _A: Tuple = 1_0 # defined by the RL environment, may be normalized _A: List[str] = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _A: Dict = model.to(lowerCAmelCase_ ) _A: int = model.config torch.manual_seed(0 ) _A: int = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ) # env.reset() _A: Optional[Any] = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=lowerCAmelCase_ ) _A: Dict = torch.tensor(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _A: Optional[Any] = state _A: Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase_ , dtype=torch.floataa ) _A: Any = torch.zeros(1 , 0 , device=lowerCAmelCase_ , dtype=torch.floataa ) _A: Tuple = torch.tensor(0 , device=lowerCAmelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase_ ): _A: str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase_ )] , dim=1 ) _A: List[str] = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase_ )] , dim=1 ) _A: int = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _A: str = model( states=lowerCAmelCase_ , actions=lowerCAmelCase_ , rewards=lowerCAmelCase_ , returns_to_go=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _A: Optional[Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) _A: Any = action_pred[0, -1] _A: List[str] = torch.cat([states, state] , dim=1 ) _A: Dict = returns_to_go[0, -1] - reward _A: int = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _A: List[str] = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ : int = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex UpperCAmelCase__ : List[str] = 10 UpperCAmelCase__ : Dict = 256 def lowerCamelCase__ ( a ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None _A: Union[str, Any] = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( a ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" _A: Tuple = duplication_jaccard_threshold _A: str = NUM_PERM _A: List[str] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash ): """simple docstring""" _A: int = self._index.query(lowerCAmelCase_ ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = [] for base, duplicates in self._duplicate_clusters.items(): _A: List[Any] = [base] + list(lowerCAmelCase_ ) # reformat the cluster to be a list of dict _A: Union[str, Any] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_ ) return duplicate_clusters def __magic_name__ ( self : int , lowerCAmelCase_ : Dict ): """simple docstring""" _A: List[str] = self.get_duplicate_clusters() with open(lowerCAmelCase_ , '''w''' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase__ ( a ) -> List[Any]: _A: int = element _A: Union[str, Any] = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( a ) -> Union[str, Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def lowerCamelCase__ ( a , a ) -> Optional[Any]: _A: str = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=1_00 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( a , a ) -> float: _A: Dict = get_tokens(a ) _A: Optional[Any] = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ : Union[str, Any] = None def lowerCamelCase__ ( a , a ) -> Optional[int]: _A: List[str] = [] for elementa in cluster: _A: Any = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _A: str = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: _A: Dict = 1 extremes.append(a ) return extremes def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: global _shared_dataset _A: Dict = dataset _A: List[Any] = [] _A: int = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def lowerCamelCase__ ( a , a = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _A: Optional[Any] = make_duplicate_clusters(a , a ) _A: Any = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _A: List[str] = {} _A: List[str] = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: _A: List[Any] = element _A: Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) _A: List[str] = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _A: Any = element['''base_index'''] in extreme_dict if element["is_extreme"]: _A: List[Any] = extreme_dict[element['''base_index''']]['''copies'''] print(f"""Original dataset size: {len(a )}""" ) print(f"""Number of duplicate clusters: {len(a )}""" ) print(f"""Files in duplicate cluster: {len(a )}""" ) print(f"""Unique files in duplicate cluster: {len(a )}""" ) print(f"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Any = AutoConfig.from_pretrained(a ) _A: Dict = FlaxAutoModelForSeqaSeqLM.from_config(config=a ) _A: Dict = checkpoints.load_tax_checkpoint(a ) _A: Dict = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": _A: Optional[Any] = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": _A: str = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: Dict = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): _A: int = f"""layers_{str(a )}""" # Self-Attention _A: int = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] _A: List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] _A: int = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] _A: Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization _A: Dict = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: _A: Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _A: Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _A: List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _A: List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _A: List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _A: Dict = flax_model.params['''encoder''']['''block'''][str(a )]['''layer'''] _A: List[str] = tax_attention_key _A: Any = tax_attention_out _A: Dict = tax_attention_query _A: int = tax_attention_value _A: Tuple = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: Optional[Any] = tax_global_layer_norm if split_mlp_wi: _A: Optional[int] = tax_mlp_wi_a _A: Tuple = tax_mlp_wi_a else: _A: List[Any] = tax_mlp_wi _A: Tuple = tax_mlp_wo _A: Union[str, Any] = tax_mlp_layer_norm _A: Union[str, Any] = flax_model_encoder_layer_block # Only for layer 0: _A: Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T _A: List[str] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: Any = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T _A: Dict = tax_encoder_global_rel_embedding # Assigning _A: List[str] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] _A: Tuple = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _A: int = f"""layers_{str(a )}""" # Self-Attention _A: Dict = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] _A: Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] _A: List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] _A: Any = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization _A: Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention _A: List[str] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] _A: Dict = tax_enc_dec_attention_module['''key''']['''kernel'''] _A: str = tax_enc_dec_attention_module['''out''']['''kernel'''] _A: Dict = tax_enc_dec_attention_module['''query''']['''kernel'''] _A: Optional[Any] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization _A: List[str] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: _A: Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _A: List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _A: str = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _A: Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _A: Any = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _A: List[str] = flax_model.params['''decoder''']['''block'''][str(a )]['''layer'''] _A: List[str] = tax_attention_key _A: Tuple = tax_attention_out _A: Optional[int] = tax_attention_query _A: int = tax_attention_value _A: Any = tax_pre_attention_layer_norm _A: int = tax_enc_dec_attention_key _A: int = tax_enc_dec_attention_out _A: Union[str, Any] = tax_enc_dec_attention_query _A: Tuple = tax_enc_dec_attention_value _A: str = tax_cross_layer_norm if split_mlp_wi: _A: Tuple = tax_mlp_wi_a _A: Optional[int] = tax_mlp_wi_a else: _A: Any = tax_mlp_wi _A: Optional[int] = tax_mlp_wo _A: Any = txa_mlp_layer_norm _A: Union[str, Any] = flax_model_decoder_layer_block # Decoder Normalization _A: Optional[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] _A: List[str] = txa_decoder_norm # Only for layer 0: _A: Optional[Any] = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T _A: Union[str, Any] = tax_decoder_rel_embedding # Token Embeddings _A: int = tax_model['''target''']['''token_embedder''']['''embedding'''] _A: Union[str, Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _A: Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(a ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCAmelCase__ : List[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCAmelCase__ : Dict = logging.getLogger(__name__) UpperCAmelCase__ : List[str] = tf.data.AUTOTUNE def lowerCamelCase__ ( ) -> Tuple: _A: Optional[int] = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=a , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=a , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=a , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=a , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=a , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=a , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=a , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=a , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=a , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=a , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=a , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=a , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=a , default=5_12 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=a , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=a , required=a , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=a , help='''Model ID to upload to on the Hugging Face Hub.''' ) _A: Any = parser.parse_args() return args def lowerCamelCase__ ( a ) -> Tuple: try: if args.tpu_name: _A: Tuple = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _A: Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(a ) tf.tpu.experimental.initialize_tpu_system(a ) return tpu def lowerCamelCase__ ( a ) -> Optional[Any]: _A: str = 0 for file in file_list: _A: List[str] = file.split('''/''' )[-1] _A: Union[str, Any] = re.search(R'''-\d+-(\d+)\.tfrecord''' , a ).group(1 ) _A: Optional[Any] = int(a ) num_samples += sample_count return num_samples def lowerCamelCase__ ( a , a , a , a , a , a=None ) -> List[str]: _A: Optional[Any] = count_samples(a ) _A: List[Any] = tf.data.Dataset.from_tensor_slices(a ) if shuffle: _A: List[Any] = dataset.shuffle(len(a ) ) _A: Optional[Any] = tf.data.TFRecordDataset(a , num_parallel_reads=a ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _A: int = dataset.apply(tf.data.experimental.assert_cardinality(a ) ) _A: Tuple = dataset.map(a , num_parallel_calls=a ) if shuffle: assert shuffle_buffer_size is not None _A: List[Any] = dataset.shuffle(args.shuffle_buffer_size ) _A: Dict = dataset.batch(a , drop_remainder=a ) _A: Any = dataset.map(a , num_parallel_calls=a ) _A: List[str] = dataset.prefetch(a ) return dataset def lowerCamelCase__ ( a ) -> List[Any]: if not args.no_tpu: _A: Union[str, Any] = initialize_tpu(a ) _A: Dict = tf.distribute.TPUStrategy(a ) else: _A: List[Any] = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) _A: Tuple = AutoTokenizer.from_pretrained(args.tokenizer ) _A: Dict = AutoConfig.from_pretrained(args.pretrained_model_config ) _A: Optional[int] = tokenizer.vocab_size _A: int = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) _A: str = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) _A: Dict = count_samples(a ) _A: Dict = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _A: List[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): _A: List[Any] = TFAutoModelForMaskedLM.from_config(a ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _A: int = create_optimizer( num_train_steps=a , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=a , metrics=['''accuracy'''] ) def decode_fn(a ): _A: Tuple = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(a , a ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _A: str = DataCollatorForLanguageModeling( tokenizer=a , mlm_probability=args.mlm_probability , mlm=a , return_tensors='''tf''' ) def mask_with_collator(a ): # TF really needs an isin() function _A: Optional[Any] = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) _A: Union[str, Any] = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(a ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=a , ) return batch _A: Optional[Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync _A: Any = prepare_dataset( a , decode_fn=a , mask_fn=a , batch_size=a , shuffle=a , shuffle_buffer_size=args.shuffle_buffer_size , ) _A: Tuple = prepare_dataset( a , decode_fn=a , mask_fn=a , batch_size=a , shuffle=a , ) _A: int = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=a ) ) model.fit( a , validation_data=a , epochs=args.num_epochs , callbacks=a , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = parse_args() main(args)
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase : Optional[datasets.Features] = None def lowerCamelCase__ ( a , a , ) -> List[Any]: import pyspark def generate_fn(): _A: Tuple = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _A: Tuple = df_with_partition_id.select('''*''' ).where(f"""part_id = {partition_id}""" ).drop('''part_id''' ) _A: List[Any] = partition_df.collect() _A: List[Any] = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCAmelCase ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : "pyspark.sql.DataFrame" , lowerCAmelCase_ : Dict=None , ): """simple docstring""" _A: Union[str, Any] = df _A: Optional[int] = partition_order or range(self.df.rdd.getNumPartitions() ) _A: str = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[str] ): """simple docstring""" yield from self.generate_examples_fn() def __magic_name__ ( self : Dict , lowerCAmelCase_ : np.random.Generator ): """simple docstring""" _A: Tuple = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[Any] = self.split_shard_indices_by_worker(lowerCAmelCase_ , lowerCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase_ ) @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return len(self.partition_order ) class UpperCAmelCase ( datasets.DatasetBuilder ): '''simple docstring''' __UpperCamelCase : str = SparkConfig def __init__( self : str , lowerCAmelCase_ : "pyspark.sql.DataFrame" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : str = None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" import pyspark _A: str = pyspark.sql.SparkSession.builder.getOrCreate() _A: Optional[Any] = df _A: List[Any] = working_dir super().__init__( cache_dir=lowerCAmelCase_ , config_name=str(self.df.semanticHash() ) , **lowerCAmelCase_ , ) def __magic_name__ ( self : List[str] ): """simple docstring""" # Returns the path of the created file. def create_cache_and_write_probe(lowerCAmelCase_ : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCAmelCase_ ) _A: Tuple = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCAmelCase_ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _A: Tuple = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def __magic_name__ ( self : str ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" import pyspark def get_arrow_batch_size(lowerCAmelCase_ : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _A: Optional[Any] = self.df.count() _A: Optional[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _A: List[Any] = ( self.df.limit(lowerCAmelCase_ ) .repartition(1 ) .mapInArrow(lowerCAmelCase_ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _A: List[str] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _A: List[Any] = min(lowerCAmelCase_ , int(approx_total_size / max_shard_size ) ) _A: List[Any] = self.df.repartition(lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ): """simple docstring""" import pyspark _A: Tuple = ParquetWriter if file_format == '''parquet''' else ArrowWriter _A: Any = os.path.join(self._working_dir , os.path.basename(lowerCAmelCase_ ) ) if self._working_dir else fpath _A: Any = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _A: Optional[Any] = self.config.features _A: Tuple = self._writer_batch_size _A: Any = self._fs.storage_options def write_arrow(lowerCAmelCase_ : int ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _A: Optional[int] = pyspark.TaskContext().taskAttemptId() _A: Tuple = next(lowerCAmelCase_ , lowerCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _A: Optional[int] = 0 _A: List[Any] = writer_class( features=lowerCAmelCase_ , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase_ , storage_options=lowerCAmelCase_ , embed_local_files=lowerCAmelCase_ , ) _A: Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _A: Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _A: Dict = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase_ , storage_options=lowerCAmelCase_ , embed_local_files=lowerCAmelCase_ , ) _A: List[Any] = pa.Table.from_batches([batch] ) writer.write_table(lowerCAmelCase_ ) if writer._num_bytes > 0: _A: Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCAmelCase_ ) ): _A: List[str] = os.path.join(os.path.dirname(lowerCAmelCase_ ) , os.path.basename(lowerCAmelCase_ ) ) shutil.move(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Tuple = ( self.df.mapInArrow(lowerCAmelCase_ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : "datasets.SplitGenerator" , lowerCAmelCase_ : str = "arrow" , lowerCAmelCase_ : Optional[Union[str, int]] = None , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : List[str] , ): """simple docstring""" self._validate_cache_dir() _A: Optional[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCAmelCase_ ) _A: List[Any] = not is_remote_filesystem(self._fs ) _A: Optional[int] = os.path.join if is_local else posixpath.join _A: int = '''-TTTTT-SSSSS-of-NNNNN''' _A: Tuple = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _A: Union[str, Any] = path_join(self._output_dir , lowerCAmelCase_ ) _A: List[str] = 0 _A: Union[str, Any] = 0 _A: Optional[Any] = 0 _A: int = [] _A: Optional[int] = [] for task_id, content in self._prepare_split_single(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): ( _A ): Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCAmelCase_ ) _A: List[Any] = total_num_examples _A: Any = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: _A: List[str] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _A: Optional[int] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , ): rename( lowerCAmelCase_ , fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , F"""{global_shard_id:05d}""" ).replace('''NNNNN''' , F"""{total_shards:05d}""" ) , ) _A: Any = [] _A: str = 0 for i in range(len(lowerCAmelCase_ ) ): _A: str = task_id_and_num_shards[i] for shard_id in range(lowerCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCAmelCase_ , len(lowerCAmelCase_ ) ).map(lambda lowerCAmelCase_ : _rename_shard(*lowerCAmelCase_ ) ).collect() else: # don't use any pattern _A: Optional[Any] = 0 _A: Optional[int] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace(lowerCAmelCase_ , '''''' ) , ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase__ : Union[str, Any] = random.Random() def lowerCamelCase__ ( a , a=1.0 , a=None , a=None ) -> Optional[Any]: if rng is None: _A: Tuple = global_rng _A: Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Dict=4_0_0 , lowerCAmelCase_ : Dict=2_0_0_0 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=1_6_0_0_0 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=True , ): """simple docstring""" _A: Any = parent _A: int = batch_size _A: Any = min_seq_length _A: Optional[int] = max_seq_length _A: Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A: str = feature_size _A: Union[str, Any] = padding_value _A: Optional[int] = sampling_rate _A: List[Any] = return_attention_mask _A: Optional[int] = do_normalize def __magic_name__ ( self : Optional[int] ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=False ): """simple docstring""" def _flatten(lowerCAmelCase_ : int ): return list(itertools.chain(*lowerCAmelCase_ ) ) if equal_length: _A: List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _A: List[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A: int = [np.asarray(lowerCAmelCase_ ) for x in speech_inputs] return speech_inputs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = WavaVecaFeatureExtractor def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = WavaVecaFeatureExtractionTester(self ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase_ , axis=0 ) - 1 ) < 1e-3 ) ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A: Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: Dict = [np.asarray(lowerCAmelCase_ ) for speech_input in speech_inputs] # Test not batched input _A: Tuple = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _A: Dict = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) # Test batched _A: Union[str, Any] = feat_extract(lowerCAmelCase_ , return_tensors='''np''' ).input_values _A: Any = feat_extract(lowerCAmelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A: List[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _A: Optional[int] = np.asarray(lowerCAmelCase_ ) _A: Any = feat_extract(lowerCAmelCase_ , return_tensors='''np''' ).input_values _A: str = feat_extract(lowerCAmelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] _A: Any = [None, 1_6_0_0, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Optional[Any] = feat_extract(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors='''np''' ) _A: Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __magic_name__ ( self : str ): """simple docstring""" _A: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: Optional[Any] = range(8_0_0 , 1_4_0_0 , 2_0_0 ) _A: List[Any] = [floats_list((1, x) )[0] for x in lengths] _A: Optional[int] = ['''longest''', '''max_length''', '''do_not_pad'''] _A: List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[Any] = feat_extract(lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: str = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: str = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) _A: int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: Any = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _A: List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) _A: Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: Union[str, Any] = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _A: Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def __magic_name__ ( self : List[Any] ): """simple docstring""" import torch _A: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: List[Any] = np.random.rand(1_0_0 ).astype(np.floataa ) _A: Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A: Union[str, Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _A: Dict = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __magic_name__ ( self : List[Any] ): """simple docstring""" # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _A: Optional[int] = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) _A: Optional[int] = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
def lowerCamelCase__ ( a ) -> int: _A: List[str] = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) _A: Any = hex_num[0] == '''-''' if is_negative: _A: Tuple = hex_num[1:] try: _A: Union[str, Any] = int(a , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) _A: Optional[int] = '''''' while int_num > 0: _A: str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Union[str, Any]: # save results if os.path.exists(a ): if os.path.exists(os.path.join(a , '''config.json''' ) ) and os.path.isfile( os.path.join(a , '''config.json''' ) ): os.remove(os.path.join(a , '''config.json''' ) ) if os.path.exists(os.path.join(a , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(a , '''pytorch_model.bin''' ) ): os.remove(os.path.join(a , '''pytorch_model.bin''' ) ) else: os.makedirs(a ) model.save_pretrained(a ) def lowerCamelCase__ ( a , a=False ) -> Union[str, Any]: _A: str = 2 if unlogit: _A: Optional[Any] = torch.pow(a , a ) _A: Dict = p * torch.log(a ) _A: int = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( a ) -> Dict: logger.info('''lv, h >\t''' + '''\t'''.join(f"""{x + 1}""" for x in range(len(a ) ) ) ) for row in range(len(a ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( a , a , a , a=True , a=True , a=None , a=False ) -> List[Any]: _A: str = model.config.num_hidden_layers, model.config.num_attention_heads _A: List[str] = torch.zeros(a , a ).to(args.device ) _A: int = torch.zeros(a , a ).to(args.device ) if head_mask is None: _A: Optional[Any] = torch.ones(a , a ).to(args.device ) head_mask.requires_grad_(requires_grad=a ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A: List[Any] = None _A: str = 0.0 _A: int = 0.0 for step, inputs in enumerate(tqdm(a , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _A: List[str] = tuple(t.to(args.device ) for t in inputs ) (_A ): Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A: List[str] = model(a , labels=a , head_mask=a ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A: int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(a ): _A: Optional[Any] = entropy(attn.detach() , a ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(a ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A: Optional[Any] = 2 _A: Any = torch.pow(torch.pow(a , a ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _A: Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(a ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(a ) logger.info('''Head ranked by importance scores''' ) _A: Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A: List[Any] = torch.arange( head_importance.numel() , device=args.device ) _A: Dict = head_ranks.view_as(a ) print_ad_tensor(a ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( a , a , a ) -> List[Any]: _A: Optional[Any] = compute_heads_importance(a , a , a , compute_entropy=a ) _A: List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , a , original_score * args.masking_threshold ) _A: Tuple = torch.ones_like(a ) _A: Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A: List[Any] = original_score while current_score >= original_score * args.masking_threshold: _A: str = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A: List[Any] = float('''Inf''' ) _A: Optional[Any] = head_importance.view(-1 ).sort()[1] if len(a ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _A: List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _A: List[Any] = new_head_mask.view(-1 ) _A: Dict = 0.0 _A: List[str] = new_head_mask.view_as(a ) _A: List[Any] = new_head_mask.clone().detach() print_ad_tensor(a ) # Compute metric and head importance again _A: Dict = compute_heads_importance( a , a , a , compute_entropy=a , head_mask=a ) _A: List[str] = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , a , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(a ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( a , a , a , a ) -> Union[str, Any]: _A: List[Any] = datetime.now() _A: Optional[int] = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a ) _A: List[Any] = 1 / loss _A: List[Any] = datetime.now() - before_time _A: Optional[int] = sum(p.numel() for p in model.parameters() ) _A: List[str] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(a ) ) } for k, v in heads_to_prune.items(): if isinstance(a , a ): _A: Union[str, Any] = [ v, ] assert sum(len(a ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(a ) _A: Dict = sum(p.numel() for p in model.parameters() ) _A: Tuple = datetime.now() _A: List[Any] = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a , actually_pruned=a , ) _A: str = 1 / loss _A: List[str] = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , a , a , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , a , a ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(a , args.output_dir ) def lowerCamelCase__ ( ) -> int: _A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=a , type=a , required=a , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a , type=a , required=a , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=a , type=a , required=a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=a , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=a , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=a , type=a , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=a , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=a , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=a , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=a , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=a , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=a , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=a , default=42 ) parser.add_argument('''--local_rank''' , type=a , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) _A: Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A: Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _A: Union[str, Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A: Optional[int] = torch.device('''cuda''' , args.local_rank ) _A: List[Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A: List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A: str = nn.parallel.DistributedDataParallel( a , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=a ) elif args.n_gpu > 1: _A: Optional[int] = nn.DataParallel(a ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=a ) torch.save(a , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , a ) # Prepare dataset _A: str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A: Tuple = (torch.from_numpy(a ),) _A: Optional[Any] = TensorDataset(*a ) _A: Any = RandomSampler(a ) _A: Optional[Any] = DataLoader(a , sampler=a , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(a , a , a ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A: Optional[Any] = mask_heads(a , a , a ) prune_heads(a , a , a , a ) if __name__ == "__main__": main()
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
def lowerCamelCase__ ( a = 50 ) -> int: _A: int = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCamelCase__ ( a , a , a , a , a ) -> float: _A: Union[str, Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a )] ) _A: Dict = np.array(a ) _A: str = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a ) ) , x.transpose() ) , a ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCamelCase__ ( a , a , a ) -> float: _A: List[Any] = (1, 2, 1) _A: List[Any] = (1, 1, 0, 7) _A: Dict = SARIMAX( a , exog=a , order=a , seasonal_order=a ) _A: str = model.fit(disp=a , maxiter=6_00 , method='''nm''' ) _A: Optional[Any] = model_fit.predict(1 , len(a ) , exog=[test_match] ) return result[0] def lowerCamelCase__ ( a , a , a ) -> float: _A: str = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(a , a ) _A: List[Any] = regressor.predict(a ) return y_pred[0] def lowerCamelCase__ ( a ) -> float: train_user.sort() _A: Any = np.percentile(a , 25 ) _A: str = np.percentile(a , 75 ) _A: Dict = qa - qa _A: int = qa - (iqr * 0.1) return low_lim def lowerCamelCase__ ( a , a ) -> bool: _A: List[str] = 0 _A: Any = 0 for i in list_vote: if i > actual_result: _A: str = not_safe + 1 else: if abs(abs(a ) - abs(a ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCAmelCase__ : Dict = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] UpperCAmelCase__ : Dict = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) UpperCAmelCase__ : Optional[Any] = Normalizer().fit_transform(data_input_df.values) # split data UpperCAmelCase__ : Any = normalize_df[:, 2].tolist() UpperCAmelCase__ : Dict = normalize_df[:, 0].tolist() UpperCAmelCase__ : Optional[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCAmelCase__ : Any = normalize_df[:, [1, 2]].tolist() UpperCAmelCase__ : Any = x[: len(x) - 1] UpperCAmelCase__ : int = x[len(x) - 1 :] # for linear regression & sarimax UpperCAmelCase__ : int = total_date[: len(total_date) - 1] UpperCAmelCase__ : Union[str, Any] = total_user[: len(total_user) - 1] UpperCAmelCase__ : List[str] = total_match[: len(total_match) - 1] UpperCAmelCase__ : Optional[int] = total_date[len(total_date) - 1 :] UpperCAmelCase__ : Union[str, Any] = total_user[len(total_user) - 1 :] UpperCAmelCase__ : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCAmelCase__ : Dict = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCAmelCase__ : List[Any] = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Any = logging.get_logger(__name__) set_seed(770) UpperCAmelCase__ : List[Any] = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } UpperCAmelCase__ : Tuple = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } UpperCAmelCase__ : Tuple = os.path.dirname(os.path.abspath(__file__)) UpperCAmelCase__ : Tuple = os.path.join(os.path.expanduser('~'), '.cache') UpperCAmelCase__ : List[str] = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def lowerCamelCase__ ( a , a=False ) -> Union[str, Any]: _A: Tuple = model_type if use_small: key += "_small" return os.path.join(a , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def lowerCamelCase__ ( a , a ) -> Any: os.makedirs(a , exist_ok=a ) hf_hub_download(repo_id=a , filename=a , local_dir=a ) def lowerCamelCase__ ( a , a , a=False , a="text" ) -> Any: if model_type == "text": _A: List[str] = BarkSemanticModel _A: Optional[Any] = BarkSemanticConfig _A: Dict = BarkSemanticGenerationConfig elif model_type == "coarse": _A: int = BarkCoarseModel _A: List[Any] = BarkCoarseConfig _A: str = BarkCoarseGenerationConfig elif model_type == "fine": _A: List[Any] = BarkFineModel _A: Any = BarkFineConfig _A: Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() _A: Optional[int] = f"""{model_type}_small""" if use_small else model_type _A: Optional[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) _A: Union[str, Any] = torch.load(a , map_location=a ) # this is a hack _A: int = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: _A: int = model_args['''vocab_size'''] _A: List[str] = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _A: Tuple = model_args.pop('''n_head''' ) _A: Tuple = model_args.pop('''n_embd''' ) _A: int = model_args.pop('''n_layer''' ) _A: List[Any] = ConfigClass(**checkpoint['''model_args'''] ) _A: int = ModelClass(config=a ) _A: Tuple = GenerationConfigClass() _A: Any = model_generation_config _A: Union[str, Any] = checkpoint['''model'''] # fixup checkpoint _A: Optional[Any] = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(a ): # replace part of the key with corresponding layer name in HF implementation _A: str = k[len(a ) :] for old_layer_name in new_layer_name_dict: _A: Optional[Any] = new_k.replace(a , new_layer_name_dict[old_layer_name] ) _A: str = state_dict.pop(a ) _A: Dict = set(state_dict.keys() ) - set(model.state_dict().keys() ) _A: Any = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} _A: str = set(model.state_dict().keys() ) - set(state_dict.keys() ) _A: Dict = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(a ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(a ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(a , strict=a ) _A: List[Any] = model.num_parameters(exclude_embeddings=a ) _A: Optional[int] = checkpoint['''best_val_loss'''].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(a , 3 )} loss""" ) model.eval() model.to(a ) del checkpoint, state_dict return model def lowerCamelCase__ ( a , a=False , a="text" ) -> List[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _A: List[Any] = '''cpu''' # do conversion on cpu _A: List[str] = _get_ckpt_path(a , use_small=a ) _A: List[Any] = _load_model(a , a , model_type=a , use_small=a ) # load bark initial model _A: Optional[int] = _bark_load_model(a , '''cpu''' , model_type=a , use_small=a ) if model_type == "text": _A: int = bark_model['''model'''] if model.num_parameters(exclude_embeddings=a ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model _A: Tuple = 5 _A: Dict = 10 if model_type in ["text", "coarse"]: _A: Optional[Any] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) _A: Any = bark_model(a )[0] _A: Any = model(a ) # take last logits _A: List[Any] = output_new_model_total.logits[:, [-1], :] else: _A: Any = 3 _A: str = 8 _A: Dict = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _A: int = model(a , a ) _A: Union[str, Any] = bark_model(a , a ) _A: Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) def lowerCamelCase__ ( a , a , a , a , a , a , ) -> Dict: _A: str = os.path.join(a , a ) _A: Any = BarkSemanticConfig.from_pretrained(os.path.join(a , '''config.json''' ) ) _A: Dict = BarkCoarseConfig.from_pretrained(os.path.join(a , '''config.json''' ) ) _A: Any = BarkFineConfig.from_pretrained(os.path.join(a , '''config.json''' ) ) _A: str = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) _A: Optional[int] = BarkSemanticModel.from_pretrained(a ) _A: str = BarkCoarseModel.from_pretrained(a ) _A: Optional[Any] = BarkFineModel.from_pretrained(a ) _A: Tuple = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) _A: List[str] = BarkConfig.from_sub_model_configs( a , a , a , a ) _A: Optional[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _A: Dict = BarkModel(a ) _A: Tuple = semantic _A: Dict = coarseAcoustic _A: List[Any] = fineAcoustic _A: Union[str, Any] = codec _A: Optional[int] = bark_generation_config Path(a ).mkdir(exist_ok=a ) bark.save_pretrained(a , repo_id=a , push_to_hub=a ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') UpperCAmelCase__ : Tuple = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=3_2 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Optional[Any]=[1, 2, 1] , lowerCAmelCase_ : List[Any]=[2, 2, 4] , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[int]=2.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : List[Any]=1e-5 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=1_0 , lowerCAmelCase_ : Tuple=8 , ): """simple docstring""" _A: Tuple = parent _A: Optional[Any] = batch_size _A: Optional[Any] = image_size _A: Union[str, Any] = patch_size _A: Any = num_channels _A: Optional[int] = embed_dim _A: Any = depths _A: List[str] = num_heads _A: int = window_size _A: List[str] = mlp_ratio _A: Union[str, Any] = qkv_bias _A: int = hidden_dropout_prob _A: Any = attention_probs_dropout_prob _A: str = drop_path_rate _A: Union[str, Any] = hidden_act _A: List[str] = use_absolute_embeddings _A: List[Any] = patch_norm _A: Any = layer_norm_eps _A: Tuple = initializer_range _A: str = is_training _A: Dict = scope _A: str = use_labels _A: List[Any] = type_sequence_label_size _A: Optional[Any] = encoder_stride def __magic_name__ ( self : str ): """simple docstring""" _A: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: str = None if self.use_labels: _A: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Dict ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __magic_name__ ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: List[Any] = SwinvaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: List[str] = model(lowerCAmelCase_ ) _A: Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _A: str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = SwinvaForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Any = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _A: Dict = 1 _A: Tuple = SwinvaForMaskedImageModeling(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A: Optional[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: List[str] = self.type_sequence_label_size _A: List[str] = SwinvaForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: int = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Any = self.prepare_config_and_inputs() _A: int = config_and_inputs _A: int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCamelCase : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : List[Any] = False __UpperCamelCase : Tuple = False __UpperCamelCase : int = False __UpperCamelCase : Any = False def __magic_name__ ( self : int ): """simple docstring""" _A: Union[str, Any] = SwinvaModelTester(self ) _A: List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , embed_dim=3_7 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : str ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: List[str] = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Dict = model_class(lowerCAmelCase_ ) _A: Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: int = [*signature.parameters.keys()] _A: int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A: int = True for model_class in self.all_model_classes: _A: Union[str, Any] = True _A: Optional[int] = False _A: List[str] = True _A: str = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Any = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: int = outputs.attentions _A: Any = len(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A: List[str] = True _A: Optional[int] = config.window_size**2 _A: Optional[int] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: List[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Any = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _A: List[Any] = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _A: Dict = True _A: Dict = True _A: Dict = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Dict = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): _A: Union[str, Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _A: Dict = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase_ ) ) _A: List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: str = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Any = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: List[Any] = outputs.hidden_states _A: str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # Swinv2 has a different seq_length _A: Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A: Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _A: Dict = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _A: Optional[Any] = reshaped_hidden_states[0].shape _A: Optional[int] = ( reshaped_hidden_states[0].view(lowerCAmelCase_ , lowerCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = self.model_tester.prepare_config_and_inputs_for_common() _A: Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A: Any = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: Any = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _A: Any = 3 _A: str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _A: Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _A: Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A: Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A: List[str] = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: str = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Optional[Any] = SwinvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Dict = self.model_tester.prepare_config_and_inputs_for_common() _A: int = _config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: _A: Optional[int] = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Any ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : int ): """simple docstring""" _A: Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCAmelCase_ ) _A: int = self.default_image_processor _A: Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _A: Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A: Dict = model(**lowerCAmelCase_ ) # verify the logits _A: int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Tuple = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
def lowerCamelCase__ ( a ) -> bool: return str(a ) == str(a )[::-1] def lowerCamelCase__ ( a ) -> int: return int(a ) + int(str(a )[::-1] ) def lowerCamelCase__ ( a = 1_00_00 ) -> int: _A: Tuple = [] for num in range(1 , a ): _A: int = 0 _A: Any = num while iterations < 50: _A: List[Any] = sum_reverse(a ) iterations += 1 if is_palindrome(a ): break else: lychrel_nums.append(a ) return len(a ) if __name__ == "__main__": print(F"""{solution() = }""")
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase__ ( a , a , a=None , a=None ) -> List[str]: if attention_mask is None: _A: Dict = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Optional[Any] = OPTConfig __UpperCamelCase : str = {} __UpperCamelCase : str = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : str=1_6 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=2_0 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Optional[int]=1_6 , ): """simple docstring""" _A: Union[str, Any] = parent _A: Dict = batch_size _A: Union[str, Any] = seq_length _A: Union[str, Any] = is_training _A: Any = use_labels _A: Union[str, Any] = vocab_size _A: Optional[Any] = hidden_size _A: Union[str, Any] = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Union[str, Any] = intermediate_size _A: Union[str, Any] = hidden_act _A: Tuple = hidden_dropout_prob _A: Union[str, Any] = attention_probs_dropout_prob _A: List[Any] = max_position_embeddings _A: int = eos_token_id _A: List[str] = pad_token_id _A: Union[str, Any] = bos_token_id _A: Optional[Any] = embed_dim _A: str = word_embed_proj_dim _A: Optional[int] = False def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: List[Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) _A: List[str] = prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: int = TFOPTModel(config=lowerCAmelCase_ ) _A: List[str] = inputs_dict['''input_ids'''] _A: List[str] = input_ids[:1, :] _A: Optional[int] = inputs_dict['''attention_mask'''][:1, :] _A: Optional[int] = 1 # first forward pass _A: Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A: Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _A: Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A: Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _A: Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) _A: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _A: List[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _A: Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _A: List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _A: List[Any] = output_from_no_past[:, -3:, random_slice_idx] _A: Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __UpperCamelCase : Tuple = (TFOPTForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Any = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Any = 10 def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = TFOPTModelTester(self ) _A: int = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict ): if hasattr(lowerCAmelCase_ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings _A: Union[str, Any] = model_class(config=lowerCAmelCase_ ) _A: Optional[Any] = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _A: Dict = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) _A: Union[str, Any] = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _A: Union[str, Any] = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _A: Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing _A: Tuple = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _A: Any = False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) _A: str = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _A: List[Any] = False self.assertTrue(lowerCAmelCase_ ) def lowerCamelCase__ ( a ) -> List[str]: return tf.constant(a , dtype=tf.intaa ) @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = 99 def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _A: Union[str, Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _A: Dict = input_ids.shape[0] _A: str = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) _A: int = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _A: Optional[int] = tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): _A: Optional[int] = model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state _A: Tuple = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: Union[str, Any] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3 ) ) _A: List[Any] = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _A: Optional[Any] = xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : List[str] ): """simple docstring""" super().setUp() _A: Union[str, Any] = '''facebook/opt-350m''' def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = TFOPTForCausalLM.from_pretrained(self.path_model ) _A: List[str] = GPTaTokenizer.from_pretrained(self.path_model ) _A: int = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _A: str = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Any = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _A: Tuple = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) _A: Any = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _A: Tuple = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __magic_name__ ( self : Dict ): """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __magic_name__ ( self : str ): """simple docstring""" _A: str = '''facebook/opt-125m''' _A: List[Any] = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _A: int = [] _A: Optional[int] = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _A: str = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _A: Tuple = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' ).input_ids _A: List[Any] = model.generate(lowerCAmelCase_ , max_length=1_0 ) _A: str = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = '''facebook/opt-350m''' _A: Optional[Any] = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _A: Union[str, Any] = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) _A: Optional[Any] = '''left''' # use different length sentences to test batching _A: Dict = [ '''Hello, my dog is a little''', '''Today, I''', ] _A: List[str] = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' , padding=lowerCAmelCase_ ) _A: List[Any] = inputs['''input_ids'''] _A: str = model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs['''attention_mask'''] ) _A: int = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids _A: int = model.generate(input_ids=lowerCAmelCase_ ) _A: Optional[int] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) _A: Optional[Any] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids _A: Optional[int] = model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) _A: Dict = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) _A: int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _A: str = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _A: Tuple = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = '''facebook/opt-350m''' _A: Dict = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _A: str = [] _A: Dict = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _A: Dict = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _A: Union[str, Any] = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' ).input_ids _A: List[str] = model.generate(lowerCAmelCase_ , max_length=1_0 ) _A: str = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCamelCase__ ( a ) -> Any: _A: str = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = StableDiffusionLatentUpscalePipeline __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } __UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCamelCase : Dict = frozenset([] ) __UpperCamelCase : Tuple = True @property def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = 1 _A: List[Any] = 4 _A: Any = (1_6, 1_6) _A: Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image def __magic_name__ ( self : int ): """simple docstring""" torch.manual_seed(0 ) _A: Dict = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=lowerCAmelCase_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=lowerCAmelCase_ , only_cross_attention=lowerCAmelCase_ , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) _A: Optional[int] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) _A: Any = EulerDiscreteScheduler(prediction_type='''sample''' ) _A: List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''quick_gelu''' , projection_dim=5_1_2 , ) _A: List[Any] = CLIPTextModel(lowerCAmelCase_ ) _A: Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A: Tuple = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: Dict = torch.manual_seed(lowerCAmelCase_ ) else: _A: Dict = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : str ): """simple docstring""" _A: Any = '''cpu''' _A: List[Any] = self.get_dummy_components() _A: List[str] = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Optional[int] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: int = pipe(**lowerCAmelCase_ ).images _A: Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) _A: List[str] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _A: int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def __magic_name__ ( self : List[str] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def __magic_name__ ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def __magic_name__ ( self : List[str] ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def __magic_name__ ( self : int ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] _A: Tuple = self.get_dummy_components() _A: Any = self.pipeline_class(**lowerCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Optional[Any] = 2 _A: Union[str, Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _A: Union[str, Any] = getattr(lowerCAmelCase_ , scheduler_enum.name ) _A: int = scheduler_cls.from_config(pipe.scheduler.config ) _A: int = pipe(**lowerCAmelCase_ )[0] outputs.append(lowerCAmelCase_ ) assert check_same_shape(lowerCAmelCase_ ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : str ): """simple docstring""" _A: List[str] = torch.manual_seed(3_3 ) _A: List[str] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _A: List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _A: Union[str, Any] = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' _A: Union[str, Any] = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='''latent''' ).images _A: Optional[int] = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=2_0 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='''np''' , ).images[0] _A: Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def __magic_name__ ( self : str ): """simple docstring""" _A: List[str] = torch.manual_seed(3_3 ) _A: List[str] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _A: Dict = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' _A: int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) _A: Any = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=2_0 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='''np''' , ).images[0] _A: List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
from __future__ import annotations UpperCAmelCase__ : List[Any] = 'Muhammad Umer Farooq' UpperCAmelCase__ : str = 'MIT' UpperCAmelCase__ : Optional[int] = '1.0.0' UpperCAmelCase__ : Any = 'Muhammad Umer Farooq' UpperCAmelCase__ : Optional[Any] = 'contact@muhammadumerfarooq.me' UpperCAmelCase__ : Union[str, Any] = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : str ): """simple docstring""" super().__init__() _A: list[str] = [] _A: Optional[Any] = domain def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : list[tuple[str, str | None]] ): """simple docstring""" # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _A: int = parse.urljoin(self.domain , lowerCAmelCase_ ) self.urls.append(lowerCAmelCase_ ) def lowerCamelCase__ ( a ) -> str: return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] ) def lowerCamelCase__ ( a ) -> str: return parse.urlparse(a ).netloc def lowerCamelCase__ ( a = "https://github.com" ) -> list[str]: _A: List[Any] = get_domain_name(a ) # Initialize the parser _A: str = Parser(a ) try: # Open URL _A: Tuple = requests.get(a ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _A: Optional[Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _A: List[str] = requests.get(a ) # Get the valid email. _A: List[str] = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(a ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = emails_from_url('https://github.com') print(F"""{len(emails)} emails found:""") print('\n'.join(sorted(emails)))
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
import gc import threading import time import psutil import torch class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" _A: Dict = psutil.Process() _A: Optional[Any] = False def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Any = -1 while True: _A: Optional[Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = True _A: str = threading.Thread(target=self.peak_monitor ) _A: List[Any] = True self.thread.start() def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = False self.thread.join() return self.cpu_memory_peak UpperCAmelCase__ : int = PeakCPUMemory() def lowerCamelCase__ ( ) -> Optional[Any]: # Time _A: List[str] = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _A: str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _A: List[Any] = torch.cuda.memory_allocated(a ) torch.cuda.reset_peak_memory_stats() return measures def lowerCamelCase__ ( a ) -> Union[str, Any]: # Time _A: Tuple = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem _A: Optional[Any] = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 _A: Dict = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _A: Dict = (torch.cuda.memory_allocated(a ) - start_measures[str(a )]) / 2**20 _A: List[Any] = (torch.cuda.max_memory_allocated(a ) - start_measures[str(a )]) / 2**20 return measures def lowerCamelCase__ ( a , a ) -> Union[str, Any]: print(f"""{description}:""" ) print(f"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(a )]:.2f}MiB""" ) _A: List[str] = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase : int = 1_0000 __UpperCamelCase : Optional[List[str]] = None __UpperCamelCase : Optional[datasets.Features] = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase : Dict = ParquetConfig def __magic_name__ ( self : Any ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str ): """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _A: Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase_ , (str, list, tuple) ): _A: Any = data_files if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A: Optional[Any] = [dl_manager.iter_files(lowerCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _A: int = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A: List[str] = [dl_manager.iter_files(lowerCAmelCase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowerCAmelCase_ ): with open(lowerCAmelCase_ , '''rb''' ) as f: _A: int = datasets.Features.from_arrow_schema(pq.read_schema(lowerCAmelCase_ ) ) break splits.append(datasets.SplitGenerator(name=lowerCAmelCase_ , gen_kwargs={'''files''': files} ) ) return splits def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : pa.Table ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _A: Any = table_cast(lowerCAmelCase_ , self.info.features.arrow_schema ) return pa_table def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Any ): """simple docstring""" _A: List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase_ ) ): with open(lowerCAmelCase_ , '''rb''' ) as f: _A: Optional[Any] = pq.ParquetFile(lowerCAmelCase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _A: str = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(lowerCAmelCase_ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase_ )}: {e}""" ) raise
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
from math import isqrt, loga def lowerCamelCase__ ( a ) -> list[int]: _A: Union[str, Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a , a ): _A: Optional[int] = False return [i for i in range(2 , a ) if is_prime[i]] def lowerCamelCase__ ( a = 80_08_00 , a = 80_08_00 ) -> int: _A: Dict = degree * loga(a ) _A: List[str] = int(a ) _A: str = calculate_prime_numbers(a ) _A: List[Any] = 0 _A: str = 0 _A: int = len(a ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : WhisperForConditionalGeneration , lowerCAmelCase_ : WhisperProcessor , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCAmelCase_ , speech_processor=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": _A: List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.enable_attention_slicing(lowerCAmelCase_ ) @torch.no_grad() def __call__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=1_6_0_0_0 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" _A: Optional[int] = self.speech_processor.feature_extractor( lowerCAmelCase_ , return_tensors='''pt''' , sampling_rate=lowerCAmelCase_ ).input_features.to(self.device ) _A: List[str] = self.speech_model.generate(lowerCAmelCase_ , max_length=4_8_0_0_0_0 ) _A: Tuple = self.speech_processor.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , normalize=lowerCAmelCase_ )[ 0 ] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = 1 elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[str] = len(lowerCAmelCase_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCAmelCase_ )}.""" ) # get prompt text embeddings _A: str = self.tokenizer( lowerCAmelCase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _A: Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A: List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _A: int = text_input_ids[:, : self.tokenizer.model_max_length] _A: Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _A: Tuple = text_embeddings.shape _A: int = text_embeddings.repeat(1 , lowerCAmelCase_ , 1 ) _A: Tuple = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _A: int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _A: List[str] if negative_prompt is None: _A: List[Any] = [''''''] * batch_size elif type(lowerCAmelCase_ ) is not type(lowerCAmelCase_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase_ )} !=""" F""" {type(lowerCAmelCase_ )}.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Union[str, Any] = [negative_prompt] elif batch_size != len(lowerCAmelCase_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: _A: Optional[Any] = negative_prompt _A: str = text_input_ids.shape[-1] _A: int = self.tokenizer( lowerCAmelCase_ , padding='''max_length''' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' , ) _A: List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A: List[Any] = uncond_embeddings.shape[1] _A: List[Any] = uncond_embeddings.repeat(1 , lowerCAmelCase_ , 1 ) _A: str = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A: Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _A: Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _A: Any = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _A: int = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device='''cpu''' , dtype=lowerCAmelCase_ ).to( self.device ) else: _A: Any = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _A: Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _A: List[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A: List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A: List[str] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A: Tuple = {} if accepts_eta: _A: str = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A: List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A: List[Any] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual _A: Union[str, Any] = self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample # perform guidance if do_classifier_free_guidance: _A: List[Any] = noise_pred.chunk(2 ) _A: Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _A: Tuple = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = 1 / 0.18215 * latents _A: Tuple = self.vae.decode(lowerCAmelCase_ ).sample _A: Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _A: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: List[Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) UpperCAmelCase__ : Dict = '▁' UpperCAmelCase__ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase__ : Any = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } UpperCAmelCase__ : Optional[int] = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off UpperCAmelCase__ : List[Any] = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: Optional[int] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token _A: Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _A: Optional[Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) _A: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) _A: Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A: Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A: str = 1 _A: Optional[int] = len(self.sp_model ) _A: List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase_ ) } _A: Any = {v: k for k, v in self.lang_code_to_id.items()} _A: Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _A: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A: str = src_lang if src_lang is not None else '''en_XX''' _A: int = self.lang_code_to_id[self._src_lang] _A: Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __magic_name__ ( self : Tuple ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __magic_name__ ( self : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[int] ): """simple docstring""" _A: Tuple = self.__dict__.copy() _A: List[str] = None return state def __setstate__( self : Union[str, Any] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A: List[str] = {} _A: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : str ): """simple docstring""" return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A: int = self.sp_model.PieceToId(lowerCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" _A: int = [] _A: int = '''''' _A: Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token _A: Union[str, Any] = True _A: Dict = [] else: current_sub_tokens.append(lowerCAmelCase_ ) _A: Union[str, Any] = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , '''wb''' ) as fi: _A: List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) _A: Optional[Any] = [1] * len(self.prefix_tokens ) _A: Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase_ )) + ([0] * len(lowerCAmelCase_ )) + suffix_ones def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] , **lowerCAmelCase_ : List[str] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _A: Dict = src_lang _A: Optional[Any] = self(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) _A: Dict = self.convert_tokens_to_ids(lowerCAmelCase_ ) _A: Optional[Any] = tgt_lang_id return inputs def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str = "en_XX" , lowerCAmelCase_ : Optional[List[str]] = None , lowerCAmelCase_ : str = "ro_RO" , **lowerCAmelCase_ : List[str] , ): """simple docstring""" _A: List[str] = src_lang _A: List[Any] = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self : Dict ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[Any] = self.lang_code_to_id[src_lang] _A: List[str] = [self.cur_lang_code_id] _A: Optional[int] = [self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : str ): """simple docstring""" _A: Any = self.lang_code_to_id[tgt_lang] _A: str = [self.cur_lang_code_id] _A: Any = [self.eos_token_id]
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import sys def lowerCamelCase__ ( a ) -> Any: _A: Optional[Any] = len(a ) _A: Union[str, Any] = [[0 for x in range(a )] for x in range(a )] _A: int = [[0 for x in range(a )] for x in range(a )] for chain_length in range(2 , a ): for a in range(1 , n - chain_length + 1 ): _A: int = a + chain_length - 1 _A: Any = sys.maxsize for c in range(a , a ): _A: str = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _A: str = cost _A: Dict = c return matrix, sol def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: if i == j: print('''A''' + str(a ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a , a , optimal_solution[i][j] ) print_optiomal_solution(a , optimal_solution[i][j] + 1 , a ) print(''')''' , end=''' ''' ) def lowerCamelCase__ ( ) -> Union[str, Any]: _A: int = [30, 35, 15, 5, 10, 20, 25] _A: Tuple = len(a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _A: int = matrix_chain_order(a ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a , 1 , n - 1 ) if __name__ == "__main__": main()
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : TransformeraDModel , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : KarrasDiffusionSchedulers , lowerCAmelCase_ : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=lowerCAmelCase_ , vae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) # create a imagenet -> id dictionary for easier use _A: List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): _A: int = int(lowerCAmelCase_ ) _A: List[str] = dict(sorted(self.labels.items() ) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, List[str]] ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Tuple = list(lowerCAmelCase_ ) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[Any] = len(lowerCAmelCase_ ) _A: str = self.transformer.config.sample_size _A: Dict = self.transformer.config.in_channels _A: Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase_ , device=self.device , dtype=self.transformer.dtype , ) _A: int = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _A: str = torch.tensor(lowerCAmelCase_ , device=self.device ).reshape(-1 ) _A: List[Any] = torch.tensor([1_0_0_0] * batch_size , device=self.device ) _A: Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _A: str = latent_model_input[: len(lowerCAmelCase_ ) // 2] _A: Optional[int] = torch.cat([half, half] , dim=0 ) _A: Dict = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[int] = t if not torch.is_tensor(lowerCAmelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _A: Tuple = latent_model_input.device.type == '''mps''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Optional[int] = torch.floataa if is_mps else torch.floataa else: _A: int = torch.intaa if is_mps else torch.intaa _A: List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _A: Optional[int] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A: List[str] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _A: List[str] = self.transformer( lowerCAmelCase_ , timestep=lowerCAmelCase_ , class_labels=lowerCAmelCase_ ).sample # perform guidance if guidance_scale > 1: _A: Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _A: Dict = torch.split(lowerCAmelCase_ , len(lowerCAmelCase_ ) // 2 , dim=0 ) _A: int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _A: Dict = torch.cat([half_eps, half_eps] , dim=0 ) _A: Union[str, Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _A: List[str] = torch.split(lowerCAmelCase_ , lowerCAmelCase_ , dim=1 ) else: _A: Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 _A: Union[str, Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample if guidance_scale > 1: _A: Tuple = latent_model_input.chunk(2 , dim=0 ) else: _A: str = latent_model_input _A: int = 1 / self.vae.config.scaling_factor * latents _A: Optional[int] = self.vae.decode(lowerCAmelCase_ ).sample _A: int = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _A: Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: Optional[int] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase_ )
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" def lowerCamelCase__ ( a , a , a ) -> float: if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(a , a ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate _A: str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _A: Tuple = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
UpperCAmelCase__ : List[str] = 9.8_0665 def lowerCamelCase__ ( a , a , a = g ) -> float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
def lowerCamelCase__ ( a = 4_00_00_00 ) -> int: _A: Union[str, Any] = [] _A: Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(a ) _A: Any = b, a + b return sum(a ) if __name__ == "__main__": print(F"""{solution() = }""")
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCAmelCase__ : List[Any] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') UpperCAmelCase__ : List[str] = F"""https://www.google.com/search?q={query}&num=100""" UpperCAmelCase__ : Dict = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: UpperCAmelCase__ : Optional[Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: UpperCAmelCase__ : Any = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Tuple = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCamelCase__ ( a ) -> str: for pegasus_name, hf_name in PATTERNS: _A: Optional[int] = k.replace(a , a ) return k def lowerCamelCase__ ( a , a ) -> PegasusForConditionalGeneration: _A: Any = DEFAULTS.copy() cfg_kwargs.update(a ) _A: Optional[int] = PegasusConfig(**a ) _A: Optional[int] = PegasusForConditionalGeneration(a ) _A: Optional[Any] = torch_model.model.state_dict() _A: Any = {} for k, v in tf_weights.items(): _A: Union[str, Any] = rename_state_dict_key(a ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _A: Dict = v.T _A: Union[str, Any] = torch.tensor(a , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _A: Dict = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) _A: Optional[Any] = mapping['''shared.weight'''] _A: Union[str, Any] = mapping['''shared.weight'''] _A: Optional[Any] = {k: torch.zeros_like(a ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a ) _A: str = torch_model.model.load_state_dict(a , strict=a ) _A: Optional[int] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase__ ( a="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: _A: List[str] = tf.train.list_variables(a ) _A: Dict = {} _A: Tuple = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a , desc='''converting tf checkpoint to dict''' ): _A: int = any(pat in name for pat in ignore_name ) if skip_key: continue _A: Tuple = tf.train.load_variable(a , a ) _A: int = array return tf_weights def lowerCamelCase__ ( a , a ) -> Tuple: # save tokenizer first _A: List[Any] = Path(a ).parent.name _A: List[Any] = task_specific_params[f"""summarization_{dataset}"""]['''max_position_embeddings'''] _A: Optional[int] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a ) # convert model _A: Tuple = get_tf_weights_as_numpy(a ) _A: Any = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": _A: Tuple = task_specific_params _A: Optional[Any] = convert_pegasus(a , a ) torch_model.save_pretrained(a ) _A: Dict = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a , Path(a ) / '''pytorch_model.bin''' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase__ : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : int = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : Union[str, Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput UpperCAmelCase__ : int = 8 def lowerCamelCase__ ( a , a=BITS ) -> Any: _A: Dict = x.device _A: Optional[Any] = (x * 2_55).int().clamp(0 , 2_55 ) _A: Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a ) _A: Tuple = rearrange(a , '''d -> d 1 1''' ) _A: Dict = rearrange(a , '''b c h w -> b c 1 h w''' ) _A: Tuple = ((x & mask) != 0).float() _A: Union[str, Any] = rearrange(a , '''b c d h w -> b (c d) h w''' ) _A: Union[str, Any] = bits * 2 - 1 return bits def lowerCamelCase__ ( a , a=BITS ) -> Any: _A: str = x.device _A: List[str] = (x > 0).int() _A: Any = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a , dtype=torch.intaa ) _A: List[Any] = rearrange(a , '''d -> d 1 1''' ) _A: int = rearrange(a , '''b (c d) h w -> b c d h w''' , d=8 ) _A: Any = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def lowerCamelCase__ ( self , a , a , a , a = 0.0 , a = True , a=None , a = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _A: List[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _A: int = self.alphas_cumprod[timestep] _A: Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _A: List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A: Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _A: Tuple = self.bit_scale if self.config.clip_sample: _A: str = torch.clamp(a , -scale , a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _A: str = self._get_variance(a , a ) _A: Union[str, Any] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _A: Tuple = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A: Any = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A: int = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _A: Union[str, Any] = model_output.device if torch.is_tensor(a ) else '''cpu''' _A: Dict = torch.randn(model_output.shape , dtype=model_output.dtype , generator=a ).to(a ) _A: Tuple = self._get_variance(a , a ) ** 0.5 * eta * noise _A: Union[str, Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=a , pred_original_sample=a ) def lowerCamelCase__ ( self , a , a , a , a="epsilon" , a=None , a = True , ) -> Union[DDPMSchedulerOutput, Tuple]: _A: int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _A: int = torch.split(a , sample.shape[1] , dim=1 ) else: _A: int = None # 1. compute alphas, betas _A: Any = self.alphas_cumprod[t] _A: List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one _A: Union[str, Any] = 1 - alpha_prod_t _A: Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _A: List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _A: Union[str, Any] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _A: Tuple = self.bit_scale if self.config.clip_sample: _A: Union[str, Any] = torch.clamp(a , -scale , a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A: Union[str, Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _A: Any = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A: List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _A: List[str] = 0 if t > 0: _A: Optional[int] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=a ).to(model_output.device ) _A: Any = (self._get_variance(a , predicted_variance=a ) ** 0.5) * noise _A: Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=a , pred_original_sample=a ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ): """simple docstring""" super().__init__() _A: Tuple = bit_scale _A: Any = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase_ : Optional[int] = 2_5_6 , lowerCAmelCase_ : Optional[int] = 2_5_6 , lowerCAmelCase_ : Optional[int] = 5_0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" _A: Any = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , ) _A: List[Any] = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale _A: Any = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _A: Dict = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _A: Optional[Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample _A: int = bits_to_decimal(lowerCAmelCase_ ) if output_type == "pil": _A: List[str] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
def lowerCamelCase__ ( a , a ) -> float: def get_matched_characters(a , a ) -> str: _A: Any = [] _A: List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _A: List[Any] = int(max(0 , i - limit ) ) _A: int = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) _A: List[str] = f"""{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}""" return "".join(a ) # matching characters _A: Tuple = get_matched_characters(a , a ) _A: str = get_matched_characters(a , a ) _A: Dict = len(a ) # transposition _A: List[str] = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: _A: int = 0.0 else: _A: str = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _A: Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Tuple , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , lowerCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , **lowerCAmelCase_ : Dict ): """simple docstring""" _A: int = {} if "candidate_labels" in kwargs: _A: List[Any] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _A: Dict = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any="This is a photo of {}." ): """simple docstring""" _A: Optional[Any] = load_image(lowerCAmelCase_ ) _A: Union[str, Any] = self.image_processor(images=[image] , return_tensors=self.framework ) _A: Optional[Any] = candidate_labels _A: Optional[Any] = [hypothesis_template.format(lowerCAmelCase_ ) for x in candidate_labels] _A: Tuple = self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework , padding=lowerCAmelCase_ ) _A: Any = [text_inputs] return inputs def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = model_inputs.pop('''candidate_labels''' ) _A: Any = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowerCAmelCase_ ): _A: Dict = text_inputs[0] else: # Batching case. _A: List[Any] = text_inputs[0][0] _A: Union[str, Any] = self.model(**lowerCAmelCase_ , **lowerCAmelCase_ ) _A: str = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" _A: List[Any] = model_outputs.pop('''candidate_labels''' ) _A: Tuple = model_outputs['''logits'''][0] if self.framework == "pt": _A: Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _A: Tuple = probs.tolist() if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: str = [scores] elif self.framework == "tf": _A: List[str] = stable_softmax(lowerCAmelCase_ , axis=-1 ) _A: Any = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) _A: int = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : -x[0] ) ] return result
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( a ) -> Any: _A: List[Any] = torch.load(a , map_location='''cpu''' ) if "model" in sd.keys(): _A: str = torch.load(a , map_location='''cpu''' )['''model'''] # pop unnecessary weights _A: str = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(a ) _A: Dict = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _A: str = sd.pop(a ) _A: Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _A: str = sd[key] # We split QKV in separate Q,K,V _A: Any = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) _A: Union[str, Any] = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) _A: str = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) _A: int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _A: Dict = torch.split(a , depth // 3 , dim=0 ) _A: List[Any] = q _A: str = k _A: List[Any] = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( a , a , a=None ) -> Union[str, Any]: _A: int = load_checkpoint(a ) if config is not None: _A: Dict = OPTConfig.from_pretrained(a ) else: _A: Optional[Any] = OPTConfig() _A: List[str] = OPTModel(a ).half().eval() model.load_state_dict(a ) # Check results Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase__ : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : int __UpperCamelCase : TreeNode | None = None __UpperCamelCase : TreeNode | None = None UpperCAmelCase__ : Any = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( a ) -> int: if root is None: return 0 # Validation def count_nodes(a ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a ) != count_coins(a ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(a ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _A: Optional[int] = get_distrib(node.left ) _A: int = get_distrib(node.right ) _A: List[str] = 1 - left_distrib_excess _A: Tuple = 1 - right_distrib_excess _A: Tuple = ( left_distrib_moves + right_distrib_moves + abs(a ) + abs(a ) ) _A: Union[str, Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a , a ) return get_distrib(a )[0] if __name__ == "__main__": import doctest doctest.testmod()
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" with open(lowerCAmelCase_ , encoding='''utf-8''' ) as input_file: _A: Optional[Any] = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) _A: Optional[int] = input_file.read() _A: Any = regexp.search(lowerCAmelCase_ ) return match def __magic_name__ ( self : Dict , lowerCAmelCase_ : str ): """simple docstring""" with open(lowerCAmelCase_ , encoding='''utf-8''' ) as input_file: _A: int = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) _A: int = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _A: Union[str, Any] = regexp.finditer(lowerCAmelCase_ ) _A: Optional[int] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Union[str, Any] = Path('''./datasets''' ) _A: Any = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCAmelCase_ ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = Path('''./datasets''' ) _A: Optional[Any] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCAmelCase_ ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCAmelCase__ : str = logging.get_logger(__name__) def lowerCamelCase__ ( ) -> Optional[int]: # Get the sagemaker specific mp parameters from smp_options variable. _A: int = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _A: Union[str, Any] = json.loads(a ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _A: List[Any] = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _A: List[Any] = json.loads(a ) if not mpi_options.get('''sagemaker_mpi_enabled''' , a ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , lowerCAmelCase_ , ) @cached_property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: _A: Any = torch.device('''cpu''' ) _A: Any = 0 elif is_sagemaker_model_parallel_available(): _A: Any = smp.local_rank() _A: Union[str, Any] = torch.device('''cuda''' , lowerCAmelCase_ ) _A: List[str] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) _A: List[Any] = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) _A: List[str] = torch.device('''cuda''' , self.local_rank ) _A: List[Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _A: Optional[int] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _A: List[str] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) _A: List[Any] = torch.device('''cuda''' , self.local_rank ) _A: str = 1 if device.type == "cuda": torch.cuda.set_device(lowerCAmelCase_ ) return device @property def __magic_name__ ( self : List[Any] ): """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return not is_sagemaker_model_parallel_available() @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return False
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCAmelCase__ : int = TypeVar('T') class UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : bool = True ): """simple docstring""" _A: dict[T, list[T]] = {} # dictionary of lists _A: List[str] = directed def __magic_name__ ( self : Any , lowerCAmelCase_ : T , lowerCAmelCase_ : T ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) self.adj_list[destination_vertex].append(lowerCAmelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) _A: List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase_ ) _A: Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _A: Union[str, Any] = [destination_vertex] _A: Dict = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase_ ) _A: int = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _A: str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _A: Tuple = [destination_vertex] _A: str = [] return self def __repr__( self : Tuple ): """simple docstring""" return pformat(self.adj_list )
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } UpperCAmelCase__ : Any = { 'RUCAIBox/mvp': 1024, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : int = MvpTokenizer def __init__( self : Optional[Any] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]="replace" , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : int="</s>" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[int]=True , **lowerCAmelCase_ : Any , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase_ ) != add_prefix_space: _A: str = getattr(lowerCAmelCase_ , pre_tok_state.pop('''type''' ) ) _A: List[str] = add_prefix_space _A: Optional[int] = pre_tok_class(**lowerCAmelCase_ ) _A: List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A: Union[str, Any] = '''post_processor''' _A: Tuple = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_ ) if tokenizer_component_instance: _A: str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A: int = tuple(state['''sep'''] ) if "cls" in state: _A: Any = tuple(state['''cls'''] ) _A: Union[str, Any] = False if state.get('''add_prefix_space''' , lowerCAmelCase_ ) != add_prefix_space: _A: Optional[Any] = add_prefix_space _A: str = True if state.get('''trim_offsets''' , lowerCAmelCase_ ) != trim_offsets: _A: str = trim_offsets _A: int = True if changes_to_apply: _A: Optional[int] = getattr(lowerCAmelCase_ , state.pop('''type''' ) ) _A: Union[str, Any] = component_class(**lowerCAmelCase_ ) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" _A: Dict = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else value _A: Optional[int] = value def __magic_name__ ( self : List[str] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = kwargs.get('''is_split_into_words''' , lowerCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : int , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Union[str, Any] = kwargs.get('''is_split_into_words''' , lowerCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" _A: List[str] = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int=None ): """simple docstring""" _A: Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Optional[int] = [self.sep_token_id] _A: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
from __future__ import annotations def lowerCamelCase__ ( a , a ) -> int: # Checks if the entire collection has been sorted if len(a ) <= 1 or n <= 1: return insert_next(a , n - 1 ) rec_insertion_sort(a , n - 1 ) def lowerCamelCase__ ( a , a ) -> List[Any]: # Checks order between adjacent elements if index >= len(a ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _A: Tuple = ( collection[index], collection[index - 1], ) insert_next(a , index + 1 ) if __name__ == "__main__": UpperCAmelCase__ : Any = input('Enter integers separated by spaces: ') UpperCAmelCase__ : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
from statistics import mean, stdev def lowerCamelCase__ ( a , a = 3 ) -> list: _A: Union[str, Any] = min(a ) _A: Tuple = max(a ) # normalize data return [round((x - x_min) / (x_max - x_min) , a ) for x in data] def lowerCamelCase__ ( a , a = 3 ) -> list: _A: Optional[Any] = mean(a ) _A: Any = stdev(a ) # standardize data return [round((x - mu) / (sigma) , a ) for x in data]
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase__ : Union[str, Any] = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase__ : Dict = '>>zh<<' UpperCAmelCase__ : int = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase__ : Union[str, Any] = 'pt' elif is_tf_available(): UpperCAmelCase__ : Optional[int] = 'tf' else: UpperCAmelCase__ : Union[str, Any] = 'jax' @require_sentencepiece class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = MarianTokenizer __UpperCamelCase : List[str] = False __UpperCamelCase : int = True def __magic_name__ ( self : Optional[Any] ): """simple docstring""" super().setUp() _A: int = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] _A: Optional[int] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: int = Path(self.tmpdirname ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) _A: Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return ( "This is a test", "This is a test", ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[str] = '''</s>''' _A: List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(lowerCAmelCase_ ) , 9 ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Any = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) _A: int = en_de_tokenizer(['''I am a small frog'''] , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(lowerCAmelCase_ , batch.input_ids[0] ) _A: Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase_ ) _A: Any = [x.name for x in Path(lowerCAmelCase_ ).glob('''*''' )] self.assertIn('''source.spm''' , lowerCAmelCase_ ) MarianTokenizer.from_pretrained(lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = self.get_tokenizer() _A: Optional[Any] = tok( ['''I am a small frog''' * 1_0_0_0, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def __magic_name__ ( self : str ): """simple docstring""" _A: Any = self.get_tokenizer() _A: Optional[int] = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Tuple = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Any = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) _A: Optional[Any] = '''Tämä on testi''' _A: Union[str, Any] = '''This is a test''' _A: Tuple = [7_6, 7, 2_0_4_7, 2] _A: str = [6_9, 1_2, 1_1, 9_4_0, 2] _A: List[Any] = tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = tokenizer(text_target=lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
def lowerCamelCase__ ( a = 1_00_00_00 ) -> int: _A: Optional[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : List[Any] = '''ViTImageProcessor''' __UpperCamelCase : List[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase_ , ) _A: List[Any] = kwargs.pop('''feature_extractor''' ) _A: Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : Dict , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: _A: str = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if visual_prompt is not None: _A: Optional[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: _A: Union[str, Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if visual_prompt is not None and images is not None: _A: Dict = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A: Dict = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A: List[Any] = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def __magic_name__ ( self : int , *lowerCAmelCase_ : str , **lowerCAmelCase_ : int ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : str , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : List[Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase_ , ) return self.image_processor_class @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase_ , ) return self.image_processor
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Optional[Any] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = Dict[str, Any] lowerCAmelCase_ = List[Prediction] @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : int ,*_snake_case : int ,**_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" super().__init__(*_snake_case ,**_snake_case ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self ,'''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCAmelCase ( self : Any ,**_snake_case : int ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = {} if "threshold" in kwargs: lowercase__ : int = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : List[Any] ,*_snake_case : List[str] ,**_snake_case : List[str] ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = load_image(_snake_case ) lowercase__ : List[str] = torch.IntTensor([[image.height, image.width]] ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors='''pt''' ) if self.tokenizer is not None: lowercase__ : Any = self.tokenizer(text=inputs['''words'''] ,boxes=inputs['''boxes'''] ,return_tensors='''pt''' ) lowercase__ : Union[str, Any] = target_size return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''target_size''' ) lowercase__ : Union[str, Any] = self.model(**_snake_case ) lowercase__ : Union[str, Any] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: lowercase__ : Optional[Any] = model_inputs['''bbox'''] return model_outputs def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : int=0.9 ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowercase__ , lowercase__ : Tuple = target_size[0].tolist() def unnormalize(_snake_case : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) lowercase__ , lowercase__ : Union[str, Any] = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowercase__ : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowercase__ : List[str] = [unnormalize(_snake_case ) for bbox in model_outputs['''bbox'''].squeeze(0 )] lowercase__ : Optional[int] = ['''score''', '''label''', '''box'''] lowercase__ : List[str] = [dict(zip(_snake_case ,_snake_case ) ) for vals in zip(scores.tolist() ,_snake_case ,_snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowercase__ : Optional[int] = self.image_processor.post_process_object_detection(_snake_case ,_snake_case ,_snake_case ) lowercase__ : int = raw_annotations[0] lowercase__ : Optional[int] = raw_annotation['''scores'''] lowercase__ : Union[str, Any] = raw_annotation['''labels'''] lowercase__ : Optional[Any] = raw_annotation['''boxes'''] lowercase__ : Optional[Any] = scores.tolist() lowercase__ : List[str] = [self.model.config.idalabel[label.item()] for label in labels] lowercase__ : Union[str, Any] = [self._get_bounding_box(_snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowercase__ : Optional[Any] = ['''score''', '''label''', '''box'''] lowercase__ : Optional[int] = [ dict(zip(_snake_case ,_snake_case ) ) for vals in zip(raw_annotation['''scores'''] ,raw_annotation['''labels'''] ,raw_annotation['''boxes'''] ) ] return annotation def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = box.int().tolist() lowercase__ : List[Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: # Initialise PyTorch model lowercase__ : Dict = AlbertConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase__ : str = AlbertForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def __UpperCAmelCase ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : int ,*_snake_case : Optional[int] ,**_snake_case : List[Any] ) -> None: """simple docstring""" warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
302
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
1
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : List[str] = {} lowercase__ : Union[str, Any] = tokenizer(example['''content'''] , truncation=__lowerCamelCase )['''input_ids'''] lowercase__ : Union[str, Any] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCAmelCase_ = HfArgumentParser(PretokenizationArguments) lowerCAmelCase_ = parser.parse_args() if args.num_workers is None: lowerCAmelCase_ = multiprocessing.cpu_count() lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase_ = time.time() lowerCAmelCase_ = load_dataset(args.dataset_name, split='train') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCAmelCase_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
302
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['YolosFeatureExtractor'] lowerCAmelCase_ = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
1
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : str = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ , lowercase__ : Union[str, Any] = emb.weight.shape lowercase__ : int = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase__ : Union[str, Any] = emb.weight.data return lin_layer def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> List[Any]: lowercase__ : Optional[int] = {} for old_key in state_dict.keys(): lowercase__ : List[str] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase__ : Union[str, Any] = key.replace('''moe_layer.experts.0''' , f"""ffn.experts.expert_{expert_idx}""" ) else: lowercase__ : Union[str, Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowercase__ : Optional[Any] = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowercase__ : Optional[int] = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowercase__ : Dict = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowercase__ : Any = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowercase__ : List[Any] = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowercase__ : int = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowercase__ : int = state_dict[old_key] return new_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> Dict: lowercase__ : List[str] = [] lowercase__ : Tuple = 0 os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) for expert in range(__lowerCamelCase ): lowercase__ : Optional[int] = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(__lowerCamelCase ): lowercase__ : Optional[Any] = torch.load(__lowerCamelCase )['''model'''] remove_ignore_keys_(__lowerCamelCase ) lowercase__ : Any = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = os.path.join( __lowerCamelCase , weights_name.replace('''.bin''' , f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) torch.save(__lowerCamelCase , __lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowerCamelCase )[0]].dtype ) # Add the last block lowercase__ : int = os.path.join(__lowerCamelCase , weights_name.replace('''.bin''' , f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) lowercase__ : List[str] = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__lowerCamelCase ) lowercase__ : List[str] = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any] = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCamelCase ) == 1: lowercase__ : str = os.path.join(__lowerCamelCase , __lowerCamelCase ) torch.save(__lowerCamelCase , __lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCamelCase , __lowerCamelCase ) # Otherwise, let's build the index lowercase__ : Optional[Any] = {} for idx, shard in enumerate(__lowerCamelCase ): lowercase__ : Optional[Any] = weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin""" ) lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) for key in shard: lowercase__ : Any = shard_file # Add the metadata lowercase__ : Optional[int] = {'''total_size''': total_size} lowercase__ : List[Any] = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' , encoding='''utf-8''' ) as f: lowercase__ : Tuple = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + '''\n''' f.write(__lowerCamelCase ) return metadata, index if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ ,lowerCAmelCase_ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase_ = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
302
"""simple docstring""" import math def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Tuple = 0 lowercase__ : Tuple = 0 while num > 0: lowercase__ : int = num % 8 lowercase__ : Tuple = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 lowercase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(__lowerCamelCase )}""" def __UpperCAmelCase ( ) -> None: print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
302
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {} class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "llama" lowerCAmelCase : Tuple = ["past_key_values"] def __init__( self : Any ,_snake_case : List[Any]=32_000 ,_snake_case : str=4_096 ,_snake_case : Dict=11_008 ,_snake_case : int=32 ,_snake_case : Tuple=32 ,_snake_case : Optional[int]=None ,_snake_case : List[Any]="silu" ,_snake_case : Union[str, Any]=2_048 ,_snake_case : List[str]=0.02 ,_snake_case : List[Any]=1e-6 ,_snake_case : Optional[Any]=True ,_snake_case : Any=0 ,_snake_case : Optional[int]=1 ,_snake_case : List[str]=2 ,_snake_case : Tuple=1 ,_snake_case : str=False ,_snake_case : Tuple=None ,**_snake_case : Tuple ,) -> Tuple: """simple docstring""" lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Any = hidden_size lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Any = num_key_value_heads lowercase__ : Union[str, Any] = hidden_act lowercase__ : Any = initializer_range lowercase__ : str = rms_norm_eps lowercase__ : List[Any] = pretraining_tp lowercase__ : Any = use_cache lowercase__ : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,tie_word_embeddings=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) lowercase__ : List[Any] = self.rope_scaling.get('''type''' ,_snake_case ) lowercase__ : Optional[Any] = self.rope_scaling.get('''factor''' ,_snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_snake_case ,_snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
1
"""simple docstring""" import math import sys import cva import numpy as np def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: # For applying gaussian function for each element in matrix. lowercase__ : Optional[Any] = math.sqrt(__lowerCamelCase ) lowercase__ : List[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: lowercase__ : List[str] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: # Creates a gaussian kernel of given dimension. lowercase__ : Tuple = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCamelCase ): for j in range(0 , __lowerCamelCase ): lowercase__ : Tuple = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> np.ndarray: lowercase__ : Tuple = np.zeros(img.shape ) lowercase__ : Any = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowercase__ : List[str] = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : str = img_s - img_s[kernel_size // 2, kernel_size // 2] lowercase__ : Optional[Any] = vec_gaussian(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[str] = np.multiply(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = np.multiply(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[str] = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase ) lowercase__ : List[Any] = val return imga def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : Optional[int] = args[1] if args[1:] else '''../image_data/lena.jpg''' lowercase__ : Optional[Any] = float(args[2] ) if args[2:] else 1.0 lowercase__ : Optional[Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowercase__ : Optional[int] = int(args[4] ) lowercase__ : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowercase__ : Optional[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = parse_args(sys.argv) lowerCAmelCase_ = cva.imread(filename, 0) cva.imshow('input image', img) lowerCAmelCase_ = img / 255 lowerCAmelCase_ = out.astype('float32') lowerCAmelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase_ = out * 255 lowerCAmelCase_ = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
302
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase_ = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' lowerCAmelCase_ = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' lowerCAmelCase_ = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' ,id='''sequence''' ) ,id='''references''' ), } ) ,codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] ,reference_urls=[ '''https://github.com/m-popovic/chrF''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ,_snake_case : Any ,_snake_case : int = CHRF.CHAR_ORDER ,_snake_case : int = CHRF.WORD_ORDER ,_snake_case : int = CHRF.BETA ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : bool = False ,) -> Optional[Any]: """simple docstring""" lowercase__ : Any = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowercase__ : Optional[Any] = [[refs[i] for refs in references] for i in range(_snake_case )] lowercase__ : Union[str, Any] = CHRF(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : List[Any] = sb_chrf.corpus_score(_snake_case ,_snake_case ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A ( A_ ,A_ ): '''simple docstring''' lowerCAmelCase : Any = "focalnet" def __init__( self : Union[str, Any] ,_snake_case : Tuple=224 ,_snake_case : Optional[Any]=4 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=96 ,_snake_case : Dict=False ,_snake_case : Optional[int]=[192, 384, 768, 768] ,_snake_case : List[str]=[2, 2, 6, 2] ,_snake_case : Any=[2, 2, 2, 2] ,_snake_case : Tuple=[3, 3, 3, 3] ,_snake_case : int="gelu" ,_snake_case : Optional[Any]=4.0 ,_snake_case : Any=0.0 ,_snake_case : Optional[Any]=0.1 ,_snake_case : int=False ,_snake_case : List[Any]=1e-4 ,_snake_case : str=False ,_snake_case : Tuple=False ,_snake_case : Optional[int]=False ,_snake_case : List[str]=0.02 ,_snake_case : Tuple=1e-5 ,_snake_case : str=32 ,_snake_case : List[Any]=None ,_snake_case : List[Any]=None ,**_snake_case : List[Any] ,) -> Tuple: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : int = image_size lowercase__ : str = patch_size lowercase__ : Tuple = num_channels lowercase__ : List[Any] = embed_dim lowercase__ : Dict = use_conv_embed lowercase__ : Tuple = hidden_sizes lowercase__ : Dict = depths lowercase__ : Dict = focal_levels lowercase__ : str = focal_windows lowercase__ : Any = hidden_act lowercase__ : Optional[int] = mlp_ratio lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : Union[str, Any] = use_layerscale lowercase__ : Tuple = layerscale_value lowercase__ : Optional[int] = use_post_layernorm lowercase__ : Dict = use_post_layernorm_in_modulation lowercase__ : int = normalize_modulator lowercase__ : Optional[int] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : List[Any] = encoder_stride lowercase__ : Union[str, Any] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowercase__ , lowercase__ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_snake_case ,out_indices=_snake_case ,stage_names=self.stage_names )
302
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> list[int]: if length <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(__lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : int = VideoMAEConfig() set_architecture_configs(__lowerCamelCase , __lowerCamelCase ) if "finetuned" not in model_name: lowercase__ : int = False if "finetuned" in model_name: lowercase__ : Optional[int] = '''huggingface/label-files''' if "kinetics" in model_name: lowercase__ : Union[str, Any] = 4_00 lowercase__ : int = '''kinetics400-id2label.json''' elif "ssv2" in model_name: lowercase__ : List[str] = 1_74 lowercase__ : List[Any] = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Any = idalabel lowercase__ : Tuple = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: if "small" in model_name: lowercase__ : Tuple = 3_84 lowercase__ : int = 15_36 lowercase__ : Any = 12 lowercase__ : Optional[int] = 16 lowercase__ : int = 12 lowercase__ : str = 3 lowercase__ : int = 1_92 lowercase__ : int = 7_68 elif "large" in model_name: lowercase__ : str = 10_24 lowercase__ : Dict = 40_96 lowercase__ : List[Any] = 24 lowercase__ : int = 16 lowercase__ : int = 12 lowercase__ : Union[str, Any] = 8 lowercase__ : Union[str, Any] = 5_12 lowercase__ : Union[str, Any] = 20_48 elif "huge" in model_name: lowercase__ : Tuple = 12_80 lowercase__ : Any = 51_20 lowercase__ : Optional[Any] = 32 lowercase__ : Optional[Any] = 16 lowercase__ : int = 12 lowercase__ : Tuple = 8 lowercase__ : List[Any] = 6_40 lowercase__ : Optional[int] = 25_60 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: if "encoder." in name: lowercase__ : Any = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: lowercase__ : Any = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: lowercase__ : List[Any] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowercase__ : List[Any] = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase__ : Optional[Any] = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : int = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: lowercase__ : str = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowercase__ : str = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: lowercase__ : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: lowercase__ : Tuple = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: lowercase__ : Any = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: lowercase__ : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowercase__ : List[Any] = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowercase__ : Any = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowercase__ : int = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowercase__ : Dict = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowercase__ : Tuple = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: lowercase__ : int = name.replace('''head''' , '''classifier''' ) return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(__lowerCamelCase ) if key.startswith('''encoder.''' ): lowercase__ : str = key.replace('''encoder.''' , '''''' ) if "qkv" in key: lowercase__ : Dict = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): lowercase__ : List[str] = config.decoder_hidden_size lowercase__ : str = int(key_split[2] ) lowercase__ : int = '''decoder.decoder_layers.''' if "weight" in key: lowercase__ : Dict = val[:dim, :] lowercase__ : Tuple = val[dim : dim * 2, :] lowercase__ : Any = val[-dim:, :] else: lowercase__ : Dict = config.hidden_size lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : List[Any] = '''videomae.encoder.layer.''' if "weight" in key: lowercase__ : Optional[int] = val[:dim, :] lowercase__ : Optional[int] = val[dim : dim * 2, :] lowercase__ : List[str] = val[-dim:, :] else: lowercase__ : Optional[Any] = val return orig_state_dict def __UpperCAmelCase ( ) -> int: lowercase__ : int = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase__ : str = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : Optional[int] = get_videomae_config(__lowerCamelCase ) if "finetuned" in model_name: lowercase__ : Tuple = VideoMAEForVideoClassification(__lowerCamelCase ) else: lowercase__ : Optional[int] = VideoMAEForPreTraining(__lowerCamelCase ) # download original checkpoint, hosted on Google Drive lowercase__ : Optional[int] = '''pytorch_model.bin''' gdown.cached_download(__lowerCamelCase , __lowerCamelCase , quiet=__lowerCamelCase ) lowercase__ : Optional[int] = torch.load(__lowerCamelCase , map_location='''cpu''' ) if "model" in files: lowercase__ : List[Any] = files['''model'''] else: lowercase__ : Optional[Any] = files['''module'''] lowercase__ : Tuple = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # verify model on basic input lowercase__ : List[Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowercase__ : Dict = prepare_video() lowercase__ : List[str] = image_processor(__lowerCamelCase , return_tensors='''pt''' ) if "finetuned" not in model_name: lowercase__ : List[str] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowercase__ : List[Any] = torch.load(__lowerCamelCase ) lowercase__ : Optional[int] = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.logits lowercase__ : Dict = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowercase__ : List[str] = torch.Size([1, 4_00] ) lowercase__ : Any = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": lowercase__ : List[str] = torch.Size([1, 1_74] ) lowercase__ : Union[str, Any] = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": lowercase__ : int = torch.Size([1, 14_08, 15_36] ) lowercase__ : List[Any] = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": lowercase__ : Tuple = torch.Size([1, 14_08, 15_36] ) lowercase__ : List[Any] = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one lowercase__ : Optional[int] = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": lowercase__ : str = torch.Size([1, 14_08, 15_36] ) lowercase__ : Optional[Any] = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": lowercase__ : List[str] = torch.Size([1, 4_00] ) lowercase__ : Optional[int] = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": lowercase__ : Tuple = torch.Size([1, 4_00] ) lowercase__ : List[str] = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowercase__ : Union[str, Any] = torch.Size([1, 4_00] ) lowercase__ : int = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": lowercase__ : List[Any] = torch.Size([1, 4_00] ) lowercase__ : Dict = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": lowercase__ : Tuple = torch.Size([1, 14_08, 15_36] ) lowercase__ : Union[str, Any] = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowercase__ : Optional[Any] = torch.Size([1, 1_74] ) lowercase__ : Any = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": lowercase__ : Optional[int] = torch.Size([1, 14_08, 15_36] ) lowercase__ : Tuple = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": lowercase__ : Optional[int] = torch.Size([1, 1_74] ) lowercase__ : Union[str, Any] = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": lowercase__ : Tuple = outputs.loss assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__lowerCamelCase , organization='''nielsr''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase_ = float('nan') class __A : '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ) -> Tuple: """simple docstring""" lowercase__ : Optional[int] = sys.stdout lowercase__ : int = open(_snake_case ,'''a''' ) def __getattr__( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" return getattr(self.stdout ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : int ) -> str: """simple docstring""" self.stdout.write(_snake_case ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' ,'''''' ,_snake_case ,0 ,re.M ) ) def __UpperCAmelCase ( __lowerCamelCase=80 , __lowerCamelCase=False ) -> Optional[int]: lowercase__ : Union[str, Any] = [] # deal with critical env vars lowercase__ : Optional[int] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowercase__ : int = os.environ.get(__lowerCamelCase , __lowerCamelCase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) lowercase__ : Optional[int] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(__lowerCamelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowercase__ : Union[str, Any] = [] lowercase__ : Optional[int] = '''''' while len(__lowerCamelCase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__lowerCamelCase ) lowercase__ : Optional[int] = '''''' return "\\\n".join(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: # unwrap multi-line input lowercase__ : Dict = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own lowercase__ : Union[str, Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir lowercase__ : Optional[int] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) lowercase__ : List[str] = subprocess.run(__lowerCamelCase , capture_output=__lowerCamelCase , text=__lowerCamelCase ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams lowercase__ : List[Any] = variation.replace(''' ''' , '''-''' ) with open(Path(__lowerCamelCase ) / f"""log.{prefix}.stdout.txt""" , '''w''' ) as f: f.write(result.stdout ) with open(Path(__lowerCamelCase ) / f"""log.{prefix}.stderr.txt""" , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , '''r''' , encoding='''utf-8''' ) as f: lowercase__ : int = json.load(__lowerCamelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Tuple: lowercase__ : List[Any] = [] lowercase__ : List[str] = [] lowercase__ : Tuple = f"""{id}: {variation:<{longest_variation_len}}""" lowercase__ : str = f"""{preamble}: """ lowercase__ : Any = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__lowerCamelCase ) , desc=__lowerCamelCase , leave=__lowerCamelCase ): lowercase__ : List[str] = process_run_single( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any] = single_run_metrics[target_metric_key] if not math.isnan(__lowerCamelCase ): metrics.append(__lowerCamelCase ) results.append(__lowerCamelCase ) outcome += "✓" else: outcome += "✘" lowercase__ : Dict = f"""\33[2K\r{outcome}""" if len(__lowerCamelCase ) > 0: lowercase__ : str = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowercase__ : Optional[int] = round(mean_metrics[target_metric_key] , 2 ) lowercase__ : int = f"""{outcome} {mean_target}""" if len(__lowerCamelCase ) > 1: results_str += f""" {tuple(round(__lowerCamelCase , 2 ) for x in results )}""" print(__lowerCamelCase ) lowercase__ : Union[str, Any] = variation return mean_metrics else: print(__lowerCamelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> List[str]: lowercase__ : str = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Optional[int] = pd.DataFrame(__lowerCamelCase ) lowercase__ : Dict = '''variation''' lowercase__ : Optional[int] = '''diff_%''' lowercase__ : str = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowercase__ : Dict = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__lowerCamelCase ): # as a fallback, use the minimal value as the sentinel lowercase__ : Dict = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__lowerCamelCase ): lowercase__ : int = df.apply( lambda __lowerCamelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns lowercase__ : Optional[int] = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowercase__ : Dict = df.reindex(__lowerCamelCase , axis='''columns''' ) # reorder cols # capitalize lowercase__ : Optional[int] = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible lowercase__ : Optional[int] = df.rename(lambda __lowerCamelCase : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) lowercase__ : List[str] = df.rename(lambda __lowerCamelCase : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) lowercase__ : Union[str, Any] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__lowerCamelCase , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__lowerCamelCase , floatfmt='''.2f''' )] print('''\n\n'''.join(__lowerCamelCase ) ) def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=__lowerCamelCase , type=__lowerCamelCase , nargs='''+''' , required=__lowerCamelCase , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=__lowerCamelCase , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=__lowerCamelCase , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=__lowerCamelCase , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=__lowerCamelCase , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowercase__ : int = parser.parse_args() lowercase__ : List[Any] = args.output_dir Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) lowercase__ : int = get_base_command(__lowerCamelCase , __lowerCamelCase ) # split each dimension into its --foo variations lowercase__ : Optional[Any] = [list(map(str.strip , re.split(r'''\|''' , __lowerCamelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowercase__ : List[str] = list(map(str.strip , map(''' '''.join , itertools.product(*__lowerCamelCase ) ) ) ) lowercase__ : Tuple = max(len(__lowerCamelCase ) for x in variations ) # split wanted keys lowercase__ : int = args.report_metric_keys.split() # capture prints into a log file for convenience lowercase__ : str = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) lowercase__ : Tuple = Tee(__lowerCamelCase ) print(f"""\n*** Running {len(__lowerCamelCase )} benchmarks:""" ) print(f"""Base command: {" ".join(__lowerCamelCase )}""" ) lowercase__ : Optional[int] = '''variation''' lowercase__ : Tuple = [] for id, variation in enumerate(tqdm(__lowerCamelCase , desc='''Total completion: ''' , leave=__lowerCamelCase ) ): lowercase__ : Tuple = base_cmd + variation.split() results.append( process_run( id + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.repeat_times , __lowerCamelCase , args.verbose , ) ) process_results(__lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.base_variation , __lowerCamelCase ) if __name__ == "__main__": main()
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Optional[Any]=13 ,_snake_case : List[str]=7 ,_snake_case : List[Any]=True ,_snake_case : Optional[Any]=True ,_snake_case : Any=False ,_snake_case : str=True ,_snake_case : Optional[Any]=99 ,_snake_case : Optional[int]=32 ,_snake_case : str=5 ,_snake_case : Optional[int]=4 ,_snake_case : Dict=37 ,_snake_case : str="gelu" ,_snake_case : str=0.1 ,_snake_case : Any=0.1 ,_snake_case : Any=512 ,_snake_case : Dict=16 ,_snake_case : List[str]=2 ,_snake_case : Any=0.02 ,_snake_case : List[str]=3 ,_snake_case : str=4 ,_snake_case : Dict=None ,) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = parent lowercase__ : List[str] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : int = is_training lowercase__ : List[Any] = use_input_mask lowercase__ : List[Any] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : str = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : int = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Any = num_labels lowercase__ : List[str] = num_choices lowercase__ : int = scope def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Tuple = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[Any] = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase__ : Optional[Any] = None lowercase__ : Optional[int] = None lowercase__ : List[str] = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,use_stable_embedding=_snake_case ,) def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : Dict ,_snake_case : List[Any] ,_snake_case : Any ,_snake_case : Dict ) -> int: """simple docstring""" lowercase__ : List[Any] = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ,attention_mask=_snake_case ) lowercase__ : List[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : int ,_snake_case : Any ,_snake_case : Tuple ,_snake_case : Any ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : str ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Any ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = True lowercase__ : str = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,) lowercase__ : int = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,) lowercase__ : str = model(_snake_case ,attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Dict ,_snake_case : List[Any] ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : str ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : List[Any] ,) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Tuple ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : List[Any] ,) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = True lowercase__ : int = True lowercase__ : List[Any] = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowercase__ : List[str] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,use_cache=_snake_case ,) lowercase__ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase__ : int = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase__ : str = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase__ : Union[str, Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase__ : Tuple = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] lowercase__ : Any = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,past_key_values=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] # select random slice lowercase__ : Optional[int] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[int] = config_and_inputs lowercase__ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase : Union[str, Any] = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = OpenLlamaModelTester(self ) lowercase__ : Tuple = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Tuple = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : int = input_dict['''input_ids'''] lowercase__ : Dict = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : Union[str, Any] = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = 3 lowercase__ : Any = '''single_label_classification''' lowercase__ : Dict = input_dict['''input_ids'''] lowercase__ : Optional[int] = input_ids.ne(1 ).to(_snake_case ) lowercase__ : str = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : Any = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = 3 lowercase__ : Optional[int] = '''multi_label_classification''' lowercase__ : Dict = input_dict['''input_ids'''] lowercase__ : str = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Optional[Any] = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Dict = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = ids_tensor([1, 10] ,config.vocab_size ) lowercase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : Optional[int] = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowercase__ : Union[str, Any] = original_model(_snake_case ).last_hidden_state lowercase__ : Optional[int] = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : List[str] = {'''type''': scaling_type, '''factor''': 10.0} lowercase__ : Dict = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowercase__ : Union[str, Any] = scaled_model(_snake_case ).last_hidden_state lowercase__ : Dict = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) )
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def __UpperCAmelCase ( ) -> Tuple: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def __UpperCAmelCase ( ) -> Dict: lowercase__ : int = '''mock-s3-bucket''' lowercase__ : List[str] = f"""s3://{mock_bucket}""" lowercase__ : int = extract_path_from_uri(__lowerCamelCase ) assert dataset_path.startswith('''s3://''' ) is False lowercase__ : List[Any] = '''./local/path''' lowercase__ : Tuple = extract_path_from_uri(__lowerCamelCase ) assert dataset_path == new_dataset_path def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Any = is_remote_filesystem(__lowerCamelCase ) assert is_remote is True lowercase__ : Any = fsspec.filesystem('''file''' ) lowercase__ : Dict = is_remote_filesystem(__lowerCamelCase ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : List[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase__ : Union[str, Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase__ : Tuple = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCamelCase ) lowercase__ : str = fsspec.filesystem(compression_fs_class.protocol , fo=__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Any = os.path.basename(__lowerCamelCase ) lowercase__ : Any = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f, open(__lowerCamelCase , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : str = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase__ : List[str] = compressed_file_paths[protocol] lowercase__ : Optional[int] = '''dataset.jsonl''' lowercase__ : int = f"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase__ , *lowercase__ : str = fsspec.get_fs_token_paths(__lowerCamelCase ) assert fs.isfile(__lowerCamelCase ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = hf_api.dataset_info(__lowerCamelCase , token=__lowerCamelCase ) lowercase__ : List[str] = HfFileSystem(repo_info=__lowerCamelCase , token=__lowerCamelCase ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__lowerCamelCase ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def __UpperCAmelCase ( ) -> Any: lowercase__ : List[str] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__lowerCamelCase , __lowerCamelCase , clobber=__lowerCamelCase ) with pytest.warns(__lowerCamelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__lowerCamelCase ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
302
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = "cpu" , __lowerCamelCase = None ) -> None: lowercase__ : List[str] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase__ : List[Any] = v.half() if save_path is None: # overwrite src_path lowercase__ : Any = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
302
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCAmelCase_ = logging.getLogger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = "sequence-classification" def __init__( self : Optional[Any] ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" if type(_snake_case ) == dict: lowercase__ : int = Namespace(**_snake_case ) lowercase__ : List[Any] = glue_output_modes[hparams.task] lowercase__ : Optional[int] = glue_tasks_num_labels[hparams.task] super().__init__(_snake_case ,_snake_case ,self.mode ) def UpperCAmelCase ( self : int ,**_snake_case : int ) -> Dict: """simple docstring""" return self.model(**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[Any] ,_snake_case : Tuple ) -> Dict: """simple docstring""" lowercase__ : Tuple = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase__ : int = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase__ : Dict = self(**_snake_case ) lowercase__ : List[Any] = outputs[0] lowercase__ : Dict = self.trainer.lr_schedulers[0]['''scheduler'''] lowercase__ : Dict = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase__ : int = self.hparams lowercase__ : Optional[int] = processors[args.task]() lowercase__ : int = processor.get_labels() for mode in ["train", "dev"]: lowercase__ : Tuple = self._feature_file(_snake_case ) if os.path.exists(_snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' ,_snake_case ) else: logger.info('''Creating features from dataset file at %s''' ,args.data_dir ) lowercase__ : Dict = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowercase__ : Optional[Any] = convert_examples_to_features( _snake_case ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info('''Saving features into cached file %s''' ,_snake_case ) torch.save(_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ,_snake_case : int ,_snake_case : bool = False ) -> DataLoader: """simple docstring""" lowercase__ : str = '''dev''' if mode == '''test''' else mode lowercase__ : str = self._feature_file(_snake_case ) logger.info('''Loading features from cached file %s''' ,_snake_case ) lowercase__ : int = torch.load(_snake_case ) lowercase__ : Any = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) lowercase__ : Union[str, Any] = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) lowercase__ : List[str] = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase__ : str = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase__ : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(_snake_case ,_snake_case ,_snake_case ,_snake_case ) ,batch_size=_snake_case ,shuffle=_snake_case ,) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Tuple ,_snake_case : Dict ) -> int: """simple docstring""" lowercase__ : Dict = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase__ : Union[str, Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase__ : Optional[Any] = self(**_snake_case ) lowercase__ , lowercase__ : int = outputs[:2] lowercase__ : int = logits.detach().cpu().numpy() lowercase__ : Union[str, Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase ( self : List[Any] ,_snake_case : int ) -> tuple: """simple docstring""" lowercase__ : List[Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowercase__ : List[Any] = np.concatenate([x['''pred'''] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase__ : Any = np.argmax(_snake_case ,axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase__ : Optional[int] = np.squeeze(_snake_case ) lowercase__ : Any = np.concatenate([x['''target'''] for x in outputs] ,axis=0 ) lowercase__ : Any = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Optional[int] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task ,_snake_case ,_snake_case )} lowercase__ : Optional[Any] = dict(results.items() ) lowercase__ : int = results return ret, preds_list, out_label_list def UpperCAmelCase ( self : Dict ,_snake_case : list ) -> dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ : str = self._eval_end(_snake_case ) lowercase__ : Union[str, Any] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[int] ) -> dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ : str = self._eval_end(_snake_case ) lowercase__ : Dict = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase ( _snake_case : Dict ,_snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" BaseTransformer.add_model_specific_args(_snake_case ,_snake_case ) parser.add_argument( '''--max_seq_length''' ,default=128 ,type=_snake_case ,help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) ,) parser.add_argument( '''--task''' ,default='''''' ,type=_snake_case ,required=_snake_case ,help='''The GLUE task to run''' ,) parser.add_argument( '''--gpus''' ,default=0 ,type=_snake_case ,help='''The number of GPUs allocated for this, it is by default 0 meaning none''' ,) parser.add_argument( '''--overwrite_cache''' ,action='''store_true''' ,help='''Overwrite the cached training and evaluation sets''' ) return parser def __UpperCAmelCase ( ) -> str: lowercase__ : int = argparse.ArgumentParser() add_generic_args(__lowerCamelCase , os.getcwd() ) lowercase__ : Dict = GLUETransformer.add_model_specific_args(__lowerCamelCase , os.getcwd() ) lowercase__ : List[Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase__ : str = os.path.join( '''./results''' , f"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) lowercase__ : List[str] = GLUETransformer(__lowerCamelCase ) lowercase__ : List[str] = generic_train(__lowerCamelCase , __lowerCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase__ : Tuple = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__lowerCamelCase ) ) lowercase__ : str = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCamelCase ) if __name__ == "__main__": main()
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : '''simple docstring''' lowerCAmelCase : List[str] = XGLMConfig lowerCAmelCase : Tuple = {} lowerCAmelCase : List[str] = "gelu" def __init__( self : Tuple ,_snake_case : int ,_snake_case : int=14 ,_snake_case : Union[str, Any]=7 ,_snake_case : Dict=True ,_snake_case : str=True ,_snake_case : Optional[Any]=True ,_snake_case : Tuple=99 ,_snake_case : Dict=32 ,_snake_case : int=2 ,_snake_case : Any=4 ,_snake_case : Optional[int]=37 ,_snake_case : Optional[int]="gelu" ,_snake_case : List[str]=0.1 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : str=512 ,_snake_case : Optional[int]=0.02 ,) -> Dict: """simple docstring""" lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = seq_length lowercase__ : Any = is_training lowercase__ : Dict = use_input_mask lowercase__ : Union[str, Any] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : List[str] = d_model lowercase__ : Tuple = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Optional[Any] = ffn_dim lowercase__ : Union[str, Any] = activation_function lowercase__ : Optional[int] = activation_dropout lowercase__ : Tuple = attention_dropout lowercase__ : int = max_position_embeddings lowercase__ : List[str] = initializer_range lowercase__ : Any = None lowercase__ : Any = 0 lowercase__ : Union[str, Any] = 2 lowercase__ : Tuple = 1 def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Union[str, Any] = self.get_config() lowercase__ : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=_snake_case ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=_snake_case ,) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Dict = config_and_inputs lowercase__ : str = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase : List[str] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : str = TFXGLMModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,n_embd=37 ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @slow def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = TFXGLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ,_snake_case : List[str]=True ) -> List[str]: """simple docstring""" lowercase__ : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Optional[Any] = tf.convert_to_tensor([[2, 268, 9_865]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase__ : Tuple = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowercase__ : Tuple = model.generate(_snake_case ,do_sample=_snake_case ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,_snake_case ) @slow def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ : Dict = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowercase__ : Tuple = tokenizer('''Today is a nice day and''' ,return_tensors='''tf''' ) lowercase__ : str = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowercase__ : Dict = model.generate(_snake_case ,do_sample=_snake_case ,seed=[7, 0] ) lowercase__ : Optional[Any] = tokenizer.decode(output_ids[0] ,skip_special_tokens=_snake_case ) lowercase__ : Tuple = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Union[str, Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase__ : Dict = '''left''' # use different length sentences to test batching lowercase__ : Dict = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] lowercase__ : Dict = tokenizer(_snake_case ,return_tensors='''tf''' ,padding=_snake_case ) lowercase__ : Dict = inputs['''input_ids'''] lowercase__ : Tuple = model.generate(input_ids=_snake_case ,attention_mask=inputs['''attention_mask'''] ,max_new_tokens=12 ) lowercase__ : Union[str, Any] = tokenizer(sentences[0] ,return_tensors='''tf''' ).input_ids lowercase__ : str = model.generate(input_ids=_snake_case ,max_new_tokens=12 ) lowercase__ : Tuple = tokenizer(sentences[1] ,return_tensors='''tf''' ).input_ids lowercase__ : List[Any] = model.generate(input_ids=_snake_case ,max_new_tokens=12 ) lowercase__ : Any = tokenizer.batch_decode(_snake_case ,skip_special_tokens=_snake_case ) lowercase__ : Optional[int] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=_snake_case ) lowercase__ : Any = tokenizer.decode(output_padded[0] ,skip_special_tokens=_snake_case ) lowercase__ : List[Any] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_snake_case ,_snake_case ) self.assertListEqual(_snake_case ,[non_padded_sentence, padded_sentence] )
302
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,*_snake_case : str ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" super().__init__(*_snake_case ,**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type(_snake_case ) def __call__( self : Union[str, Any] ,_snake_case : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**_snake_case : Tuple ) -> Dict: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : int ,**_snake_case : int ) -> Dict: """simple docstring""" return {}, {}, {} def UpperCAmelCase ( self : Any ,_snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = load_image(_snake_case ) lowercase__ : int = image.size lowercase__ : Optional[Any] = self.image_processor(images=_snake_case ,return_tensors=self.framework ) return model_inputs def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[str] ) -> List[str]: """simple docstring""" lowercase__ : Dict = self.model(**_snake_case ) return model_outputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : Any = model_outputs.predicted_depth lowercase__ : Tuple = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=_snake_case ) lowercase__ : Tuple = prediction.squeeze().cpu().numpy() lowercase__ : Dict = (output * 255 / np.max(_snake_case )).astype('''uint8''' ) lowercase__ : Any = Image.fromarray(_snake_case ) lowercase__ : Union[str, Any] = {} lowercase__ : List[Any] = predicted_depth lowercase__ : Any = depth return output_dict
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["image_processor", "tokenizer"] lowerCAmelCase : int = "ChineseCLIPImageProcessor" lowerCAmelCase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple ,_snake_case : str=None ,_snake_case : Union[str, Any]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.image_processor def __call__( self : List[Any] ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : List[Any]=None ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : List[Any] ,**_snake_case : Optional[int] ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class
302
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'ResNetConfig' # Base docstring lowerCAmelCase_ = 'microsoft/resnet-50' lowerCAmelCase_ = [1, 2_048, 7, 7] # Image classification docstring lowerCAmelCase_ = 'microsoft/resnet-50' lowerCAmelCase_ = 'tiger cat' lowerCAmelCase_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : str = "relu" ) -> Any: """simple docstring""" super().__init__() lowercase__ : str = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,bias=_snake_case ) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : Tuple ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : List[Any] = self.convolution(_snake_case ) lowercase__ : Union[str, Any] = self.normalization(_snake_case ) lowercase__ : int = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_snake_case : ResNetConfig ) -> int: """simple docstring""" super().__init__() lowercase__ : Dict = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) lowercase__ : int = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) lowercase__ : Union[str, Any] = config.num_channels def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[Any] = self.embedder(_snake_case ) lowercase__ : int = self.pooler(_snake_case ) return embedding class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> str: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Dict = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Any = self.convolution(_snake_case ) lowercase__ : Optional[Any] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ,_snake_case : str = "relu" ) -> Any: """simple docstring""" super().__init__() lowercase__ : str = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = ( ResNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Dict = nn.Sequential( ResNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ) ,ResNetConvLayer(_snake_case ,_snake_case ,activation=_snake_case ) ,) lowercase__ : List[str] = ACTaFN[activation] def UpperCAmelCase ( self : List[str] ,_snake_case : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = hidden_state lowercase__ : List[str] = self.layer(_snake_case ) lowercase__ : Union[str, Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Dict = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ,_snake_case : str = "relu" ,_snake_case : int = 4 ) -> Tuple: """simple docstring""" super().__init__() lowercase__ : int = in_channels != out_channels or stride != 1 lowercase__ : List[Any] = out_channels // reduction lowercase__ : Optional[int] = ( ResNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Union[str, Any] = nn.Sequential( ResNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ) ,ResNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ) ,ResNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[activation] def UpperCAmelCase ( self : Tuple ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = hidden_state lowercase__ : List[Any] = self.layer(_snake_case ) lowercase__ : Tuple = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : List[Any] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : ResNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Dict = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer lowercase__ : int = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_snake_case ,_snake_case ,stride=_snake_case ,activation=config.hidden_act ) ,*[layer(_snake_case ,_snake_case ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Optional[int] = input for layer in self.layers: lowercase__ : str = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : ResNetConfig ) -> Tuple: """simple docstring""" super().__init__() lowercase__ : int = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(ResNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : List[str] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : Optional[Any] = hidden_states + (hidden_state,) lowercase__ : List[Any] = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_snake_case ,hidden_states=_snake_case ,) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ResNetConfig lowerCAmelCase : Union[str, Any] = "resnet" lowerCAmelCase : str = "pixel_values" lowerCAmelCase : List[Any] = True def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : List[Any]=False ) -> str: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : Tuple = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : Dict ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Dict = config lowercase__ : List[str] = ResNetEmbeddings(_snake_case ) lowercase__ : str = ResNetEncoder(_snake_case ) lowercase__ : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : int = self.embedder(_snake_case ) lowercase__ : int = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : Optional[int] = encoder_outputs[0] lowercase__ : List[Any] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = config.num_labels lowercase__ : List[Any] = ResNetModel(_snake_case ) # classification head lowercase__ : Optional[Any] = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : str ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = self.resnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[Any] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : str = self.classifier(_snake_case ) lowercase__ : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : Optional[int] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Optional[Any] = '''single_label_classification''' else: lowercase__ : List[str] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : str = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : str = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Optional[int] = CrossEntropyLoss() lowercase__ : Optional[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Any = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : List[str] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,A_ ,) class __A ( A_ ,A_ ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) super()._init_backbone(_snake_case ) lowercase__ : List[str] = [config.embedding_size] + config.hidden_sizes lowercase__ : List[Any] = ResNetEmbeddings(_snake_case ) lowercase__ : List[str] = ResNetEncoder(_snake_case ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : str ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BackboneOutput: """simple docstring""" lowercase__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = self.embedder(_snake_case ) lowercase__ : Union[str, Any] = self.encoder(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : int = outputs.hidden_states lowercase__ : Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowercase__ : List[str] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_snake_case ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=_snake_case ,)
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> list: lowercase__ : Tuple = [0] * len(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): # use last results for better performance - dynamic programming lowercase__ : str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : int = j return prefix_result def __UpperCAmelCase ( __lowerCamelCase ) -> int: return max(prefix_function(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : str = tempfile.mkdtemp() # fmt: off lowercase__ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ : Optional[int] = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowercase__ : List[Any] = os.path.join(self.tmpdirname ,_snake_case ) with open(self.image_processor_file ,'''w''' ,encoding='''utf-8''' ) as fp: json.dump(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Optional[int] ,**_snake_case : Tuple ) -> Optional[int]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : int ,**_snake_case : Optional[int] ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase__ : int = [Image.fromarray(np.moveaxis(_snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Tuple = self.get_image_processor() lowercase__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) lowercase__ : Dict = self.get_image_processor(do_normalize=_snake_case ,padding_value=1.0 ) lowercase__ : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_snake_case ) def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : int = self.get_image_processor() lowercase__ : int = self.get_tokenizer() lowercase__ : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : List[Any] = self.prepare_image_inputs() lowercase__ : Any = image_processor(_snake_case ,return_tensors='''np''' ) lowercase__ : str = processor(images=_snake_case ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : str = VisionTextDualEncoderProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : Dict = '''lower newer''' lowercase__ : Dict = processor(text=_snake_case ) lowercase__ : List[Any] = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : List[str] = '''lower newer''' lowercase__ : Any = self.prepare_image_inputs() lowercase__ : Optional[int] = processor(text=_snake_case ,images=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_snake_case ): processor() def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : Any = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : List[Any] = processor.batch_decode(_snake_case ) lowercase__ : Any = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : List[str] = self.get_image_processor() lowercase__ : Optional[int] = self.get_tokenizer() lowercase__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : Tuple = '''lower newer''' lowercase__ : Tuple = self.prepare_image_inputs() lowercase__ : List[str] = processor(text=_snake_case ,images=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } lowerCAmelCase_ = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Union[str, Any] = ElectraTokenizer def __init__( self : Tuple ,_snake_case : Union[str, Any]=None ,_snake_case : List[Any]=None ,_snake_case : List[Any]=True ,_snake_case : Any="[UNK]" ,_snake_case : str="[SEP]" ,_snake_case : str="[PAD]" ,_snake_case : List[str]="[CLS]" ,_snake_case : List[Any]="[MASK]" ,_snake_case : Union[str, Any]=True ,_snake_case : Optional[Any]=None ,**_snake_case : int ,) -> Any: """simple docstring""" super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,tokenize_chinese_chars=_snake_case ,strip_accents=_snake_case ,**_snake_case ,) lowercase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_snake_case ) != tokenize_chinese_chars ): lowercase__ : List[Any] = getattr(_snake_case ,normalizer_state.pop('''type''' ) ) lowercase__ : int = do_lower_case lowercase__ : List[str] = strip_accents lowercase__ : Tuple = tokenize_chinese_chars lowercase__ : str = normalizer_class(**_snake_case ) lowercase__ : str = do_lower_case def UpperCAmelCase ( self : Any ,_snake_case : Dict ,_snake_case : Tuple=None ) -> str: """simple docstring""" lowercase__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : str = [self.sep_token_id] lowercase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ : Union[str, Any] = self._tokenizer.model.save(_snake_case ,name=_snake_case ) return tuple(_snake_case )
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
"""simple docstring""" from collections import namedtuple lowerCAmelCase_ = namedtuple('from_to', 'from_ to') lowerCAmelCase_ = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(__lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(__lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowercase__ : Optional[Any] = (boundary[1] - boundary[0]) / steps lowercase__ : List[str] = boundary[0] lowercase__ : Tuple = boundary[1] lowercase__ : Dict = make_points(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Any = 0.0 y += (h / 2.0) * f(__lowerCamelCase ) for i in x_i: # print(i) y += h * f(__lowerCamelCase ) y += (h / 2.0) * f(__lowerCamelCase ) return y def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[str] = a + h while x < (b - h): yield x lowercase__ : Tuple = x + h def __UpperCAmelCase ( __lowerCamelCase ) -> str: # enter your function here lowercase__ : Optional[Any] = (x - 0) * (x - 0) return y def __UpperCAmelCase ( ) -> Any: lowercase__ : Union[str, Any] = 0.0 # Lower bound of integration lowercase__ : Optional[int] = 1.0 # Upper bound of integration lowercase__ : str = 1_0.0 # define number of steps or resolution lowercase__ : Optional[Any] = [a, b] # define boundary of integration lowercase__ : Optional[Any] = method_a(__lowerCamelCase , __lowerCamelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
302
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,_snake_case : UNetaDModel ,_snake_case : UNetaDModel ,_snake_case : DDPMScheduler ,_snake_case : Any ,) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[int] = value_function lowercase__ : Optional[int] = unet lowercase__ : Tuple = scheduler lowercase__ : Dict = env lowercase__ : int = env.get_dataset() lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : Optional[Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : List[Any] = {} for key in self.data.keys(): try: lowercase__ : str = self.data[key].std() except: # noqa: E722 pass lowercase__ : Tuple = env.observation_space.shape[0] lowercase__ : Optional[int] = env.action_space.shape[0] def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : int ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self : Dict ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if type(_snake_case ) is dict: return {k: self.to_torch(_snake_case ) for k, v in x_in.items()} elif torch.is_tensor(_snake_case ): return x_in.to(self.unet.device ) return torch.tensor(_snake_case ,device=self.unet.device ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : int ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" for key, val in cond.items(): lowercase__ : List[Any] = val.clone() return x_in def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = x.shape[0] lowercase__ : Dict = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Dict = torch.full((batch_size,) ,_snake_case ,device=self.unet.device ,dtype=torch.long ) for _ in range(_snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : int = self.value_function(x.permute(0 ,2 ,1 ) ,_snake_case ).sample lowercase__ : Optional[Any] = torch.autograd.grad([y.sum()] ,[x] )[0] lowercase__ : List[str] = self.scheduler._get_variance(_snake_case ) lowercase__ : Union[str, Any] = torch.exp(0.5 * posterior_variance ) lowercase__ : Optional[int] = model_std * grad lowercase__ : Optional[Any] = 0 lowercase__ : str = x.detach() lowercase__ : Dict = x + scale * grad lowercase__ : str = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.unet(x.permute(0 ,2 ,1 ) ,_snake_case ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,predict_epsilon=_snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase__ : Dict = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : Union[str, Any] = self.to_torch(_snake_case ) return x, y def __call__( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Tuple=64 ,_snake_case : Any=32 ,_snake_case : Optional[Any]=2 ,_snake_case : str=0.1 ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.normalize(_snake_case ,'''observations''' ) lowercase__ : Tuple = obs[None].repeat(_snake_case ,axis=0 ) lowercase__ : Dict = {0: self.to_torch(_snake_case )} lowercase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Optional[int] = randn_tensor(_snake_case ,device=self.unet.device ) lowercase__ : Tuple = self.reset_xa(_snake_case ,_snake_case ,self.action_dim ) lowercase__ : str = self.to_torch(_snake_case ) # run the diffusion process lowercase__ , lowercase__ : int = self.run_diffusion(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # sort output trajectories by value lowercase__ : Optional[Any] = y.argsort(0 ,descending=_snake_case ).squeeze() lowercase__ : str = x[sorted_idx] lowercase__ : str = sorted_values[:, :, : self.action_dim] lowercase__ : Optional[int] = actions.detach().cpu().numpy() lowercase__ : List[str] = self.de_normalize(_snake_case ,key='''actions''' ) # select the action with the highest value if y is not None: lowercase__ : str = 0 else: # if we didn't run value guiding, select a random action lowercase__ : str = np.random.randint(0 ,_snake_case ) lowercase__ : int = denorm_actions[selected_index, 0] return denorm_actions
302
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase_ = numpy.array([0, 0]) lowerCAmelCase_ = numpy.array([0.5, 0.8_6_6_0_2_5_4]) lowerCAmelCase_ = numpy.array([1, 0]) lowerCAmelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> list[numpy.ndarray]: lowercase__ : Dict = initial_vectors for _ in range(__lowerCamelCase ): lowercase__ : Any = iteration_step(__lowerCamelCase ) return vectors def __UpperCAmelCase ( __lowerCamelCase ) -> list[numpy.ndarray]: lowercase__ : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase__ : Any = vectors[i + 1] new_vectors.append(__lowerCamelCase ) lowercase__ : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> numpy.ndarray: lowercase__ : Optional[int] = numpy.radians(__lowerCamelCase ) lowercase__ , lowercase__ : str = numpy.cos(__lowerCamelCase ), numpy.sin(__lowerCamelCase ) lowercase__ : Optional[Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> None: lowercase__ : Dict = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase__ , lowercase__ : List[Any] = zip(*__lowerCamelCase ) plt.plot(__lowerCamelCase , __lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
302
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
1