code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase__ ( a , a , a , a , a ) -> np.ndarray: _A: Dict = cva.getAffineTransform(a , a ) return cva.warpAffine(a , a , (rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase__ : Dict = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value UpperCAmelCase__ : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase__ ,UpperCAmelCase__ : Any = gray_img.shape # set different points to rotate image UpperCAmelCase__ : List[str] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCAmelCase__ : int = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCAmelCase__ : Optional[Any] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCAmelCase__ : Union[str, Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCAmelCase__ : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase__ : Optional[int] = plt.figure(1) UpperCAmelCase__ : Optional[Any] = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
301
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : int = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] UpperCAmelCase__ : int = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowerCamelCase__ ( a , a ) -> int: _A: Union[str, Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _A: Tuple = int(re.match(R'''.*layer_(\d*).*''' , a )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def lowerCamelCase__ ( a ) -> Optional[Any]: if dtype == torch.bool: return 1 / 8 _A: Tuple = re.search(R'''[^\d](\d+)$''' , str(a ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) _A: Any = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( a , a , a , a , a ) -> Tuple: # Construct model if bloom_config_file == "": _A: Union[str, Any] = BloomConfig() else: _A: Optional[Any] = BloomConfig.from_json_file(a ) if shard_model: _A: Dict = os.listdir(a ) _A: Optional[Any] = sorted(filter(lambda a : s.startswith('''layer''' ) and "model_00" in s , a ) ) _A: Tuple = {'''weight_map''': {}, '''metadata''': {}} _A: Optional[Any] = 0 _A: int = None _A: str = BloomConfig() for j, file in enumerate(a ): print('''Processing file: {}'''.format(a ) ) _A: Tuple = None for i in range(a ): # load all TP files _A: str = file.replace('''model_00''' , f"""model_0{i}""" ) _A: str = torch.load(os.path.join(a , a ) , map_location='''cpu''' ) # Rename keys in the transformers names _A: str = list(temp.keys() ) for key in keys: _A: str = temp.pop(a ) if tensors is None: _A: int = temp else: for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _A: Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _A: int = torch.cat([tensors[key], temp[key]] , dim=a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _A: str = tensors[key] / pretraining_tp torch.save( a , os.path.join( a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): _A: Dict = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _A: Union[str, Any] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(a ) ).zfill(5 ) ) _A: Union[str, Any] = BloomConfig() _A: str = pytorch_dump_folder_path + '''/''' + CONFIG_NAME _A: Optional[int] = total_size with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: _A: Optional[Any] = json.dumps(a , indent=2 , sort_keys=a ) + '''\n''' f.write(a ) else: _A: int = BloomModel(a ) _A: Tuple = os.listdir(a ) _A: str = sorted(filter(lambda a : s.startswith('''layer''' ) and "model_00" in s , a ) ) _A: Optional[Any] = None for i, file in enumerate(a ): _A: str = None for i in range(a ): # load all TP files _A: Tuple = file.replace('''model_00''' , f"""model_0{i}""" ) _A: List[Any] = torch.load(os.path.join(a , a ) , map_location='''cpu''' ) # Rename keys in the transformers names _A: Tuple = list(temp.keys() ) for key in keys: _A: int = temp.pop(a ) if tensors is None: _A: Union[str, Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _A: Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _A: Optional[int] = torch.cat([tensors[key], temp[key]] , dim=a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _A: List[Any] = tensors[key] / pretraining_tp _A: str = model.load_state_dict(a , strict=a ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: _A: Union[str, Any] = set(other_keys.missing_keys ) else: _A: Any = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(a , exist_ok=a ) _A: Optional[Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _A: Optional[int] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: _A: List[str] = model.to(config.torch_dtype ) torch.save(model.state_dict() , a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) UpperCAmelCase__ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
301
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
1
import tensorflow as tf from ...tf_utils import shape_list class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : int=False , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: Dict = vocab_size _A: Union[str, Any] = d_embed _A: Union[str, Any] = d_proj _A: Optional[Any] = cutoffs + [vocab_size] _A: Union[str, Any] = [0] + self.cutoffs _A: Optional[Any] = div_val _A: Optional[Any] = self.cutoffs[0] _A: Optional[int] = len(self.cutoffs ) - 1 _A: Optional[int] = self.shortlist_size + self.n_clusters _A: Optional[int] = keep_order _A: List[Any] = [] _A: Optional[int] = [] def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int ): """simple docstring""" if self.n_clusters > 0: _A: Union[str, Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name='''cluster_weight''' ) _A: Dict = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _A: Union[str, Any] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_projs_._{i}""" , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _A: Optional[int] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._weight""" , ) _A: str = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _A , _A: Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A: str = self.d_embed // (self.div_val**i) _A: Union[str, Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_projs_._{i}""" ) self.out_projs.append(lowerCAmelCase_ ) _A: str = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._weight""" , ) _A: int = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=lowerCAmelCase_ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def __magic_name__ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict=None ): """simple docstring""" _A: str = x if proj is not None: _A: List[str] = tf.einsum('''ibd,ed->ibe''' , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum('''ibd,nd->ibn''' , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def __magic_name__ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[Any] = shape_list(lowerCAmelCase_ ) _A: str = tf.range(lp_size[0] , dtype=target.dtype ) _A: Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=False ): """simple docstring""" _A: str = 0 if self.n_clusters == 0: _A: Any = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _A: Tuple = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _A: str = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _A: Optional[int] = shape_list(lowerCAmelCase_ ) _A: str = [] _A: int = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _A , _A: str = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _A: List[Any] = (target >= l_idx) & (target < r_idx) _A: Any = tf.where(lowerCAmelCase_ ) _A: Dict = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _A: str = self.out_layers[0][0][l_idx:r_idx] _A: Union[str, Any] = self.out_layers[0][1][l_idx:r_idx] else: _A: Dict = self.out_layers[i][0] _A: Union[str, Any] = self.out_layers[i][1] if i == 0: _A: Union[str, Any] = tf.concat([cur_W, self.cluster_weight] , 0 ) _A: Dict = tf.concat([cur_b, self.cluster_bias] , 0 ) _A: Optional[int] = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _A: Union[str, Any] = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _A: List[str] = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _A: Union[str, Any] = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _A: Union[str, Any] = tf.nn.log_softmax(lowerCAmelCase_ ) _A: Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster _A: Tuple = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _A: Tuple = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[int] = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _A: Optional[int] = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _A: Optional[Any] = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
301
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py UpperCAmelCase__ : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Any = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. UpperCAmelCase__ : Optional[int] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') UpperCAmelCase__ : Union[str, Any] = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase__ : Optional[Any] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) UpperCAmelCase__ : List[Any] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCamelCase__ ( a ) -> List[Any]: _A: List[str] = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , a ) return [m.group(0 ) for m in matches] def lowerCamelCase__ ( ) -> Any: _A: int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _A: Any = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _A: Union[str, Any] = collections.defaultdict(a ) _A: List[str] = collections.defaultdict(a ) _A: int = collections.defaultdict(a ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(a ): _A: List[str] = None if _re_tf_models.match(a ) is not None: _A: List[Any] = tf_models _A: Union[str, Any] = _re_tf_models.match(a ).groups()[0] elif _re_flax_models.match(a ) is not None: _A: Optional[Any] = flax_models _A: str = _re_flax_models.match(a ).groups()[0] elif _re_pt_models.match(a ) is not None: _A: Any = pt_models _A: List[str] = _re_pt_models.match(a ).groups()[0] if lookup_dict is not None: while len(a ) > 0: if attr_name in model_prefix_to_model_type: _A: Tuple = True break # Try again after removing the last word in the name _A: List[Any] = ''''''.join(camel_case_split(a )[:-1] ) _A: str = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _A: Tuple = list(a ) all_models.sort() _A: str = {'''model_type''': all_models} _A: int = [pt_models[t] for t in all_models] _A: str = [tf_models[t] for t in all_models] _A: List[str] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _A: Tuple = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _A: Optional[int] = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _A: Any = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _A: Dict = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _A: List[Any] = '''AutoTokenizer''' _A: Optional[int] = [processors[t] for t in all_models] return pd.DataFrame(a ) def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Dict = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _A: Any = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] _A: Dict = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(a , a , a ): # The type of pipeline may not exist in this framework if not hasattr(a , a ): continue # First extract all model_names _A: List[str] = [] for name in getattr(a , a ).values(): if isinstance(a , a ): model_names.append(a ) else: model_names.extend(list(a ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCamelCase__ ( a , a ) -> List[Any]: _A: Optional[int] = get_frameworks_table() _A: List[Any] = Dataset.from_pandas(a ) _A: List[Any] = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=a ) _A: Any = Dataset.from_json(a ) _A: Tuple = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(a ) ) } _A: str = update_pipeline_and_auto_class_table(a ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _A: str = sorted(table.keys() ) _A: List[str] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) _A: Dict = Dataset.from_pandas(a ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(a , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(a , '''pipeline_tags.json''' ) ) if commit_sha is not None: _A: Union[str, Any] = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _A: str = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=a , repo_type='''dataset''' , token=a , commit_message=a , ) def lowerCamelCase__ ( ) -> List[Any]: _A: Optional[int] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _A: Union[str, Any] = transformers_module.pipelines.SUPPORTED_TASKS _A: int = [] for key in pipeline_tasks: if key not in in_table: _A: Dict = pipeline_tasks[key]['''pt'''] if isinstance(a , (list, tuple) ): _A: Optional[Any] = model[0] _A: Optional[int] = model.__name__ if model not in in_table.values(): missing.append(a ) if len(a ) > 0: _A: Optional[Any] = ''', '''.join(a ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') UpperCAmelCase__ : List[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
301
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : WhisperForConditionalGeneration , lowerCAmelCase_ : WhisperProcessor , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCAmelCase_ , speech_processor=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": _A: List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.enable_attention_slicing(lowerCAmelCase_ ) @torch.no_grad() def __call__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=1_6_0_0_0 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" _A: Optional[int] = self.speech_processor.feature_extractor( lowerCAmelCase_ , return_tensors='''pt''' , sampling_rate=lowerCAmelCase_ ).input_features.to(self.device ) _A: List[str] = self.speech_model.generate(lowerCAmelCase_ , max_length=4_8_0_0_0_0 ) _A: Tuple = self.speech_processor.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , normalize=lowerCAmelCase_ )[ 0 ] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = 1 elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[str] = len(lowerCAmelCase_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCAmelCase_ )}.""" ) # get prompt text embeddings _A: str = self.tokenizer( lowerCAmelCase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _A: Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A: List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _A: int = text_input_ids[:, : self.tokenizer.model_max_length] _A: Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _A , _A , _A: Tuple = text_embeddings.shape _A: int = text_embeddings.repeat(1 , lowerCAmelCase_ , 1 ) _A: Tuple = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _A: int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _A: List[str] if negative_prompt is None: _A: List[Any] = [''''''] * batch_size elif type(lowerCAmelCase_ ) is not type(lowerCAmelCase_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase_ )} !=""" F""" {type(lowerCAmelCase_ )}.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Union[str, Any] = [negative_prompt] elif batch_size != len(lowerCAmelCase_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: _A: Optional[Any] = negative_prompt _A: str = text_input_ids.shape[-1] _A: int = self.tokenizer( lowerCAmelCase_ , padding='''max_length''' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' , ) _A: List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A: List[Any] = uncond_embeddings.shape[1] _A: List[Any] = uncond_embeddings.repeat(1 , lowerCAmelCase_ , 1 ) _A: str = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A: Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _A: Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _A: Any = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _A: int = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device='''cpu''' , dtype=lowerCAmelCase_ ).to( self.device ) else: _A: Any = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _A: Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _A: List[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A: List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A: List[str] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A: Tuple = {} if accepts_eta: _A: str = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A: List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A: List[Any] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual _A: Union[str, Any] = self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample # perform guidance if do_classifier_free_guidance: _A , _A: List[Any] = noise_pred.chunk(2 ) _A: Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _A: Tuple = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = 1 / 0.18215 * latents _A: Tuple = self.vae.decode(lowerCAmelCase_ ).sample _A: Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _A: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: List[Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
301
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Any = AutoConfig.from_pretrained(a ) _A: Dict = FlaxAutoModelForSeqaSeqLM.from_config(config=a ) _A: Dict = checkpoints.load_tax_checkpoint(a ) _A: Dict = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": _A: Optional[Any] = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": _A: str = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: Dict = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): _A: int = f"""layers_{str(a )}""" # Self-Attention _A: int = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] _A: List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] _A: int = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] _A: Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization _A: Dict = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: _A: Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _A: Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _A: List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _A: List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _A: List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _A: Dict = flax_model.params['''encoder''']['''block'''][str(a )]['''layer'''] _A: List[str] = tax_attention_key _A: Any = tax_attention_out _A: Dict = tax_attention_query _A: int = tax_attention_value _A: Tuple = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: Optional[Any] = tax_global_layer_norm if split_mlp_wi: _A: Optional[int] = tax_mlp_wi_a _A: Tuple = tax_mlp_wi_a else: _A: List[Any] = tax_mlp_wi _A: Tuple = tax_mlp_wo _A: Union[str, Any] = tax_mlp_layer_norm _A: Union[str, Any] = flax_model_encoder_layer_block # Only for layer 0: _A: Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T _A: List[str] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _A: Any = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T _A: Dict = tax_encoder_global_rel_embedding # Assigning _A: List[str] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] _A: Tuple = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _A: int = f"""layers_{str(a )}""" # Self-Attention _A: Dict = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] _A: Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] _A: List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] _A: Any = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization _A: Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention _A: List[str] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] _A: Dict = tax_enc_dec_attention_module['''key''']['''kernel'''] _A: str = tax_enc_dec_attention_module['''out''']['''kernel'''] _A: Dict = tax_enc_dec_attention_module['''query''']['''kernel'''] _A: Optional[Any] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization _A: List[str] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: _A: Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _A: List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _A: str = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _A: Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _A: Any = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _A: List[str] = flax_model.params['''decoder''']['''block'''][str(a )]['''layer'''] _A: List[str] = tax_attention_key _A: Tuple = tax_attention_out _A: Optional[int] = tax_attention_query _A: int = tax_attention_value _A: Any = tax_pre_attention_layer_norm _A: int = tax_enc_dec_attention_key _A: int = tax_enc_dec_attention_out _A: Union[str, Any] = tax_enc_dec_attention_query _A: Tuple = tax_enc_dec_attention_value _A: str = tax_cross_layer_norm if split_mlp_wi: _A: Tuple = tax_mlp_wi_a _A: Optional[int] = tax_mlp_wi_a else: _A: Any = tax_mlp_wi _A: Optional[int] = tax_mlp_wo _A: Any = txa_mlp_layer_norm _A: Union[str, Any] = flax_model_decoder_layer_block # Decoder Normalization _A: Optional[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] _A: List[str] = txa_decoder_norm # Only for layer 0: _A: Optional[Any] = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T _A: Union[str, Any] = tax_decoder_rel_embedding # Token Embeddings _A: int = tax_model['''target''']['''token_embedder''']['''embedding'''] _A: Union[str, Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _A: Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(a ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCAmelCase__ : List[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
301
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=9_9 , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : str=1_6 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=None , ): """simple docstring""" _A: Dict = parent _A: Any = batch_size _A: Any = seq_length _A: List[str] = is_training _A: str = use_input_mask _A: Dict = use_token_type_ids _A: List[Any] = use_labels _A: int = vocab_size _A: Optional[Any] = hidden_size _A: Optional[int] = num_hidden_layers _A: List[str] = num_attention_heads _A: str = intermediate_size _A: Optional[int] = hidden_act _A: Optional[Any] = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Any = max_position_embeddings _A: Optional[Any] = type_vocab_size _A: Optional[int] = type_sequence_label_size _A: Dict = initializer_range _A: List[str] = num_labels _A: Tuple = num_choices _A: List[Any] = scope def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: Dict = None if self.use_input_mask: _A: str = random_attention_mask([self.batch_size, self.seq_length] ) _A: Tuple = None _A: Optional[int] = None _A: Tuple = None if self.use_labels: _A: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A: Tuple = ids_tensor([self.batch_size] , self.num_choices ) _A: Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : str ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Dict = DistilBertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Optional[Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" _A: Union[str, Any] = DistilBertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Dict = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str ): """simple docstring""" _A: Dict = DistilBertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: int = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ): """simple docstring""" _A: int = self.num_labels _A: List[str] = DistilBertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = self.num_labels _A: Any = DistilBertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: int = self.num_choices _A: Union[str, Any] = DistilBertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A: Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A: Tuple = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() ((_A) , (_A) , (_A) , (_A) , (_A) , (_A)): Any = config_and_inputs _A: int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCamelCase : Optional[int] = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : Dict = True __UpperCamelCase : int = True __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Dict = True def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Dict = DistilBertModelTester(self ) _A: List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , dim=3_7 ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ ) @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Optional[int] = DistilBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @slow @require_torch_gpu def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _A: Optional[Any] = True _A: List[Any] = model_class(config=lowerCAmelCase_ ) _A: List[str] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = torch.jit.trace( lowerCAmelCase_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , '''traced_model.pt''' ) ) _A: Optional[int] = torch.jit.load(os.path.join(lowerCAmelCase_ , '''traced_model.pt''' ) , map_location=lowerCAmelCase_ ) loaded(inputs_dict['''input_ids'''].to(lowerCAmelCase_ ) , inputs_dict['''attention_mask'''].to(lowerCAmelCase_ ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : Dict ): """simple docstring""" _A: str = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _A: List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _A: Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _A: Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _A: List[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: List[Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) )
301
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import re def lowerCamelCase__ ( a ) -> str: if len(re.findall('''[ATCG]''' , a ) ) != len(a ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
301
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase__ : Dict = 250004 UpperCAmelCase__ : int = 250020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = MBartaaTokenizer __UpperCamelCase : Optional[Any] = MBartaaTokenizerFast __UpperCamelCase : List[Any] = True __UpperCamelCase : Optional[int] = True def __magic_name__ ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _A: Tuple = MBartaaTokenizer(lowerCAmelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Tuple = '''<s>''' _A: int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase_ ) , 1_0_5_4 ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[str] = MBartaaTokenizer(lowerCAmelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCAmelCase_ ) _A: int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _A: List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) _A: Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _A: Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" # fmt: off _A: Tuple = {'''input_ids''': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __magic_name__ ( self : Tuple ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _A: Union[str, Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _A: str = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _A: List[Any] = tempfile.mkdtemp() _A: List[str] = tokenizer_r.save_pretrained(lowerCAmelCase_ ) _A: Dict = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _A: List[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way _A: int = tokenizer_r.from_pretrained(lowerCAmelCase_ ) _A: Dict = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=True _A: Optional[int] = tempfile.mkdtemp() _A: Dict = tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) _A: Dict = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way _A: Tuple = tokenizer_r.from_pretrained(lowerCAmelCase_ ) _A: List[Any] = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=False _A: Union[str, Any] = tempfile.mkdtemp() _A: List[Any] = tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) _A: Tuple = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _A: Dict = tokenizer_r.from_pretrained(lowerCAmelCase_ ) _A: int = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = '''facebook/mbart-large-50-one-to-many-mmt''' __UpperCamelCase : Tuple = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __UpperCamelCase : Union[str, Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __UpperCamelCase : int = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def __magic_name__ ( cls : Any ): """simple docstring""" _A: MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _A: Optional[Any] = 1 return cls def __magic_name__ ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 2_5_0_0_3_8 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) _A: Optional[Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] _A: Tuple = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) _A: str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , lowerCAmelCase_ ) _A: Optional[int] = 1_0 _A: List[str] = self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCAmelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def __magic_name__ ( self : int ): """simple docstring""" _A: Tuple = tempfile.mkdtemp() _A: List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) _A: Tuple = MBartaaTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def __magic_name__ ( self : str ): """simple docstring""" _A: Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors='''pt''' ) _A: List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _A: Optional[int] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) _A: Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors='''pt''' ) _A: Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=1_0 , return_tensors='''pt''' ) _A: List[Any] = targets['''input_ids'''] _A: Optional[Any] = shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
301
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = 1 @register_to_config def __init__( self : Optional[Any] , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase_ ) # standard deviation of the initial noise distribution _A: Optional[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _A: Tuple = 4 # running values _A: Optional[Any] = [] def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: List[Any] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _A: Optional[int] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _A: Dict = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _A: int = torch.sin(steps * math.pi / 2 ) ** 2 _A: Tuple = (1.0 - self.betas**2) ** 0.5 _A: Union[str, Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _A: Union[str, Any] = timesteps.to(lowerCAmelCase_ ) _A: int = [] def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) _A: Optional[Any] = (self.timesteps == timestep).nonzero().item() _A: Optional[Any] = timestep_index + 1 _A: Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase_ ) if len(self.ets ) == 1: _A: Optional[int] = self.ets[-1] elif len(self.ets ) == 2: _A: str = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _A: Optional[Any] = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: _A: Dict = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) _A: int = self._get_prev_sample(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : int ): """simple docstring""" return sample def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Any = self.alphas[timestep_index] _A: str = self.betas[timestep_index] _A: Any = self.alphas[prev_timestep_index] _A: List[str] = self.betas[prev_timestep_index] _A: Optional[Any] = (sample - sigma * ets) / max(lowerCAmelCase_ , 1e-8 ) _A: str = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Optional[Any] ): """simple docstring""" return self.config.num_train_timesteps
301
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = tempfile.mkdtemp() # fmt: off _A: List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _A: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A: Tuple = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _A: List[str] = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _A: int = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[str] = self.get_tokenizer() _A: List[Any] = self.get_image_processor() _A: Optional[int] = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _A: Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A: Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A: List[str] = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _A: Any = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: int = self.get_image_processor() _A: List[str] = self.get_tokenizer() _A: Tuple = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A: str = self.prepare_image_inputs() _A: str = image_processor(lowerCAmelCase_ , return_tensors='''np''' ) _A: Optional[Any] = processor(images=lowerCAmelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.get_image_processor() _A: List[Any] = self.get_tokenizer() _A: Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A: Union[str, Any] = '''lower newer''' _A: Dict = processor(text=lowerCAmelCase_ ) _A: Tuple = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = self.get_image_processor() _A: Dict = self.get_tokenizer() _A: int = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A: str = '''lower newer''' _A: Tuple = self.prepare_image_inputs() _A: Any = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(lowerCAmelCase_ ): processor() def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Dict = self.get_image_processor() _A: Optional[int] = self.get_tokenizer() _A: str = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A: List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A: Optional[Any] = processor.batch_decode(lowerCAmelCase_ ) _A: str = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: List[Any] = self.get_image_processor() _A: Optional[Any] = self.get_tokenizer() _A: str = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A: Optional[int] = '''lower newer''' _A: str = self.prepare_image_inputs() _A: List[Any] = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
301
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Tuple = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( a ) -> Optional[Any]: return getitem, k def lowerCamelCase__ ( a , a ) -> int: return setitem, k, v def lowerCamelCase__ ( a ) -> Tuple: return delitem, k def lowerCamelCase__ ( a , a , *a ) -> List[Any]: try: return fun(a , *a ), None except Exception as e: return None, e UpperCAmelCase__ : Any = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) UpperCAmelCase__ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] UpperCAmelCase__ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] UpperCAmelCase__ : Any = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] UpperCAmelCase__ : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCAmelCase__ : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def lowerCamelCase__ ( a ) -> Optional[int]: _A: str = HashMap(initial_block_size=4 ) _A: str = {} for _, (fun, *args) in enumerate(a ): _A , _A: Dict = _run_operation(a , a , *a ) _A , _A: Dict = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def lowerCamelCase__ ( ) -> Dict: def is_public(a ) -> bool: return not name.startswith('''_''' ) _A: Dict = {name for name in dir({} ) if is_public(a )} _A: str = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
301
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = 0 __UpperCamelCase : bool = False __UpperCamelCase : float = 3.0 class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCAmelCase_ ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __magic_name__ ( self : int ): """simple docstring""" # If no defaults are changed, `to_kwargs` returns an empty dict. _A: Dict = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _A: int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _A: Optional[int] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , lowerCAmelCase_ ) @require_multi_gpu def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase__ : List[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase__ : Optional[int] = torch.nn.Linear(100, 200) UpperCAmelCase__ : List[Any] = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase__ : List[Any] = '' UpperCAmelCase__ : Optional[int] = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
301
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCAmelCase__ : Dict = random.Random() def lowerCamelCase__ ( a , a=1.0 , a=None , a=None ) -> Tuple: if rng is None: _A: Union[str, Any] = global_rng _A: str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Tuple=4_0_0 , lowerCAmelCase_ : Any=2_0_0_0 , lowerCAmelCase_ : Any=2_4 , lowerCAmelCase_ : Dict=2_4 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : str=1_6_0_0_0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=True , ): """simple docstring""" _A: Optional[Any] = parent _A: Union[str, Any] = batch_size _A: List[str] = min_seq_length _A: List[str] = max_seq_length _A: Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A: int = feature_size _A: Optional[Any] = num_mel_bins _A: Union[str, Any] = padding_value _A: Tuple = sampling_rate _A: int = return_attention_mask _A: Optional[int] = do_normalize def __magic_name__ ( self : Dict ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __magic_name__ ( self : List[str] , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[int]=False ): """simple docstring""" def _flatten(lowerCAmelCase_ : List[str] ): return list(itertools.chain(*lowerCAmelCase_ ) ) if equal_length: _A: str = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A: Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A: Optional[int] = [np.asarray(lowerCAmelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = SpeechaTextFeatureExtractor if is_speech_available() else None def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = SpeechaTextFeatureExtractionTester(self ) def __magic_name__ ( self : Any , lowerCAmelCase_ : List[str] ): """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase_ , axis=0 ) - 1 ) < 1e-3 ) ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus _A: int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A: Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: Optional[Any] = [np.asarray(lowerCAmelCase_ ) for speech_input in speech_inputs] # Test feature size _A: Optional[Any] = feature_extractor(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _A: Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _A: Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) # Test batched _A: str = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_features _A: int = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A: Optional[int] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _A: Union[str, Any] = np.asarray(lowerCAmelCase_ ) _A: Tuple = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_features _A: Any = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] _A: List[Any] = [None, 1_6, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = feature_extractor( lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ ) _A: Union[str, Any] = inputs.input_features _A: str = inputs.attention_mask _A: Tuple = [np.sum(lowerCAmelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: int = ['''longest''', '''max_length''', '''do_not_pad'''] _A: Tuple = [None, 1_6, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[Any] = feature_extractor( lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''np''' , return_attention_mask=lowerCAmelCase_ ) _A: Union[str, Any] = inputs.input_features _A: Optional[Any] = inputs.attention_mask _A: Dict = [np.sum(lowerCAmelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: Optional[Any] = feature_extractor( lowerCAmelCase_ , padding='''max_length''' , max_length=4 , truncation=lowerCAmelCase_ , return_tensors='''np''' , return_attention_mask=lowerCAmelCase_ , ) _A: Optional[int] = inputs.input_features _A: Optional[int] = inputs.attention_mask _A: Tuple = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: List[str] = feature_extractor( lowerCAmelCase_ , padding='''longest''' , max_length=4 , truncation=lowerCAmelCase_ , return_tensors='''np''' , return_attention_mask=lowerCAmelCase_ , ) _A: Dict = inputs.input_features _A: Tuple = inputs.attention_mask _A: str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) _A: List[str] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _A: Tuple = feature_extractor( lowerCAmelCase_ , padding='''longest''' , max_length=1_6 , truncation=lowerCAmelCase_ , return_tensors='''np''' , return_attention_mask=lowerCAmelCase_ , ) _A: List[Any] = inputs.input_features _A: int = inputs.attention_mask _A: List[Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def __magic_name__ ( self : Any ): """simple docstring""" import torch _A: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: Tuple = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _A: str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A: Optional[int] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A: int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" from datasets import load_dataset _A: int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _A: Dict = ds.sort('''id''' ).select(range(lowerCAmelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __magic_name__ ( self : int ): """simple docstring""" # fmt: off _A: str = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on _A: Optional[Any] = self._load_datasamples(1 ) _A: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A: List[Any] = feature_extractor(lowerCAmelCase_ , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , lowerCAmelCase_ , atol=1e-4 ) )
301
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = CycleDiffusionPipeline __UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } __UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} __UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) __UpperCamelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) _A: Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) _A: Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1_0_0_0 , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _A: List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _A: Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _A: Optional[int] = CLIPTextModel(lowerCAmelCase_ ) _A: Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A: Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__ ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=0 ): """simple docstring""" _A: Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: int = image / 2 + 0.5 if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: Dict = torch.manual_seed(lowerCAmelCase_ ) else: _A: int = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: List[str] = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : Any ): """simple docstring""" _A: Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: int = self.get_dummy_components() _A: Dict = CycleDiffusionPipeline(**lowerCAmelCase_ ) _A: int = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Any = self.get_dummy_inputs(lowerCAmelCase_ ) _A: int = pipe(**lowerCAmelCase_ ) _A: Tuple = output.images _A: List[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) _A: int = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCAmelCase_ , '''half''' ): _A: Dict = module.half() _A: Optional[Any] = CycleDiffusionPipeline(**lowerCAmelCase_ ) _A: int = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Any = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Optional[int] = pipe(**lowerCAmelCase_ ) _A: int = output.images _A: Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) _A: Optional[Any] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def __magic_name__ ( self : str ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def __magic_name__ ( self : str ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def __magic_name__ ( self : str ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def __magic_name__ ( self : List[Any] ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : int ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ): """simple docstring""" _A: Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) _A: List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) _A: Any = init_image.resize((5_1_2, 5_1_2) ) _A: str = '''CompVis/stable-diffusion-v1-4''' _A: Dict = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder='''scheduler''' ) _A: int = CycleDiffusionPipeline.from_pretrained( lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Tuple = '''A black colored car''' _A: Any = '''A blue colored car''' _A: Tuple = torch.manual_seed(0 ) _A: List[str] = pipe( prompt=lowerCAmelCase_ , source_prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase_ , output_type='''np''' , ) _A: List[str] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) _A: Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) _A: Optional[int] = init_image.resize((5_1_2, 5_1_2) ) _A: Union[str, Any] = '''CompVis/stable-diffusion-v1-4''' _A: List[str] = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder='''scheduler''' ) _A: Dict = CycleDiffusionPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Optional[int] = '''A black colored car''' _A: Union[str, Any] = '''A blue colored car''' _A: List[str] = torch.manual_seed(0 ) _A: Optional[int] = pipe( prompt=lowerCAmelCase_ , source_prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase_ , output_type='''np''' , ) _A: int = output.images assert np.abs(image - expected_image ).max() < 2e-2
301
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
1
UpperCAmelCase__ : Tuple = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
301
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple=1_3 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Any=9_9 , lowerCAmelCase_ : List[Any]=6_4 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : int=3_7 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Union[str, Any]=None , ): """simple docstring""" _A: Optional[int] = parent _A: List[str] = batch_size _A: Tuple = seq_length _A: List[str] = is_training _A: str = use_input_mask _A: Any = use_token_type_ids _A: Optional[int] = use_labels _A: List[str] = vocab_size _A: Any = hidden_size _A: Optional[int] = num_hidden_layers _A: List[Any] = num_attention_heads _A: Optional[Any] = intermediate_size _A: Optional[int] = hidden_act _A: int = hidden_dropout_prob _A: Optional[int] = attention_probs_dropout_prob _A: str = max_position_embeddings _A: int = type_vocab_size _A: int = type_sequence_label_size _A: Optional[Any] = initializer_range _A: str = num_labels _A: List[Any] = num_choices _A: str = scope _A: List[Any] = vocab_size - 1 def __magic_name__ ( self : str ): """simple docstring""" _A: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: Tuple = None if self.use_input_mask: _A: int = random_attention_mask([self.batch_size, self.seq_length] ) _A: Tuple = None if self.use_labels: _A: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A: Tuple = self.get_config() return config, input_ids, input_mask, token_labels def __magic_name__ ( self : str ): """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A , _A , _A , _A: Any = self.prepare_config_and_inputs() _A: Optional[int] = True return config, input_ids, input_mask, token_labels def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: Tuple = GPTNeoXModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Dict = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) _A: Any = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = True _A: List[Any] = GPTNeoXModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Dict = GPTNeoXForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Tuple = self.num_labels _A: Optional[int] = GPTNeoXForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): """simple docstring""" _A: Dict = self.num_labels _A: Tuple = GPTNeoXForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = self.num_labels _A: List[Any] = GPTNeoXForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Tuple = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = True _A: Optional[int] = GPTNeoXForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # first forward pass _A: Dict = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A: Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A: List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A: Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A: int = torch.cat([input_ids, next_tokens] , dim=-1 ) _A: List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) _A: Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ ) _A: Optional[Any] = output_from_no_past['''hidden_states'''][0] _A: Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['''hidden_states'''][0] # select random slice _A: Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A: Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _A: Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = self.prepare_config_and_inputs() _A , _A , _A , _A: Tuple = config_and_inputs _A: List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase : str = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCamelCase : Tuple = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = GPTNeoXModelTester(self ) _A: int = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=6_4 , num_attention_heads=8 ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A , _A , _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A , _A , _A , _A: Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" # This regression test was failing with PyTorch < 1.3 _A , _A , _A , _A: str = self.model_tester.prepare_config_and_inputs_for_decoder() _A: Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A , _A , _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() _A: Dict = ids_tensor([1, 1_0] , config.vocab_size ) _A: Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _A: Optional[int] = GPTNeoXModel(lowerCAmelCase_ ) original_model.to(lowerCAmelCase_ ) original_model.eval() _A: List[str] = original_model(lowerCAmelCase_ ).last_hidden_state _A: int = original_model(lowerCAmelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _A: Union[str, Any] = {'''type''': scaling_type, '''factor''': 10.0} _A: Any = GPTNeoXModel(lowerCAmelCase_ ) scaled_model.to(lowerCAmelCase_ ) scaled_model.eval() _A: str = scaled_model(lowerCAmelCase_ ).last_hidden_state _A: List[Any] = scaled_model(lowerCAmelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[Any] = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: _A: Union[str, Any] = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase_ ) _A: Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowerCAmelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _A: Tuple = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' _A: int = model.generate(**lowerCAmelCase_ , do_sample=lowerCAmelCase_ , max_new_tokens=2_0 ) _A: Optional[Any] = tokenizer.batch_decode(lowerCAmelCase_ )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
301
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
1
class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ): """simple docstring""" _A: Tuple = '''''' _A: List[Any] = '''''' _A: Optional[int] = [] def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _A: Tuple = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _A: List[str] = self.__min_dist_top_down_dp(lowerCAmelCase_ , n - 1 ) _A: Optional[int] = self.__min_dist_top_down_dp(m - 1 , lowerCAmelCase_ ) _A: str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _A: Optional[int] = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return self.dp[m][n] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[int] = worda _A: str = worda _A: Tuple = [[-1 for _ in range(len(lowerCAmelCase_ ) )] for _ in range(len(lowerCAmelCase_ ) )] return self.__min_dist_top_down_dp(len(lowerCAmelCase_ ) - 1 , len(lowerCAmelCase_ ) - 1 ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): """simple docstring""" _A: Dict = worda _A: Dict = worda _A: Optional[Any] = len(lowerCAmelCase_ ) _A: Optional[int] = len(lowerCAmelCase_ ) _A: Optional[Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _A: Union[str, Any] = j elif j == 0: # second string is empty _A: int = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _A: Any = self.dp[i - 1][j - 1] else: _A: Any = self.dp[i][j - 1] _A: Optional[int] = self.dp[i - 1][j] _A: Tuple = self.dp[i - 1][j - 1] _A: Tuple = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return self.dp[m][n] if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() UpperCAmelCase__ : Tuple = input('Enter the first string: ').strip() UpperCAmelCase__ : Any = input('Enter the second string: ').strip() print() print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
301
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : Optional[Any]=1_7 , lowerCAmelCase_ : Union[str, Any]=2_3 , lowerCAmelCase_ : List[Any]=1_1 , lowerCAmelCase_ : List[str]=True , ): """simple docstring""" _A: Any = parent _A: str = batch_size _A: Optional[Any] = seq_length _A: List[str] = act_dim _A: Union[str, Any] = state_dim _A: str = hidden_size _A: List[str] = max_length _A: Tuple = is_training def __magic_name__ ( self : int ): """simple docstring""" _A: str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _A: Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _A: List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _A: Optional[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _A: Dict = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) _A: str = random_attention_mask((self.batch_size, self.seq_length) ) _A: Optional[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __magic_name__ ( self : List[Any] ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: str = DecisionTransformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ): str = config_and_inputs _A: Optional[int] = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = (DecisionTransformerModel,) if is_torch_available() else () __UpperCamelCase : Dict = () __UpperCamelCase : str = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __UpperCamelCase : Any = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __UpperCamelCase : Dict = False __UpperCamelCase : Any = False __UpperCamelCase : Tuple = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[str] = False __UpperCamelCase : List[str] = False __UpperCamelCase : str = False __UpperCamelCase : str = False def __magic_name__ ( self : str ): """simple docstring""" _A: str = DecisionTransformerModelTester(self ) _A: List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Dict = DecisionTransformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A , _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Any = model_class(lowerCAmelCase_ ) _A: List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Union[str, Any] = [*signature.parameters.keys()] _A: Tuple = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : int ): """simple docstring""" _A: Any = 2 # number of steps of autoregressive prediction we will perform _A: Tuple = 1_0 # defined by the RL environment, may be normalized _A: List[str] = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _A: Dict = model.to(lowerCAmelCase_ ) _A: int = model.config torch.manual_seed(0 ) _A: int = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ) # env.reset() _A: Optional[Any] = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=lowerCAmelCase_ ) _A: Dict = torch.tensor(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _A: Optional[Any] = state _A: Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase_ , dtype=torch.floataa ) _A: Any = torch.zeros(1 , 0 , device=lowerCAmelCase_ , dtype=torch.floataa ) _A: Tuple = torch.tensor(0 , device=lowerCAmelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase_ ): _A: str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase_ )] , dim=1 ) _A: List[str] = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase_ )] , dim=1 ) _A: int = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _A , _A , _A: str = model( states=lowerCAmelCase_ , actions=lowerCAmelCase_ , rewards=lowerCAmelCase_ , returns_to_go=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _A , _A , _A , _A: Optional[Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) _A: Any = action_pred[0, -1] _A: List[str] = torch.cat([states, state] , dim=1 ) _A: Dict = returns_to_go[0, -1] - reward _A: int = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _A: List[str] = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
301
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
1
from collections import namedtuple import requests from lxml import html # type: ignore UpperCAmelCase__ : Union[str, Any] = namedtuple('covid_data', 'cases deaths recovered') def lowerCamelCase__ ( a = "https://www.worldometers.info/coronavirus/" ) -> covid_data: _A: Any = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(a ).content ).xpath(a ) ) UpperCAmelCase__ : Union[str, Any] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
301
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
1
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ): """simple docstring""" _A: Union[str, Any] = [ [], [], [], ] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(lowerCAmelCase_ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : Optional[Any] ): """simple docstring""" return "\n".join(F"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ): """simple docstring""" _A: List[Any] = [] def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" if len(self.queue ) == 1_0_0: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: _A: str = min(self.queue ) self.queue.remove(lowerCAmelCase_ ) return data def __str__( self : Union[str, Any] ): """simple docstring""" return str(self.queue ) def lowerCamelCase__ ( ) -> str: _A: Tuple = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def lowerCamelCase__ ( ) -> Tuple: _A: List[Any] = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
301
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
1
class UpperCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[bool]] ): """simple docstring""" _A: int = row _A: Any = col _A: List[Any] = graph def __magic_name__ ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[bool]] ): """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : list[list[bool]] ): """simple docstring""" # Checking all 8 elements surrounding nth element _A: str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _A: List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] _A: List[str] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): # And finally, count all islands. """simple docstring""" _A: List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] _A: str = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += 1 return count
301
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
1
def lowerCamelCase__ ( a ) -> bool: return str(a ) == str(a )[::-1] def lowerCamelCase__ ( a ) -> int: return int(a ) + int(str(a )[::-1] ) def lowerCamelCase__ ( a = 1_00_00 ) -> int: _A: Tuple = [] for num in range(1 , a ): _A: int = 0 _A: Any = num while iterations < 50: _A: List[Any] = sum_reverse(a ) iterations += 1 if is_palindrome(a ): break else: lychrel_nums.append(a ) return len(a ) if __name__ == "__main__": print(F"""{solution() = }""")
301
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
1
from __future__ import annotations from math import pi def lowerCamelCase__ ( a , a , a ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
301
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCAmelCase__ : str = logging.get_logger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Dict=6.0 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str="fp4" , lowerCAmelCase_ : Tuple=False , **lowerCAmelCase_ : List[str] , ): """simple docstring""" _A: Dict = load_in_abit _A: List[Any] = load_in_abit _A: int = llm_inta_threshold _A: Tuple = llm_inta_skip_modules _A: Optional[Any] = llm_inta_enable_fpaa_cpu_offload _A: Any = llm_inta_has_fpaa_weight _A: str = bnb_abit_quant_type _A: Tuple = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _A: int = torch.floataa elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , torch.dtype ): _A: Dict = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def __magic_name__ ( self : Dict ): """simple docstring""" if not isinstance(self.llm_inta_threshold , lowerCAmelCase_ ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase_ ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase_ ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase_ ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase_ ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase_ ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def __magic_name__ ( self : Dict ): """simple docstring""" return self.load_in_abit or self.load_in_abit def __magic_name__ ( self : List[Any] ): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __magic_name__ ( cls : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : int ): """simple docstring""" _A: Any = cls(**lowerCAmelCase_ ) _A: List[Any] = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) to_remove.append(lowerCAmelCase_ ) for key in to_remove: kwargs.pop(lowerCAmelCase_ , lowerCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[str, os.PathLike] ): """simple docstring""" with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: _A: Optional[int] = self.to_dict() _A: List[str] = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '''\n''' writer.write(lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = copy.deepcopy(self.__dict__ ) _A: Any = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : str ): """simple docstring""" return F"""{self.__class__.__name__} {self.to_json_string()}""" def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : bool = True ): """simple docstring""" if use_diff is True: _A: Any = self.to_diff_dict() else: _A: List[str] = self.to_dict() return json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.to_dict() # get the default config dict _A: Dict = BitsAndBytesConfig().to_dict() _A: Tuple = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _A: str = value return serializable_config_dict
301
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
1
def lowerCamelCase__ ( a ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _A: Tuple = 1 _A: List[Any] = 1 while repunit: _A: Union[str, Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase__ ( a = 1_00_00_00 ) -> int: _A: List[str] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
301
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Tuple = '''FlavaImageProcessor''' __UpperCamelCase : Optional[int] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase_ , ) _A: int = kwargs.pop('''feature_extractor''' ) _A: List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[ImageInput] = None , lowerCAmelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _A: Optional[Any] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: _A: List[Any] = self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def __magic_name__ ( self : Any , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Any , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Tuple = self.tokenizer.model_input_names _A: Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self : Tuple ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase_ , ) return self.image_processor_class @property def __magic_name__ ( self : int ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase_ , ) return self.image_processor
301
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Tuple , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , lowerCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , **lowerCAmelCase_ : Dict ): """simple docstring""" _A: int = {} if "candidate_labels" in kwargs: _A: List[Any] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _A: Dict = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any="This is a photo of {}." ): """simple docstring""" _A: Optional[Any] = load_image(lowerCAmelCase_ ) _A: Union[str, Any] = self.image_processor(images=[image] , return_tensors=self.framework ) _A: Optional[Any] = candidate_labels _A: Optional[Any] = [hypothesis_template.format(lowerCAmelCase_ ) for x in candidate_labels] _A: Tuple = self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework , padding=lowerCAmelCase_ ) _A: Any = [text_inputs] return inputs def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = model_inputs.pop('''candidate_labels''' ) _A: Any = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowerCAmelCase_ ): _A: Dict = text_inputs[0] else: # Batching case. _A: List[Any] = text_inputs[0][0] _A: Union[str, Any] = self.model(**lowerCAmelCase_ , **lowerCAmelCase_ ) _A: str = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" _A: List[Any] = model_outputs.pop('''candidate_labels''' ) _A: Tuple = model_outputs['''logits'''][0] if self.framework == "pt": _A: Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _A: Tuple = probs.tolist() if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: str = [scores] elif self.framework == "tf": _A: List[str] = stable_softmax(lowerCAmelCase_ , axis=-1 ) _A: Any = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) _A: int = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : -x[0] ) ] return result
301
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = CodeGenTokenizer __UpperCamelCase : Union[str, Any] = CodeGenTokenizerFast __UpperCamelCase : Optional[Any] = True __UpperCamelCase : List[Any] = {'''add_prefix_space''': True} __UpperCamelCase : Any = False def __magic_name__ ( self : Tuple ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A: str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _A: Union[str, Any] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _A: Any = {'''unk_token''': '''<unk>'''} _A: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def __magic_name__ ( self : str , **lowerCAmelCase_ : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , **lowerCAmelCase_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[int] = '''lower newer''' _A: Dict = '''lower newer''' return input_text, output_text def __magic_name__ ( self : str ): """simple docstring""" _A: str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A: int = '''lower newer''' _A: int = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _A: Any = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[int] = tokens + [tokenizer.unk_token] _A: int = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _A: List[str] = self.get_tokenizer() _A: List[str] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ ) _A: Optional[int] = '''lower newer''' # Testing tokenization _A: str = tokenizer.tokenize(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _A: Tuple = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _A: Tuple = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Optional[Any] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase_ ) _A: Tuple = tokenizer.encode(lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _A: int = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing the unknown token _A: Dict = tokens + [rust_tokenizer.unk_token] _A: Tuple = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Any ): """simple docstring""" # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __magic_name__ ( self : int , lowerCAmelCase_ : Union[str, Any]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A: List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # Simple input _A: Optional[int] = '''This is a simple input''' _A: Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _A: Tuple = ('''This is a simple input''', '''This is a pair''') _A: str = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='''max_length''' , ) def __magic_name__ ( self : int ): """simple docstring""" _A: Union[str, Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _A: Union[str, Any] = '''This is a simple input''' _A: Union[str, Any] = ['''This is a simple input looooooooong''', '''This is a simple input'''] _A: Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _A: Optional[int] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _A: Dict = tokenizer.pad_token_id _A: Any = tokenizer(lowerCAmelCase_ , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = tokenizer(*lowerCAmelCase_ , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _A: Union[str, Any] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncate=lowerCAmelCase_ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Tuple = '''$$$''' _A: Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase_ , add_bos_token=lowerCAmelCase_ ) _A: Tuple = '''This is a simple input''' _A: Any = ['''This is a simple input 1''', '''This is a simple input 2'''] _A: List[str] = tokenizer.bos_token_id _A: int = tokenizer(lowerCAmelCase_ ) _A: int = tokenizer(lowerCAmelCase_ ) self.assertEqual(out_s.input_ids[0] , lowerCAmelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _A: List[Any] = tokenizer.decode(out_s.input_ids ) _A: Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCAmelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[Any] = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) _A: List[Any] = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' _A: Optional[Any] = '''\nif len_a > len_b: result = a\nelse: result = b''' _A: Optional[Any] = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] _A: str = tokenizer.decode(lowerCAmelCase_ , truncate_before_pattern=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass
301
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
1
def lowerCamelCase__ ( a , a ) -> Any: _A: Tuple = '''''' for i in table: res += inp[i - 1] return res def lowerCamelCase__ ( a ) -> Tuple: return data[1:] + data[0] def lowerCamelCase__ ( a , a ) -> Union[str, Any]: _A: Tuple = '''''' for i in range(len(a ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase__ ( a , a ) -> int: _A: Tuple = int('''0b''' + data[0] + data[-1] , 2 ) _A: Union[str, Any] = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCamelCase__ ( a , a , a , a , a ) -> List[str]: _A: Any = message[:4] _A: Dict = message[4:] _A: int = apply_table(a , a ) _A: List[Any] = xor(a , a ) _A: List[str] = apply_sbox(a , temp[:4] ) # noqa: E741 _A: Any = apply_sbox(a , temp[4:] ) _A: Any = '''0''' * (2 - len(a )) + l # noqa: E741 _A: Optional[int] = '''0''' * (2 - len(a )) + r _A: Tuple = apply_table(l + r , a ) _A: List[str] = xor(a , a ) return temp + right if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = input('Enter 10 bit key: ') UpperCAmelCase__ : List[str] = input('Enter 8 bit message: ') UpperCAmelCase__ : int = [6, 3, 7, 4, 8, 5, 10, 9] UpperCAmelCase__ : Optional[Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCAmelCase__ : Any = [2, 4, 3, 1] UpperCAmelCase__ : Any = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase__ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase__ : Optional[int] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase__ : Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase__ : Union[str, Any] = apply_table(key, paa_table) UpperCAmelCase__ : Union[str, Any] = temp[:5] UpperCAmelCase__ : int = temp[5:] UpperCAmelCase__ : Union[str, Any] = left_shift(left) UpperCAmelCase__ : List[str] = left_shift(right) UpperCAmelCase__ : List[Any] = apply_table(left + right, pa_table) UpperCAmelCase__ : int = left_shift(left) UpperCAmelCase__ : Optional[int] = left_shift(right) UpperCAmelCase__ : str = left_shift(left) UpperCAmelCase__ : Optional[Any] = left_shift(right) UpperCAmelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCAmelCase__ : List[Any] = apply_table(message, IP) UpperCAmelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : Any = temp[4:] + temp[:4] UpperCAmelCase__ : str = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : List[Any] = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCAmelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCAmelCase__ : Union[str, Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : List[str] = temp[4:] + temp[:4] UpperCAmelCase__ : List[Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : List[Any] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
301
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
1
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = KandinskyImgaImgPipeline __UpperCamelCase : List[str] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] __UpperCamelCase : List[Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] __UpperCamelCase : List[str] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __UpperCamelCase : int = False @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Dict ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim @property def __magic_name__ ( self : List[str] ): """simple docstring""" return self.time_input_dim * 4 @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return 1_0_0 @property def __magic_name__ ( self : str ): """simple docstring""" _A: Optional[int] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _A: str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _A: List[Any] = MultilingualCLIP(lowerCAmelCase_ ) _A: Any = text_encoder.eval() return text_encoder @property def __magic_name__ ( self : int ): """simple docstring""" torch.manual_seed(0 ) _A: Dict = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _A: Optional[Any] = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) _A: Dict = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[int] = self.dummy_text_encoder _A: Tuple = self.dummy_tokenizer _A: str = self.dummy_unet _A: List[str] = self.dummy_movq _A: Dict = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _A: Tuple = DDIMScheduler(**lowerCAmelCase_ ) _A: List[str] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]=0 ): """simple docstring""" _A: str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase_ ) # create init_image _A: Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A: Any = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: Dict = torch.manual_seed(lowerCAmelCase_ ) else: _A: Optional[Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Union[str, Any] = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = '''cpu''' _A: str = self.get_dummy_components() _A: Any = self.pipeline_class(**lowerCAmelCase_ ) _A: Optional[Any] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: List[str] = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _A: Union[str, Any] = output.images _A: Any = pipe( **self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0] _A: Optional[int] = image[0, -3:, -3:, -1] _A: Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _A: Union[str, Any] = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Dict ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) _A: Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _A: Dict = '''A red cartoon frog, 4k''' _A: str = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase_ ) _A: List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) _A: str = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A , _A: Any = pipe_prior( lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _A: int = pipeline( lowerCAmelCase_ , image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) _A: Any = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
301
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ : int = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex UpperCAmelCase__ : List[str] = 10 UpperCAmelCase__ : Dict = 256 def lowerCamelCase__ ( a ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None _A: Union[str, Any] = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( a ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" _A: Tuple = duplication_jaccard_threshold _A: str = NUM_PERM _A: List[str] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash ): """simple docstring""" _A: int = self._index.query(lowerCAmelCase_ ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = [] for base, duplicates in self._duplicate_clusters.items(): _A: List[Any] = [base] + list(lowerCAmelCase_ ) # reformat the cluster to be a list of dict _A: Union[str, Any] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_ ) return duplicate_clusters def __magic_name__ ( self : int , lowerCAmelCase_ : Dict ): """simple docstring""" _A: List[str] = self.get_duplicate_clusters() with open(lowerCAmelCase_ , '''w''' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase__ ( a ) -> List[Any]: _A , _A: int = element _A: Union[str, Any] = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( a ) -> Union[str, Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def lowerCamelCase__ ( a , a ) -> Optional[Any]: _A: str = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=1_00 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( a , a ) -> float: _A: Dict = get_tokens(a ) _A: Optional[Any] = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ : Union[str, Any] = None def lowerCamelCase__ ( a , a ) -> Optional[int]: _A: List[str] = [] for elementa in cluster: _A: Any = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _A: str = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: _A: Dict = 1 extremes.append(a ) return extremes def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: global _shared_dataset _A: Dict = dataset _A: List[Any] = [] _A: int = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def lowerCamelCase__ ( a , a = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _A: Optional[Any] = make_duplicate_clusters(a , a ) _A: Any = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _A: List[str] = {} _A: List[str] = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: _A: List[Any] = element _A: Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) _A: List[str] = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _A: Any = element['''base_index'''] in extreme_dict if element["is_extreme"]: _A: List[Any] = extreme_dict[element['''base_index''']]['''copies'''] print(f"""Original dataset size: {len(a )}""" ) print(f"""Number of duplicate clusters: {len(a )}""" ) print(f"""Files in duplicate cluster: {len(a )}""" ) print(f"""Unique files in duplicate cluster: {len(a )}""" ) print(f"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
301
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( a , a , a ) -> Tuple: # Construct model if gpta_config_file == "": _A: Any = GPTaConfig() else: _A: int = GPTaConfig.from_json_file(a ) _A: Dict = GPTaModel(a ) # Load weights from numpy load_tf_weights_in_gpta(a , a , a ) # Save pytorch-model _A: Union[str, Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _A: Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
301
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ : Tuple = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } UpperCAmelCase__ : str = {'mobilebert-uncased': 512} UpperCAmelCase__ : Any = {} class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = MobileBertTokenizer def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Any="[UNK]" , lowerCAmelCase_ : Any="[SEP]" , lowerCAmelCase_ : List[Any]="[PAD]" , lowerCAmelCase_ : Tuple="[CLS]" , lowerCAmelCase_ : Dict="[MASK]" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A: Tuple = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _A: int = do_lower_case _A: int = strip_accents _A: Tuple = tokenize_chinese_chars _A: Union[str, Any] = normalizer_class(**lowerCAmelCase_ ) _A: Any = do_lower_case def __magic_name__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]=None ): """simple docstring""" _A: Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Dict = [self.sep_token_id] _A: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" _A: Dict = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
301
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
1
import math def lowerCamelCase__ ( a ) -> list[int]: _A: Dict = [] _A: int = 2 _A: Any = int(math.sqrt(a ) ) # Size of every segment _A: int = [True] * (end + 1) _A: Any = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): _A: int = False start += 1 prime += in_prime _A: Union[str, Any] = end + 1 _A: List[Any] = min(2 * end , a ) while low <= n: _A: Any = [True] * (high - low + 1) for each in in_prime: _A: Optional[int] = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): _A: Union[str, Any] = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) _A: Optional[int] = high + 1 _A: Dict = min(high + end , a ) return prime print(sieve(10**6))
301
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
1
from PIL import Image def lowerCamelCase__ ( a , a ) -> Image: def brightness(a ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(a ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCAmelCase__ : List[Any] = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
301
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
1
def lowerCamelCase__ ( a , a ) -> list[int]: _A: Any = int(a ) # Initialize Result _A: Union[str, Any] = [] # Traverse through all denomination for denomination in reversed(a ): # Find denominations while int(a ) >= int(a ): total_value -= int(a ) answer.append(a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): UpperCAmelCase__ : List[Any] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase__ : Optional[Any] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase__ : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase__ : Dict = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase__ : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
301
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
1
def lowerCamelCase__ ( a , a ) -> float: def get_matched_characters(a , a ) -> str: _A: Any = [] _A: List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _A: List[Any] = int(max(0 , i - limit ) ) _A: int = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) _A: List[str] = f"""{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}""" return "".join(a ) # matching characters _A: Tuple = get_matched_characters(a , a ) _A: str = get_matched_characters(a , a ) _A: Dict = len(a ) # transposition _A: List[str] = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: _A: int = 0.0 else: _A: str = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _A: Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
301
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Union[str, Any]: # save results if os.path.exists(a ): if os.path.exists(os.path.join(a , '''config.json''' ) ) and os.path.isfile( os.path.join(a , '''config.json''' ) ): os.remove(os.path.join(a , '''config.json''' ) ) if os.path.exists(os.path.join(a , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(a , '''pytorch_model.bin''' ) ): os.remove(os.path.join(a , '''pytorch_model.bin''' ) ) else: os.makedirs(a ) model.save_pretrained(a ) def lowerCamelCase__ ( a , a=False ) -> Union[str, Any]: _A: str = 2 if unlogit: _A: Optional[Any] = torch.pow(a , a ) _A: Dict = p * torch.log(a ) _A: int = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( a ) -> Dict: logger.info('''lv, h >\t''' + '''\t'''.join(f"""{x + 1}""" for x in range(len(a ) ) ) ) for row in range(len(a ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( a , a , a , a=True , a=True , a=None , a=False ) -> List[Any]: _A , _A: str = model.config.num_hidden_layers, model.config.num_attention_heads _A: List[str] = torch.zeros(a , a ).to(args.device ) _A: int = torch.zeros(a , a ).to(args.device ) if head_mask is None: _A: Optional[Any] = torch.ones(a , a ).to(args.device ) head_mask.requires_grad_(requires_grad=a ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A: List[Any] = None _A: str = 0.0 _A: int = 0.0 for step, inputs in enumerate(tqdm(a , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _A: List[str] = tuple(t.to(args.device ) for t in inputs ) ((_A) , ): Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A: List[str] = model(a , labels=a , head_mask=a ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A: int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(a ): _A: Optional[Any] = entropy(attn.detach() , a ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(a ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A: Optional[Any] = 2 _A: Any = torch.pow(torch.pow(a , a ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _A: Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(a ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(a ) logger.info('''Head ranked by importance scores''' ) _A: Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A: List[Any] = torch.arange( head_importance.numel() , device=args.device ) _A: Dict = head_ranks.view_as(a ) print_ad_tensor(a ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( a , a , a ) -> List[Any]: _A , _A , _A: Optional[Any] = compute_heads_importance(a , a , a , compute_entropy=a ) _A: List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , a , original_score * args.masking_threshold ) _A: Tuple = torch.ones_like(a ) _A: Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A: List[Any] = original_score while current_score >= original_score * args.masking_threshold: _A: str = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A: List[Any] = float('''Inf''' ) _A: Optional[Any] = head_importance.view(-1 ).sort()[1] if len(a ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _A: List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _A: List[Any] = new_head_mask.view(-1 ) _A: Dict = 0.0 _A: List[str] = new_head_mask.view_as(a ) _A: List[Any] = new_head_mask.clone().detach() print_ad_tensor(a ) # Compute metric and head importance again _A , _A , _A: Dict = compute_heads_importance( a , a , a , compute_entropy=a , head_mask=a ) _A: List[str] = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , a , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(a ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( a , a , a , a ) -> Union[str, Any]: _A: List[Any] = datetime.now() _A , _A , _A: Optional[int] = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a ) _A: List[Any] = 1 / loss _A: List[Any] = datetime.now() - before_time _A: Optional[int] = sum(p.numel() for p in model.parameters() ) _A: List[str] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(a ) ) } for k, v in heads_to_prune.items(): if isinstance(a , a ): _A: Union[str, Any] = [ v, ] assert sum(len(a ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(a ) _A: Dict = sum(p.numel() for p in model.parameters() ) _A: Tuple = datetime.now() _A , _A , _A: List[Any] = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a , actually_pruned=a , ) _A: str = 1 / loss _A: List[str] = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , a , a , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , a , a ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(a , args.output_dir ) def lowerCamelCase__ ( ) -> int: _A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=a , type=a , required=a , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a , type=a , required=a , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=a , type=a , required=a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=a , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=a , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=a , type=a , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=a , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=a , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=a , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=a , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=a , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=a , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=a , default=42 ) parser.add_argument('''--local_rank''' , type=a , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) _A: Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A: Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _A: Union[str, Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A: Optional[int] = torch.device('''cuda''' , args.local_rank ) _A: List[Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A: List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A: str = nn.parallel.DistributedDataParallel( a , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=a ) elif args.n_gpu > 1: _A: Optional[int] = nn.DataParallel(a ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=a ) torch.save(a , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , a ) # Prepare dataset _A: str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A: Tuple = (torch.from_numpy(a ),) _A: Optional[Any] = TensorDataset(*a ) _A: Any = RandomSampler(a ) _A: Optional[Any] = DataLoader(a , sampler=a , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(a , a , a ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A: Optional[Any] = mask_heads(a , a , a ) prune_heads(a , a , a , a ) if __name__ == "__main__": main()
301
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
1
def lowerCamelCase__ ( a ) -> list: if len(a ) < 2: return collection def circle_sort_util(a , a , a ) -> bool: _A: Tuple = False if low == high: return swapped _A: Dict = low _A: int = high while left < right: if collection[left] > collection[right]: _A , _A: Union[str, Any] = ( collection[right], collection[left], ) _A: str = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _A , _A: Any = ( collection[right + 1], collection[left], ) _A: Dict = True _A: List[Any] = low + int((high - low) / 2 ) _A: Any = circle_sort_util(a , a , a ) _A: str = circle_sort_util(a , mid + 1 , a ) return swapped or left_swap or right_swap _A: Any = True while is_not_sorted is True: _A: str = circle_sort_util(a , 0 , len(a ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Dict = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
301
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ : Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = StableDiffusionInstructPixaPixPipeline __UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) _A: int = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) _A: Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _A: List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _A: Any = CLIPTextModel(lowerCAmelCase_ ) _A: List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A: Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=0 ): """simple docstring""" _A: List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A: Dict = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ) if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: str = torch.manual_seed(lowerCAmelCase_ ) else: _A: Union[str, Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: str = self.get_dummy_components() _A: Any = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: Union[str, Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Optional[int] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: List[str] = sd_pipe(**lowerCAmelCase_ ).images _A: str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _A: int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: Tuple = self.get_dummy_components() _A: Optional[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: int = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Any = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Optional[Any] = '''french fries''' _A: Union[str, Any] = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _A: Optional[Any] = output.images _A: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _A: int = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: Optional[int] = self.get_dummy_components() _A: Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: Tuple = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Union[str, Any] = [inputs['''prompt''']] * 2 _A: str = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 _A: int = torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) _A: List[Any] = image / 2 + 0.5 _A: Optional[int] = image.permute(0 , 3 , 1 , 2 ) _A: Union[str, Any] = image.repeat(2 , 1 , 1 , 1 ) _A: Optional[Any] = sd_pipe(**lowerCAmelCase_ ).images _A: Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) _A: Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : str ): """simple docstring""" _A: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: Union[str, Any] = self.get_dummy_components() _A: Tuple = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) _A: Optional[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: Dict = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: int = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Optional[Any] = sd_pipe(**lowerCAmelCase_ ).images _A: Dict = image[0, -3:, -3:, -1] _A: List[str] = [round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) _A: Any = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: int = self.get_dummy_components() _A: int = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) _A: List[Any] = VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) _A: Dict = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: List[Any] = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='''pt''' ) )[0] _A: List[Any] = components['''vae'''] _A: Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _A: List[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() _A: Optional[int] = pipe(**lowerCAmelCase_ )[0] _A: Any = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Union[str, Any]=0 ): """simple docstring""" _A: str = torch.manual_seed(lowerCAmelCase_ ) _A: Dict = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) _A: Any = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Dict = self.get_inputs() _A: Optional[Any] = pipe(**lowerCAmelCase_ ).images _A: Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: int = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ ) _A: int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Union[str, Any] = self.get_inputs() _A: Optional[int] = pipe(**lowerCAmelCase_ ).images _A: List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: Optional[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __magic_name__ ( self : str ): """simple docstring""" _A: List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ ) _A: List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: str = self.get_inputs() _A: Tuple = pipe(**lowerCAmelCase_ ).images _A: int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: str = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = 0 def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None: _A: str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _A: int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _A: Optional[int] = latents[0, -3:, -3:, -1] _A: str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _A: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _A: int = latents[0, -3:, -3:, -1] _A: Optional[int] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _A: Optional[Any] = False _A: Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _A: List[str] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Any = self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__ ( self : List[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A: Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _A: List[str] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A: int = self.get_inputs() _A: List[Any] = pipe(**lowerCAmelCase_ ) _A: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _A: List[str] = inputs['''image'''].resize((5_0_4, 5_0_4) ) _A: str = '''timbrooks/instruct-pix2pix''' _A: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _A: Optional[Any] = pipe(**lowerCAmelCase_ ) _A: Tuple = output.images[0] _A: List[str] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) _A: Tuple = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
301
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
1
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCAmelCase__ : Any = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Dict=1_4 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : Any=1_9 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : str=[1, 2, 3, 4, 5] , lowerCAmelCase_ : Union[str, Any]=2_5 , lowerCAmelCase_ : Any=5 , ): """simple docstring""" _A: Tuple = d_model _A: Optional[int] = parent _A: Optional[int] = batch_size _A: Optional[Any] = prediction_length _A: Optional[Any] = context_length _A: List[Any] = cardinality _A: Union[str, Any] = num_time_features _A: Optional[int] = lags_sequence _A: Dict = embedding_dimension _A: Optional[int] = is_training _A: List[str] = hidden_size _A: int = num_hidden_layers _A: Tuple = num_attention_heads _A: List[str] = intermediate_size _A: str = hidden_act _A: Dict = hidden_dropout_prob _A: Dict = attention_probs_dropout_prob _A: List[Any] = context_length _A: str = prediction_length + label_length _A: Union[str, Any] = label_length _A: List[str] = moving_average _A: str = autocorrelation_factor def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Optional[int] = config.context_length + max(config.lags_sequence ) _A: str = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _A: Dict = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _A: Dict = floats_tensor([self.batch_size, _past_length] ) _A: str = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _A: Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _A: Tuple = floats_tensor([self.batch_size, config.prediction_length] ) _A: int = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_config() _A: Optional[int] = self.prepare_autoformer_inputs_dict(lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: str = AutoformerModel(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() _A: Optional[int] = model(**lowerCAmelCase_ ) _A: Union[str, Any] = outputs.encoder_last_hidden_state _A: Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _A: Tuple = model.get_encoder() encoder.save_pretrained(lowerCAmelCase_ ) _A: str = AutoformerEncoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _A , _A , _A , _A , _A: Optional[int] = model.create_network_inputs(**lowerCAmelCase_ ) _A , _A: Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _A: Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _A: Dict = encoder(inputs_embeds=lowerCAmelCase_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _A: Dict = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _A: Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _A: Union[str, Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _A: str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _A: Any = model.get_decoder() decoder.save_pretrained(lowerCAmelCase_ ) _A: Any = AutoformerDecoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _A: int = decoder( trend=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCamelCase : Dict = (AutoformerForPrediction,) if is_torch_available() else () __UpperCamelCase : Optional[Any] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} __UpperCamelCase : Tuple = False __UpperCamelCase : Any = False __UpperCamelCase : int = False __UpperCamelCase : Any = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[Any] = AutoformerModelTester(self ) _A: Dict = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : int ): """simple docstring""" _A , _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _A: List[str] = model_class(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) _A , _A: List[Any] = model_class.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) self.assertEqual(info['''missing_keys'''] , [] ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __magic_name__ ( self : str ): """simple docstring""" pass def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = inspect.signature(getattr(lowerCAmelCase_ , '''forward''' ) ) # The main input is the name of the argument after `self` _A: Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: str = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: List[Any] = [*signature.parameters.keys()] _A: Dict = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A , _A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() _A: Dict = True _A: str = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase_ ) _A: Optional[int] = getattr(self.model_tester , '''decoder_seq_length''' , lowerCAmelCase_ ) _A: Dict = getattr(self.model_tester , '''encoder_seq_length''' , lowerCAmelCase_ ) _A: List[str] = getattr(self.model_tester , '''d_model''' , lowerCAmelCase_ ) _A: Tuple = getattr(self.model_tester , '''num_attention_heads''' , lowerCAmelCase_ ) _A: Any = d_model // num_attention_heads for model_class in self.all_model_classes: _A: Optional[int] = True _A: Optional[int] = False _A: List[Any] = True _A: List[str] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: List[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A: int = True _A: Union[str, Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: Optional[int] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: Optional[int] = outputs.encoder_attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _A: Optional[Any] = len(lowerCAmelCase_ ) _A: Optional[int] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # decoder attentions _A: int = outputs.decoder_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _A: Dict = outputs.cross_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _A: Dict = True _A: Optional[int] = True _A: List[Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 2 , len(lowerCAmelCase_ ) ) _A: str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( a="train-batch.pt" ) -> List[str]: _A: int = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=a , repo_type='''dataset''' ) _A: Any = torch.load(a , map_location=a ) return batch @require_torch @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCAmelCase_ ) _A: List[str] = prepare_batch() with torch.no_grad(): _A: Optional[int] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _A: Dict = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: Dict = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def __magic_name__ ( self : int ): """simple docstring""" _A: Dict = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCAmelCase_ ) _A: Union[str, Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _A: int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _A: Any = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: str = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: int = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCAmelCase_ ) _A: List[Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _A: Union[str, Any] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _A: Optional[Any] = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCAmelCase_ ) _A: Any = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=lowerCAmelCase_ ) _A: str = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCAmelCase_ , rtol=1e-1 ) )
301
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCAmelCase__ : List[str] = 'src/transformers' UpperCAmelCase__ : str = 'docs/source/en/tasks' def lowerCamelCase__ ( a , a , a ) -> Tuple: with open(a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _A: List[str] = f.readlines() # Find the start prompt. _A: str = 0 while not lines[start_index].startswith(a ): start_index += 1 start_index += 1 _A: Union[str, Any] = start_index while not lines[end_index].startswith(a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) UpperCAmelCase__ : Optional[int] = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCAmelCase__ : Union[str, Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCamelCase__ ( a ) -> Optional[int]: _A: Any = TASK_GUIDE_TO_MODELS[task_guide] _A: int = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(a , set() ) _A: Optional[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCamelCase__ ( a , a=False ) -> Optional[int]: _A , _A , _A , _A: int = _find_text_in_file( filename=os.path.join(a , a ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) _A: Tuple = get_model_list_for_task(a ) if current_list != new_list: if overwrite: with open(os.path.join(a , a ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCAmelCase__ : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
301
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
1
from timeit import timeit UpperCAmelCase__ : Optional[Any] = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCamelCase__ ( a ) -> bool: _A: str = 0 _A: Optional[Any] = len(a ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCamelCase__ ( a ) -> bool: _A: int = len(a ) // 2 _A: List[Any] = len(a ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(a ) ) def lowerCamelCase__ ( a ) -> bool: if len(a ) <= 2: return True if s[0] == s[len(a ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCamelCase__ ( a ) -> bool: return s == s[::-1] def lowerCamelCase__ ( a ) -> None: _A: Optional[Any] = f"""all({name}(key) is value for key, value in test_data.items())""" _A: Dict = f"""from __main__ import test_data, {name}""" _A: Union[str, Any] = 50_00_00 _A: Dict = timeit(stmt=a , setup=a , number=a ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
301
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : str = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase__ ( a , a , a , a ) -> Any: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _A: List[str] = TOKENIZER_CLASSES else: _A: Optional[int] = {tokenizer_name: getattr(a , tokenizer_name + '''Fast''' )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _A: Tuple = TOKENIZER_CLASSES[tokenizer_name] _A: List[Any] = True if checkpoint_name is None: _A: Tuple = list(tokenizer_class.max_model_input_sizes.keys() ) else: _A: str = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _A: Union[str, Any] = tokenizer_class.from_pretrained(a , force_download=a ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _A , _A: Optional[Any] = checkpoint.split('''/''' ) _A: Any = os.path.join(a , a ) elif add_prefix: _A: List[str] = checkpoint _A: Optional[Any] = dump_path else: _A: Any = None _A: Optional[int] = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _A: int = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _A: Optional[Any] = file_path.split(a )[-1][0] if next_char == "/": _A: Optional[int] = os.path.join(a , a ) _A: List[Any] = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _A: Tuple = tokenizer.save_pretrained( a , legacy_format=a , filename_prefix=a ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(a ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) UpperCAmelCase__ : int = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
301
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ProphetNetTokenizer __UpperCamelCase : List[Any] = False def __magic_name__ ( self : Dict ): """simple docstring""" super().setUp() _A: Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Any = '''UNwant\u00E9d,running''' _A: Any = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: int = self.tokenizer_class(self.vocab_file ) _A: Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: str = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__ ( self : int ): """simple docstring""" _A: Any = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __magic_name__ ( self : str ): """simple docstring""" _A: Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _A: List[str] = {} for i, token in enumerate(lowerCAmelCase_ ): _A: int = i _A: Union[str, Any] = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) _A: Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _A: int = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _A: str = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __magic_name__ ( self : Any ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def __magic_name__ ( self : str ): """simple docstring""" _A: Any = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) _A: List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase_ ) _A: Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
301
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github UpperCAmelCase__ : Union[str, Any] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def lowerCamelCase__ ( ) -> Optional[Any]: _A: int = Github(os.environ['''GITHUB_TOKEN'''] ) _A: str = g.get_repo('''huggingface/transformers''' ) _A: Any = repo.get_issues(state='''open''' ) for issue in open_issues: _A: int = sorted([comment for comment in issue.get_comments()] , key=lambda a : i.created_at , reverse=_UpperCAmelCase ) _A: Optional[int] = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase__ : Any = None UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ : List[Any] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ : Union[str, Any] = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off UpperCAmelCase__ : Union[str, Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase ( A__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = ["input_ids", "attention_mask"] __UpperCamelCase : List[str] = NllbTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : int="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[Any]="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=False , **lowerCAmelCase_ : str , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it _A: str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token _A: List[Any] = legacy_behaviour super().__init__( vocab_file=__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , legacy_behaviour=__A , **__A , ) _A: Any = vocab_file _A: Dict = False if not self.vocab_file else True _A: List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _A: List[str] = { lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A: int = src_lang if src_lang is not None else """eng_Latn""" _A: Any = self.convert_tokens_to_ids(self._src_lang ) _A: str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] = None ): """simple docstring""" _A: Tuple = [self.sep_token_id] _A: Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : int ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _A: Tuple = src_lang _A: Union[str, Any] = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) _A: Dict = self.convert_tokens_to_ids(__A ) _A: Optional[int] = tgt_lang_id return inputs def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] = "eng_Latn" , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Union[str, Any] = "fra_Latn" , **lowerCAmelCase_ : List[str] , ): """simple docstring""" _A: Optional[int] = src_lang _A: str = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self : Tuple ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[int] = self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: _A: Any = [] _A: Any = [self.eos_token_id, self.cur_lang_code] else: _A: int = [self.cur_lang_code] _A: Any = [self.eos_token_id] _A: int = self.convert_ids_to_tokens(self.prefix_tokens ) _A: Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) _A: Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __magic_name__ ( self : int , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[int] = self.convert_tokens_to_ids(__A ) if self.legacy_behaviour: _A: Optional[Any] = [] _A: Tuple = [self.eos_token_id, self.cur_lang_code] else: _A: Union[str, Any] = [self.cur_lang_code] _A: Tuple = [self.eos_token_id] _A: Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) _A: List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) _A: Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return _A: Tuple = os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import operator as op def lowerCamelCase__ ( a ) -> Optional[Any]: _A: str = [] _A: List[str] = lambda a , a : int(x / y ) # noqa: E731 integer division operation _A: Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(__UpperCAmelCase ) , sep=''' | ''' ) else: _A: List[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(__UpperCAmelCase ) , sep=''' | ''' ) _A: str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(__UpperCAmelCase ) , sep=''' | ''' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(__UpperCAmelCase ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": UpperCAmelCase__ : str = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : List[str] = logging.get_logger(__name__) def lowerCamelCase__ ( a , a ) -> Dict: _A: List[str] = RobertaPreLayerNormConfig.from_pretrained( __lowerCAmelCase , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict _A: Optional[int] = torch.load(hf_hub_download(repo_id=__lowerCAmelCase , filename='''pytorch_model.bin''' ) ) _A: str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): _A: Optional[int] = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue _A: List[Any] = tensor_value _A: int = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__lowerCAmelCase , config=__lowerCAmelCase , state_dict=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) # convert tokenizer _A: Tuple = AutoTokenizer.from_pretrained(__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : str = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase__ ( a , a , a ) -> int: # Initialise PyTorch model _A: int = AlbertConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) _A: List[Any] = AlbertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ : int = logging.get_logger(__name__) class UpperCAmelCase ( lowercase__ , lowercase__ ): '''simple docstring''' __UpperCamelCase : Dict = '''maskformer-swin''' __UpperCamelCase : Tuple = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , lowerCAmelCase_ : Tuple=2_2_4 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Any=9_6 , lowerCAmelCase_ : int=[2, 2, 6, 2] , lowerCAmelCase_ : Optional[int]=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Union[str, Any]=4.0 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**_a ) _A: Optional[Any] = image_size _A: List[Any] = patch_size _A: int = num_channels _A: List[str] = embed_dim _A: int = depths _A: str = len(_a ) _A: Dict = num_heads _A: Any = window_size _A: str = mlp_ratio _A: str = qkv_bias _A: Tuple = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = drop_path_rate _A: List[str] = hidden_act _A: int = use_absolute_embeddings _A: Optional[int] = layer_norm_eps _A: Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A: str = int(embed_dim * 2 ** (len(_a ) - 1) ) _A: Tuple = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(_a ) + 1 )] _A: Optional[Any] = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __UpperCamelCase : Tuple = 'facebook/bart-large-mnli' __UpperCamelCase : Tuple = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __UpperCamelCase : Any = 'text_classifier' __UpperCamelCase : Any = AutoTokenizer __UpperCamelCase : Dict = AutoModelForSequenceClassification __UpperCamelCase : Any = ['text', ['text']] __UpperCamelCase : int = ['text'] def __magic_name__ ( self : List[str] ): """simple docstring""" super().setup() _A: Tuple = self.model.config _A: Dict = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A: Any = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: List[str] = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[int] = outputs.logits _A: str = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = "▁" UpperCAmelCase__ : str = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} UpperCAmelCase__ : List[Any] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } UpperCAmelCase__ : Dict = {"vinai/bartpho-syllable": 1024} class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : Dict="</s>" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : Dict="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Union[str, Any]="<mask>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" _A: Optional[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _A: List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _A: str = vocab_file _A: Optional[Any] = monolingual_vocab_file _A: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A: Optional[int] = {} _A: Any = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_snake_case ) not in self.fairseq_tokens_to_ids: _A: Tuple = cnt cnt += 1 with open(_snake_case , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A: Tuple = line.strip().split()[0] _A: int = len(self.fairseq_tokens_to_ids ) if str(_snake_case ) not in self.fairseq_tokens_to_ids: _A: Any = len(self.fairseq_tokens_to_ids ) _A: List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[Any] ): """simple docstring""" _A: Any = self.__dict__.copy() _A: Tuple = None _A: List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A: List[str] = {} _A: Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __magic_name__ ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A: Any = [self.cls_token_id] _A: Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: str = [self.sep_token_id] _A: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __magic_name__ ( self : List[str] ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __magic_name__ ( self : Dict , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def __magic_name__ ( self : str , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[str] = ''''''.join(_snake_case ).replace(_snake_case , ''' ''' ).strip() return out_string def __magic_name__ ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[str] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: _A: int = self.sp_model.serialized_model_proto() fi.write(_snake_case ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _snake_case ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _snake_case ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_snake_case , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(_snake_case )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
from __future__ import annotations UpperCAmelCase__ : Tuple = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> List[str]: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> int: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Optional[int]: if location := find_empty_location(lowerCamelCase_ ): _A: str = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _A: str = digit if sudoku(lowerCamelCase_ ) is not None: return grid _A: Any = 0 return None def lowerCamelCase__ ( a ) -> Tuple: for row in grid: for cell in row: print(lowerCamelCase_ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: int = len(__lowercase ) _A: str = [0] * len_array if len_array > 0: _A: Union[str, Any] = array[0] for i in range(1 , __lowercase ): _A: List[str] = self.prefix_sum[i - 1] + array[i] def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase ( A_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = ShapEImgaImgPipeline __UpperCamelCase : List[str] = ["image"] __UpperCamelCase : str = ["image"] __UpperCamelCase : Any = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCamelCase : Tuple = False @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : int ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.time_input_dim * 4 @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return 8 @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) _A: List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A: Optional[int] = CLIPVisionModel(snake_case__ ) return model @property def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_2_4 , ) return image_processor @property def __magic_name__ ( self : int ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[Any] = { "num_attention_heads": 2, "attention_head_dim": 1_6, "embedding_dim": self.time_input_dim, "num_embeddings": 3_2, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _A: Tuple = PriorTransformer(**snake_case__ ) return model @property def __magic_name__ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) _A: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 1_2, "background": ( 0.1, 0.1, 0.1, ), } _A: Optional[int] = ShapERenderer(**snake_case__ ) return model def __magic_name__ ( self : int ): """simple docstring""" _A: int = self.dummy_prior _A: str = self.dummy_image_encoder _A: str = self.dummy_image_processor _A: Tuple = self.dummy_renderer _A: Any = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_0_2_4 , prediction_type='''sample''' , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) _A: Dict = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def __magic_name__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=0 ): """simple docstring""" _A: Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): _A: List[Any] = torch.manual_seed(snake_case__ ) else: _A: List[str] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _A: List[str] = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 3_2, "output_type": "np", } return inputs def __magic_name__ ( self : int ): """simple docstring""" _A: Any = "cpu" _A: Optional[int] = self.get_dummy_components() _A: Dict = self.pipeline_class(**snake_case__ ) _A: Any = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _A: Any = pipe(**self.get_dummy_inputs(snake_case__ ) ) _A: Optional[int] = output.images[0] _A: int = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) _A: int = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : Optional[int] ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Tuple = torch_device == "cpu" _A: List[str] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = self.get_dummy_components() _A: Union[str, Any] = self.pipeline_class(**snake_case__ ) _A: str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _A: int = 1 _A: Dict = 2 _A: Union[str, Any] = self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: _A: str = batch_size * [inputs[key]] _A: Optional[int] = pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Tuple ): """simple docstring""" _A: List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) _A: str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) _A: List[Any] = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) _A: Dict = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _A: List[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) _A: int = pipe( snake_case__ , generator=snake_case__ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='''np''' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : Tuple , lowerCAmelCase_ : str ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , _a ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: List[str] = copy.deepcopy(self ) _A: Union[str, Any] = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: List[str] = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = KandinskyVaaImgaImgPipeline __UpperCamelCase : List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __UpperCamelCase : List[str] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __UpperCamelCase : Union[str, Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __UpperCamelCase : int = False @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Tuple ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.time_input_dim @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return self.time_input_dim * 4 @property def __magic_name__ ( self : int ): """simple docstring""" return 1_0_0 @property def __magic_name__ ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) _A: int = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _A: Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def __magic_name__ ( self : Dict ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) _A: int = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : Dict ): """simple docstring""" _A: str = self.dummy_unet _A: Union[str, Any] = self.dummy_movq _A: str = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _A: Union[str, Any] = DDIMScheduler(**lowerCAmelCase_ ) _A: List[str] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]=0 ): """simple docstring""" _A: Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase_ ) # create init_image _A: Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A: Any = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: int = torch.manual_seed(lowerCAmelCase_ ) else: _A: int = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: List[str] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = 'cpu' _A: str = self.get_dummy_components() _A: List[Any] = self.pipeline_class(**lowerCAmelCase_ ) _A: Dict = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Any = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _A: List[Any] = output.images _A: Dict = pipe( **self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0] _A: int = image[0, -3:, -3:, -1] _A: Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _A: Union[str, Any] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : List[str] ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) _A: Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _A: List[str] = 'A red cartoon frog, 4k' _A: str = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase_ ) _A: List[str] = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) _A: Dict = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A: List[str] = pipe_prior( lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _A: Optional[int] = pipeline( image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) _A: Dict = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" import math def lowerCamelCase__ ( a ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( a = 1_00_01 ) -> int: try: _A: Optional[Any] = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) _A: list[int] = [] _A: Optional[Any] = 2 while len(_lowerCamelCase ) < nth: if is_prime(_lowerCamelCase ): primes.append(_lowerCamelCase ) num += 1 else: num += 1 return primes[len(_lowerCamelCase ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
from copy import deepcopy class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = None ): """simple docstring""" if arr is None and size is not None: _A: Dict = size _A: Any = [0] * size elif arr is not None: self.init(lowercase_ ) else: raise ValueError('''Either arr or size must be specified''' ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Union[str, Any] = len(lowercase_ ) _A: List[str] = deepcopy(lowercase_ ) for i in range(1 , self.size ): _A: str = self.next_(lowercase_ ) if j < self.size: self.tree[j] += self.tree[i] def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _A: Tuple = self.next_(lowercase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __magic_name__ ( lowerCAmelCase_ : Any ): """simple docstring""" return index + (index & (-index)) @staticmethod def __magic_name__ ( lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return index - (index & (-index)) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _A: List[Any] = self.next_(lowercase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): """simple docstring""" self.add(lowercase_ , value - self.get(lowercase_ ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" if right == 0: return 0 _A: Optional[Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _A: Optional[int] = self.prev(lowercase_ ) return result def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] ): """simple docstring""" return self.prefix(lowercase_ ) - self.prefix(lowercase_ ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any ): """simple docstring""" return self.query(lowercase_ , index + 1 ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 _A: Dict = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _A: Optional[Any] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) UpperCAmelCase__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase__ ( a ) -> Union[str, Any]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _A: List[Any] = model_type_to_module_name(__a ) _A: Tuple = importlib.import_module(f""".{module_name}""" , '''transformers.models''' ) try: return getattr(__a , __a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__a , '''__name__''' , __a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A: Optional[int] = importlib.import_module('''transformers''' ) if hasattr(__a , __a ): return getattr(__a , __a ) return None def lowerCamelCase__ ( a , a = None , a = False , a = False , a = None , a = None , a = None , a = False , **a , ) -> Tuple: _A: Optional[int] = get_file_from_repo( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(__a , encoding='''utf-8''' ) as reader: return json.load(__a ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ): """simple docstring""" raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_a ) def __magic_name__ ( cls : Tuple , lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = kwargs.pop('''config''' , _a ) _A: Optional[Any] = kwargs.pop('''trust_remote_code''' , _a ) _A: Any = True _A: Any = ImageProcessingMixin.get_image_processor_dict(_a , **_a ) _A: Optional[int] = config_dict.get('''image_processor_type''' , _a ) _A: Union[str, Any] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _A: Optional[Any] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _A: int = config_dict.pop('''feature_extractor_type''' , _a ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _A: str = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _A: int = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _A: Optional[int] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_a , _a ): _A: List[Any] = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.image_processor_type`` _A: Dict = getattr(_a , '''image_processor_type''' , _a ) if hasattr(_a , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _A: Optional[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _A: List[Any] = image_processor_class_from_name(_a ) _A: int = image_processor_auto_map is not None _A: Optional[int] = image_processor_class is not None or type(_a ) in IMAGE_PROCESSOR_MAPPING _A: Any = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A: Any = get_class_from_dynamic_module( _a , _a , **_a ) _A: Dict = kwargs.pop('''code_revision''' , _a ) if os.path.isdir(_a ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_a , **_a ) elif image_processor_class is not None: return image_processor_class.from_dict(_a , **_a ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_a ) in IMAGE_PROCESSOR_MAPPING: _A: str = IMAGE_PROCESSOR_MAPPING[type(_a )] return image_processor_class.from_dict(_a , **_a ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __magic_name__ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(_a , _a )
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[str] = tempfile.mkdtemp() _A: List[str] = 8 # DPR tok _A: List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A: Optional[int] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _A: Optional[int] = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _A: str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A: int = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _A: Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A: Tuple = {"""unk_token""": """<unk>"""} _A: str = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _A: List[str] = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Optional[int] = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def __magic_name__ ( self : Tuple ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __magic_name__ ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Union[str, Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Union[str, Any] = self.get_dummy_dataset() _A: Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _A: Union[str, Any] = dataset _A: List[Any] = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: str = self.get_dummy_dataset() _A: Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _A: List[Any] = os.path.join(self.tmpdirname , '''dataset''' ) _A: Dict = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _A: Any = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _A: Tuple = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) , ) return retriever def __magic_name__ ( self : str ): """simple docstring""" _A: int = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _A: str = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _A: Any = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _A: Optional[int] = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(__UpperCAmelCase , open(__UpperCAmelCase , '''wb''' ) ) _A: Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _A: str = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = 1 _A: Optional[Any] = self.get_dummy_canonical_hf_index_retriever() _A: List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: int = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __magic_name__ ( self : int ): """simple docstring""" _A: Any = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _A: List[Any] = self.get_dummy_dataset() retriever.save_pretrained(__UpperCAmelCase ) _A: List[str] = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A: Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Dict = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = 1 _A: Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) _A: str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __magic_name__ ( self : int ): """simple docstring""" _A: str = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) _A: Any = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A: Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Dict = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Tuple = 1 _A: Any = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) _A: str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Any = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) _A: int = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A: List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Any = 1 _A: Tuple = self.get_dummy_legacy_index_retriever() _A: List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) _A: int = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A: Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Any = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __magic_name__ ( self : Any ): """simple docstring""" import torch _A: Any = 1 _A: Dict = self.get_dummy_canonical_hf_index_retriever() _A: Tuple = [[5, 7], [1_0, 1_1]] _A: List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Union[str, Any] = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) _A: Tuple = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , np.ndarray ) _A: str = retriever( __UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase , return_tensors='''pt''' , ) _A: List[Any] = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_dpr_ctx_encoder_tokenizer() _A: List[str] = 1 _A: Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) retriever.set_ctx_encoder_tokenizer(__UpperCAmelCase ) _A: List[str] = [[5, 7], [1_0, 1_1]] _A: Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A: Any = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) self.assertEqual( len(__UpperCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __UpperCAmelCase ) # check for doc token related keys in dictionary.
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : str , ): """simple docstring""" _A: Union[str, Any] = parent _A: Any = 1_3 _A: Union[str, Any] = 7 _A: Union[str, Any] = True _A: Any = True _A: Union[str, Any] = False _A: Union[str, Any] = True _A: Union[str, Any] = 9_9 _A: Optional[int] = 3_2 _A: List[str] = 2 _A: int = 4 _A: str = 3_7 _A: List[Any] = "gelu" _A: List[str] = 0.1 _A: int = 0.1 _A: Any = 5_1_2 _A: str = 1_6 _A: Any = 2 _A: List[str] = 0.02 _A: List[Any] = 3 _A: List[str] = 4 _A: Optional[int] = None def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: Union[str, Any] = None if self.use_input_mask: _A: Any = random_attention_mask([self.batch_size, self.seq_length] ) _A: List[Any] = None _A: Tuple = None _A: Union[str, Any] = None if self.use_labels: _A: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A: Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _A: List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: List[Any] = TFDistilBertModel(config=lowerCAmelCase__ ) _A: Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _A: Union[str, Any] = model(lowerCAmelCase__ ) _A: str = [input_ids, input_mask] _A: Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Dict = TFDistilBertForMaskedLM(config=lowerCAmelCase__ ) _A: List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _A: Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): """simple docstring""" _A: Tuple = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ ) _A: Any = { "input_ids": input_ids, "attention_mask": input_mask, } _A: int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: int = self.num_labels _A: List[str] = TFDistilBertForSequenceClassification(lowerCAmelCase__ ) _A: str = {"input_ids": input_ids, "attention_mask": input_mask} _A: Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: str = self.num_choices _A: Union[str, Any] = TFDistilBertForMultipleChoice(lowerCAmelCase__ ) _A: Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _A: List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _A: Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } _A: List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = self.num_labels _A: Any = TFDistilBertForTokenClassification(lowerCAmelCase__ ) _A: Tuple = {"input_ids": input_ids, "attention_mask": input_mask} _A: List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = self.prepare_config_and_inputs() (_A): Tuple = config_and_inputs _A: Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCamelCase : Dict = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : Any = False __UpperCamelCase : Union[str, Any] = False def __magic_name__ ( self : str ): """simple docstring""" _A: Dict = TFDistilBertModelTester(self ) _A: int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def __magic_name__ ( self : str ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def __magic_name__ ( self : int ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _A: Union[str, Any] = TFDistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _A: Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A: Optional[int] = model(lowerCAmelCase__ )[0] _A: int = [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCAmelCase__ ) _A: List[str] = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
from math import factorial, pi def lowerCamelCase__ ( a , a = 30 ) -> float: if not isinstance(_UpperCamelCase , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) _A: Dict = float(_UpperCamelCase ) _A: List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_UpperCamelCase ) ) def lowerCamelCase__ ( a , a = 30 ) -> float: if not isinstance(_UpperCamelCase , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) _A: int = float(_UpperCamelCase ) _A: Tuple = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : int = {'''vocab_file''': '''sentencepiece.model'''} UpperCAmelCase__ : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } UpperCAmelCase__ : List[Any] = { '''google/rembert''': 256, } class UpperCAmelCase ( a__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : int="[CLS]" , lowerCAmelCase_ : Any="[SEP]" , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : int="[SEP]" , lowerCAmelCase_ : Union[str, Any]="[PAD]" , lowerCAmelCase_ : Optional[Any]="[CLS]" , lowerCAmelCase_ : Optional[int]="[MASK]" , **lowerCAmelCase_ : List[str] , ): """simple docstring""" super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) _A: Tuple = do_lower_case _A: str = remove_space _A: Optional[Any] = keep_accents _A: Optional[Any] = vocab_file _A: Union[str, Any] = spm.SentencePieceProcessor() self.sp_model.Load(_lowerCamelCase ) @property def __magic_name__ ( self : Tuple ): """simple docstring""" return len(self.sp_model ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: int = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" _A: Dict = self.__dict__.copy() _A: Dict = None return state def __setstate__( self : Any , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: List[str] = d _A: List[str] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=False ): """simple docstring""" _A: Optional[int] = self.sp_model.EncodeAsPieces(_lowerCamelCase ) return pieces def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[int] = self.sp_model.decode_pieces(_lowerCamelCase ) return out_string def __magic_name__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple = None ): """simple docstring""" _A: Tuple = [self.sep_token_id] _A: List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def __magic_name__ ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int = None ): """simple docstring""" _A: List[Any] = [self.sep_token_id] _A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return _A: Dict = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
from string import ascii_lowercase, ascii_uppercase def lowerCamelCase__ ( a ) -> List[str]: if not sentence: return "" _A: str = dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import torch def lowerCamelCase__ ( ) -> List[str]: if torch.cuda.is_available(): _A: Any = torch.cuda.device_count() else: _A: Any = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : str ): """simple docstring""" _A: Optional[int] = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) _A: Union[str, Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(_a ) from datasets import load_dataset _A: Optional[int] = load_dataset('''nielsr/rvlcdip-demo''' ) _A: Tuple = dataset['''train'''][0]['''image'''].convert('''RGB''' ) _A: Optional[Any] = image_processor(_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _A: Dict = model(**_a ) _A: int = outputs.logits _A: Any = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , _a ) _A: int = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=_a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1e-4 ) )
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[2, 2, 3, 2] , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Dict=1_0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Any=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Optional[Any]=[2, 3, 4] , lowerCAmelCase_ : Any=None , ): """simple docstring""" _A: Union[str, Any] = parent _A: Optional[int] = batch_size _A: Tuple = image_size _A: int = num_channels _A: Union[str, Any] = num_stages _A: List[str] = hidden_sizes _A: Optional[Any] = depths _A: Dict = is_training _A: Optional[Any] = use_labels _A: Tuple = intermediate_size _A: Optional[int] = hidden_act _A: Optional[int] = num_labels _A: str = initializer_range _A: str = out_features _A: Optional[int] = out_indices _A: int = scope def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: int = None if self.use_labels: _A: List[str] = ids_tensor([self.batch_size] , self.num_labels ) _A: Tuple = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : List[str] ): """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __magic_name__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Any = ConvNextVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() _A: List[Any] = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: Optional[int] = ConvNextVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _A: Optional[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any ): """simple docstring""" _A: str = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() _A: Optional[int] = model(lowercase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A: int = None _A: str = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() _A: int = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Tuple = self.prepare_config_and_inputs() _A: Optional[Any] = config_and_inputs _A: Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Tuple = self.prepare_config_and_inputs() _A: List[Any] = config_and_inputs _A: Optional[int] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class UpperCAmelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCamelCase : Dict = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : int = False __UpperCamelCase : Tuple = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Tuple = ConvNextVaModelTester(self ) _A: Any = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7 ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def __magic_name__ ( self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" pass def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _A: List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _A: List[str] = True if model_class.__name__ in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ]: continue _A: Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() _A: Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) _A: int = model(**lowercase_ ).loss loss.backward() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _A: str = self.model_tester.prepare_config_and_inputs_with_labels() _A: Optional[int] = False _A: Optional[int] = True if ( model_class.__name__ in [*get_values(lowercase_ ), *get_values(lowercase_ )] or not model_class.supports_gradient_checkpointing ): continue _A: Optional[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.gradient_checkpointing_enable() model.train() _A: Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) _A: int = model(**lowercase_ ).loss loss.backward() def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: str = model_class(lowercase_ ) _A: List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: List[str] = [*signature.parameters.keys()] _A: Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] ): _A: str = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _A: int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) _A: int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __magic_name__ ( self : Dict ): """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: Any = ConvNextVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase__ ( ) -> Tuple: _A: Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(lowercase_ ) _A: Any = self.default_image_processor _A: Dict = prepare_img() _A: List[str] = preprocessor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): _A: Dict = model(**lowercase_ ) # verify the logits _A: Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase_ ) _A: Dict = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( a , a , a ) -> List[Any]: def get_masked_lm_array(a ): _A: int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _A: str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: _A: Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(a ): _A: List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _A: Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: _A: Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(a , a ): _A: str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _A: Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: _A: Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(a , a , a ): _A: Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _A: Dict = tf.train.load_variable(_snake_case , _snake_case ) _A: int = array.reshape(_snake_case ) if "kernel" in name: _A: Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) _A: Optional[Any] = BertConfig.from_json_file(_snake_case ) _A: Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _A: BertLayer = model.bert.encoder.layer[layer_index] # Self-attention _A: BertSelfAttention = layer.attention.self _A: int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) _A: str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) _A: str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) _A: List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) _A: Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) _A: Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output _A: BertSelfOutput = layer.attention.output _A: Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) _A: Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) _A: str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) _A: Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate _A: BertIntermediate = layer.intermediate _A: int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) _A: int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output _A: BertOutput = layer.output _A: List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) _A: Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) _A: List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) _A: Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings _A: Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) _A: str = get_encoder_array('''_type_embedding_layer/embeddings''' ) _A: int = get_encoder_array('''_embedding_norm_layer/gamma''' ) _A: Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head _A: Optional[Any] = model.cls.predictions.transform _A: Dict = get_masked_lm_array('''dense/kernel''' ) _A: Union[str, Any] = get_masked_lm_array('''dense/bias''' ) _A: str = get_masked_lm_array('''layer_norm/gamma''' ) _A: Tuple = get_masked_lm_array('''layer_norm/beta''' ) _A: Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling _A: Optional[Any] = BertPooler(config=_snake_case ) _A: BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) _A: BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) _A: Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) UpperCAmelCase__ : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Union[str, Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
def lowerCamelCase__ ( a = 60_08_51_47_51_43 ) -> int: try: _A: List[Any] = int(a ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) _A: int = 2 _A: List[str] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _A: Any = i while n % i == 0: _A: List[str] = n // i i += 1 return int(a ) if __name__ == "__main__": print(F"""{solution() = }""")
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0
def lowerCamelCase__ ( a , a , a , a ) -> List[str]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _A: str = mf_knapsack(i - 1 , snake_case_ , snake_case_ , snake_case_ ) else: _A: Union[str, Any] = max( mf_knapsack(i - 1 , snake_case_ , snake_case_ , snake_case_ ) , mf_knapsack(i - 1 , snake_case_ , snake_case_ , j - wt[i - 1] ) + val[i - 1] , ) _A: List[str] = val return f[i][j] def lowerCamelCase__ ( a , a , a , a ) -> int: _A: Optional[Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _A: List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _A: Dict = dp[i - 1][w_] return dp[n][w_], dp def lowerCamelCase__ ( a , a , a ) -> Tuple: if not (isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) _A: int = len(snake_case_ ) if num_items != len(snake_case_ ): _A: Any = ( """The number of weights must be the same as the number of values.\n""" f"""But got {num_items} weights and {len(snake_case_ )} values""" ) raise ValueError(snake_case_ ) for i in range(snake_case_ ): if not isinstance(wt[i] , snake_case_ ): _A: List[Any] = ( """All weights must be integers but got weight of """ f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(snake_case_ ) _A: Union[str, Any] = knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _A: set = set() _construct_solution(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return optimal_val, example_optional_set def lowerCamelCase__ ( a , a , a , a , a ) -> Optional[int]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case_ , snake_case_ , i - 1 , snake_case_ , snake_case_ ) else: optimal_set.add(snake_case_ ) _construct_solution(snake_case_ , snake_case_ , i - 1 , j - wt[i - 1] , snake_case_ ) if __name__ == "__main__": UpperCAmelCase__ : str = [3, 2, 4, 4] UpperCAmelCase__ : Optional[int] = [4, 3, 2, 3] UpperCAmelCase__ : Any = 4 UpperCAmelCase__ : List[str] = 6 UpperCAmelCase__ : Dict = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase__ : Any = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase__ : List[str] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = text, pattern _A: Dict = len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __magic_name__ ( self : List[Any] ): """simple docstring""" # searches pattern in text and returns index positions _A: str = [] for i in range(self.textLen - self.patLen + 1 ): _A: List[Any] = self.mismatch_in_text(lowerCAmelCase_ ) if mismatch_index == -1: positions.append(lowerCAmelCase_ ) else: _A: Any = self.match_in_pattern(self.text[mismatch_index] ) _A: Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions UpperCAmelCase__ : str = 'ABAABA' UpperCAmelCase__ : int = 'AB' UpperCAmelCase__ : Any = BoyerMooreSearch(text, pattern) UpperCAmelCase__ : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = [] for _ in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase__ ( a , a=10 ) -> Optional[int]: _A: Union[str, Any] = [] for step in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A: Optional[int] = os.path.join(A__ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , A__ ) _A: Any = torch.load(A__ ) scheduler.load_state_dict(A__ ) return lrs @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) _A: int = torch.tensor([0.4, 0.2, -0.5] ) _A: Tuple = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A: List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): _A: Any = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) _A: int = torch.tensor([0.4, 0.2, -0.5] ) _A: int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A: List[Any] = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): _A: int = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase : int = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase : List[str] = 10 def __magic_name__ ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=None ): """simple docstring""" self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A: Optional[int] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A: Dict = data _A: List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A: str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1e-2 , msg=F"""failed for {scheduler_func} in normal scheduler""" , ) _A: Union[str, Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule _A: List[str] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F"""failed for {scheduler_func} in save and reload""" ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = fn def __call__( self : str , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Any ): """simple docstring""" return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Tuple = list(map(self , scheduler.lr_lambdas ) )
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
def lowerCamelCase__ ( a ) -> Dict: if not isinstance(a , a ): raise TypeError('''Input value must be an \'int\' type''' ) _A: List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
import os import sys UpperCAmelCase__ : Optional[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCAmelCase__ : List[str] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase__ ( *a , **a ) -> Optional[int]: return AutoConfig.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase__ ( *a , **a ) -> Optional[int]: return AutoTokenizer.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase__ ( *a , **a ) -> int: return AutoModel.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase__ ( *a , **a ) -> Optional[int]: return AutoModelForCausalLM.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase__ ( *a , **a ) -> Optional[int]: return AutoModelForMaskedLM.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase__ ( *a , **a ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase__ ( *a , **a ) -> Optional[int]: return AutoModelForQuestionAnswering.from_pretrained(*_UpperCamelCase , **_UpperCamelCase )
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase__ : Optional[Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } UpperCAmelCase__ : Union[str, Any] = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ['input_ids', 'attention_mask'] __UpperCamelCase : int = BartTokenizer def __init__( self : Optional[int] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]="replace" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : int="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) _A: str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: _A: Optional[int] = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) _A: Dict = add_prefix_space _A: Dict = pre_tok_class(**__lowerCAmelCase ) _A: List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A: Optional[Any] = '''post_processor''' _A: Optional[int] = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: _A: List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A: Any = tuple(state['''sep'''] ) if "cls" in state: _A: Optional[Any] = tuple(state['''cls'''] ) _A: str = False if state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: _A: Tuple = add_prefix_space _A: str = True if state.get('''trim_offsets''' , __lowerCAmelCase ) != trim_offsets: _A: Optional[int] = trim_offsets _A: Any = True if changes_to_apply: _A: str = getattr(__lowerCAmelCase , state.pop('''type''' ) ) _A: Dict = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def __magic_name__ ( self : Dict ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int ): """simple docstring""" _A: int = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value _A: Dict = value def __magic_name__ ( self : Any , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: List[str] = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def __magic_name__ ( self : int , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[int] = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict = None ): """simple docstring""" _A: Optional[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=None ): """simple docstring""" _A: Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple = None ): """simple docstring""" _A: str = [self.sep_token_id] _A: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase__ : Dict = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = 42 __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[Any] = None __UpperCamelCase : List[Any] = None __UpperCamelCase : List[Any] = None def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A , _A , _A: str = _str_to_version_tuple(self.version_str ) def __repr__( self : Dict ): """simple docstring""" return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def __magic_name__ ( self : Dict ): """simple docstring""" return self.major, self.minor, self.patch def __magic_name__ ( self : int , lowerCAmelCase_ : Any ): """simple docstring""" if isinstance(_snake_case , _snake_case ): return Version(_snake_case ) elif isinstance(_snake_case , _snake_case ): return other raise TypeError(F"""{other} (type {type(_snake_case )}) cannot be compared to version.""" ) def __eq__( self : Tuple , lowerCAmelCase_ : List[str] ): """simple docstring""" try: _A: Optional[int] = self._validate_operand(_snake_case ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[int] , lowerCAmelCase_ : Any ): """simple docstring""" _A: Tuple = self._validate_operand(_snake_case ) return self.tuple < other.tuple def __hash__( self : Optional[int] ): """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __magic_name__ ( cls : Dict , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __magic_name__ ( self : Any ): """simple docstring""" return self.version_str def lowerCamelCase__ ( a ) -> List[str]: _A: int = _VERSION_REG.match(a__ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(a__ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowerCamelCase__ ( a ) -> Optional[Any]: return ".".join(str(a__ ) for v in version_tuple )
361
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase__ : str = '.' if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Optional[int] = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase__ : Optional[int] = line.strip() UpperCAmelCase__ : int = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase__ : List[Any] = '\n'.join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
362
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : Any = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( a , a , a ) -> Union[str, Any]: _A: Optional[int] = SavedModel() _A: int = [] with open(os.path.join(a , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: _A: List[Any] = json.load(a )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a )] ) with open(a , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) _A: Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A: Optional[int] = sorted(a ) _A: Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a ) if strict and len(a ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(a ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*a , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : int = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
301
0
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = inspect.getfile(accelerate.test_utils ) _A: Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) _A: List[Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Union[str, Any] = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() _A: Tuple = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
363
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase__ : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase__ : Dict = { 'ctrl': 256, } UpperCAmelCase__ : Any = { 'Pregnancy': 168629, 'Christianity': 7675, 'Explain': 106423, 'Fitness': 63440, 'Saving': 63163, 'Ask': 27171, 'Ass': 95985, 'Joke': 163509, 'Questions': 45622, 'Thoughts': 49605, 'Retail': 52342, 'Feminism': 164338, 'Writing': 11992, 'Atheism': 192263, 'Netflix': 48616, 'Computing': 39639, 'Opinion': 43213, 'Alone': 44967, 'Funny': 58917, 'Gaming': 40358, 'Human': 4088, 'India': 1331, 'Joker': 77138, 'Diet': 36206, 'Legal': 11859, 'Norman': 4939, 'Tip': 72689, 'Weight': 52343, 'Movies': 46273, 'Running': 23425, 'Science': 2090, 'Horror': 37793, 'Confession': 60572, 'Finance': 12250, 'Politics': 16360, 'Scary': 191985, 'Support': 12654, 'Technologies': 32516, 'Teenage': 66160, 'Event': 32769, 'Learned': 67460, 'Notion': 182770, 'Wikipedia': 37583, 'Books': 6665, 'Extract': 76050, 'Confessions': 102701, 'Conspiracy': 75932, 'Links': 63674, 'Narcissus': 150425, 'Relationship': 54766, 'Relationships': 134796, 'Reviews': 41671, 'News': 4256, 'Translation': 26820, 'multilingual': 128406, } def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Optional[int] = set() _A: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Any = char _A: Dict = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = CONTROL_CODES def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="<unk>" , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: str = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: int = merges_handle.read().split('''\n''' )[1:-1] _A: List[Any] = [tuple(merge.split() ) for merge in merges] _A: List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Dict ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = tuple(lowerCAmelCase_ ) _A: Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Optional[int] = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: Optional[int] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Any = bigram _A: int = [] _A: int = 0 while i < len(lowerCAmelCase_ ): try: _A: Any = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Dict = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Tuple = get_pairs(lowerCAmelCase_ ) _A: Optional[int] = '''@@ '''.join(lowerCAmelCase_ ) _A: List[str] = word[:-4] _A: Optional[Any] = word return word def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = [] _A: List[str] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: str = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Tuple = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
301
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase__ : Optional[Any] = False class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Dict ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return 1_2 @property def __magic_name__ ( self : Tuple ): """simple docstring""" return 1_2 @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return 3_2 @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _A: str = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __magic_name__ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) _A: int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) @property def __magic_name__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) _A: Optional[Any] = 1_2 _A: List[Any] = 1_2 _A: int = { "attention_bias": True, "cross_attention_dim": 3_2, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 3_2, "sample_size": width, "activation_fn": "geglu-approximate", } _A: List[Any] = TransformeraDModel(**_SCREAMING_SNAKE_CASE ) return model def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Dict = "cpu" _A: Optional[int] = self.dummy_vqvae _A: str = self.dummy_text_encoder _A: List[Any] = self.dummy_tokenizer _A: Any = self.dummy_transformer _A: Union[str, Any] = VQDiffusionScheduler(self.num_embed ) _A: Any = LearnedClassifierFreeSamplingEmbeddings(learnable=_SCREAMING_SNAKE_CASE ) _A: Optional[int] = VQDiffusionPipeline( vqvae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , transformer=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=_SCREAMING_SNAKE_CASE , ) _A: Optional[int] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _A: str = "teddy bear playing in the pool" _A: List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) _A: List[Any] = pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' ) _A: List[Any] = output.images _A: Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) _A: Tuple = pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] _A: Any = image[0, -3:, -3:, -1] _A: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) _A: Tuple = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : Any ): """simple docstring""" _A: int = "cpu" _A: int = self.dummy_vqvae _A: Union[str, Any] = self.dummy_text_encoder _A: List[str] = self.dummy_tokenizer _A: Optional[Any] = self.dummy_transformer _A: List[str] = VQDiffusionScheduler(self.num_embed ) _A: Optional[int] = LearnedClassifierFreeSamplingEmbeddings( learnable=_SCREAMING_SNAKE_CASE , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _A: Union[str, Any] = VQDiffusionPipeline( vqvae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , transformer=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=_SCREAMING_SNAKE_CASE , ) _A: str = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _A: Optional[Any] = "teddy bear playing in the pool" _A: Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) _A: Optional[int] = pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' ) _A: str = output.images _A: Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) _A: Any = pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] _A: str = image[0, -3:, -3:, -1] _A: List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) _A: Any = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) _A: Optional[Any] = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) _A: Optional[Any] = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _A: Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) _A: Optional[Any] = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ) _A: str = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : Optional[Any] = 16 UpperCAmelCase__ : int = 32 def lowerCamelCase__ ( a , a = 16 ) -> Optional[int]: _A: str = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _A: Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(a ): # max_length=None => use the model max length (it's actually the default) _A: str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _A: Optional[int] = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A: Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(a ): # On TPU it's best to pad everything to the same length or training will be very slow. _A: Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _A: Dict = 16 elif accelerator.mixed_precision != "no": _A: int = 8 else: _A: List[Any] = None return tokenizer.pad( _UpperCAmelCase , padding='''longest''' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. _A: int = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) _A: int = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Tuple = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( a , a ) -> List[str]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCAmelCase ) == "1": _A: Optional[int] = 2 # Initialize accelerator _A: Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A: Union[str, Any] = config["lr"] _A: Tuple = int(config['''num_epochs'''] ) _A: List[Any] = int(config['''seed'''] ) _A: List[str] = int(config['''batch_size'''] ) _A: List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _A: int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _A: List[str] = batch_size // MAX_GPU_BATCH_SIZE _A: int = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) _A: Optional[Any] = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A: Any = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _A: Optional[int] = model.to(accelerator.device ) # Instantiate optimizer _A: Any = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler _A: int = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A: str = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _A: Any = model(**_UpperCAmelCase ) _A: str = outputs.loss _A: int = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _A: Dict = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _A: List[Any] = model(**_UpperCAmelCase ) _A: Any = outputs.logits.argmax(dim=-1 ) _A: Optional[int] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_UpperCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _A: Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _A: Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) _A: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _UpperCAmelCase ) def lowerCamelCase__ ( ) -> Union[str, Any]: _A: List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _A: str = parser.parse_args() _A: str = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
from __future__ import annotations UpperCAmelCase__ : str = tuple[int, int, int] UpperCAmelCase__ : Any = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCAmelCase__ : int = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCAmelCase__ : List[Any] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' UpperCAmelCase__ : str = 'FOBHMDKEXQNRAULPGSJVTYICZW' UpperCAmelCase__ : List[str] = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- UpperCAmelCase__ : List[Any] = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- UpperCAmelCase__ : Any = 'RMDJXFUWGISLHVTCQNKYPBEZOA' UpperCAmelCase__ : Union[str, Any] = 'SGLCPQWZHKXAREONTFBVIYJUDM' UpperCAmelCase__ : List[str] = 'HVSICLTYKQUBXDWAJZOMFGPREN' UpperCAmelCase__ : Union[str, Any] = 'RZWQHFMVDBKICJLNTUXAGYPSOE' UpperCAmelCase__ : Any = 'LFKIJODBEGAMQPXVUHYSTCZRWN' UpperCAmelCase__ : Dict = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def lowerCamelCase__ ( a , a , a ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(SCREAMING_SNAKE_CASE_ ) )) < 3: _A: Tuple = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(SCREAMING_SNAKE_CASE_ ) # Checks if rotor positions are valid _A , _A , _A: Tuple = rotpos if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE_ ): _A: Optional[Any] = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE_ ): _A: str = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE_ ): _A: Tuple = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(SCREAMING_SNAKE_CASE_ ) # Validates string and returns dict _A: Dict = _plugboard(SCREAMING_SNAKE_CASE_ ) return rotpos, rotsel, pbdict def lowerCamelCase__ ( a ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _A: Any = f"""Plugboard setting isn\'t type string ({type(SCREAMING_SNAKE_CASE_ )})""" raise TypeError(SCREAMING_SNAKE_CASE_ ) elif len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: _A: int = f"""Odd number of symbols ({len(SCREAMING_SNAKE_CASE_ )})""" raise Exception(SCREAMING_SNAKE_CASE_ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique _A: List[str] = set() for i in pbstring: if i not in abc: _A: Tuple = f"""\'{i}\' not in list of symbols""" raise Exception(SCREAMING_SNAKE_CASE_ ) elif i in tmppbl: _A: List[str] = f"""Duplicate symbol ({i})""" raise Exception(SCREAMING_SNAKE_CASE_ ) else: tmppbl.add(SCREAMING_SNAKE_CASE_ ) del tmppbl # Created the dictionary _A: int = {} for j in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 , 2 ): _A: Union[str, Any] = pbstring[j + 1] _A: List[str] = pbstring[j] return pb def lowerCamelCase__ ( a , a , a = (rotora, rotora, rotora) , a = "" , ) -> str: _A: Any = text.upper() _A , _A , _A: List[Any] = _validator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , plugb.upper() ) _A , _A , _A: Dict = rotor_position _A , _A , _A: Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _A: Optional[int] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _A: Dict = plugboard[symbol] # rotor ra -------------------------- _A: Tuple = abc.index(SCREAMING_SNAKE_CASE_ ) + rotorposa _A: Tuple = rotora[index % len(SCREAMING_SNAKE_CASE_ )] # rotor rb -------------------------- _A: Optional[Any] = abc.index(SCREAMING_SNAKE_CASE_ ) + rotorposa _A: List[Any] = rotora[index % len(SCREAMING_SNAKE_CASE_ )] # rotor rc -------------------------- _A: Any = abc.index(SCREAMING_SNAKE_CASE_ ) + rotorposa _A: List[Any] = rotora[index % len(SCREAMING_SNAKE_CASE_ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _A: Tuple = reflector[symbol] # 2nd rotors _A: Tuple = abc[rotora.index(SCREAMING_SNAKE_CASE_ ) - rotorposa] _A: Union[str, Any] = abc[rotora.index(SCREAMING_SNAKE_CASE_ ) - rotorposa] _A: Dict = abc[rotora.index(SCREAMING_SNAKE_CASE_ ) - rotorposa] # 2nd plugboard if symbol in plugboard: _A: int = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE_ ): _A: Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE_ ): _A: Any = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE_ ): _A: List[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(SCREAMING_SNAKE_CASE_ ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCAmelCase__ : str = 'This is my Python script that emulates the Enigma machine from WWII.' UpperCAmelCase__ : Optional[Any] = (1, 1, 1) UpperCAmelCase__ : Optional[int] = 'pictures' UpperCAmelCase__ : str = (rotora, rotora, rotora) UpperCAmelCase__ : Optional[int] = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase__ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" super().__init__(**__lowerCamelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(__lowerCamelCase ) def __magic_name__ ( self : List[str] , **lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Union[str, Any] = {} _A: int = {} _A: int = {} # preprocess args if "points_per_batch" in kwargs: _A: List[str] = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: _A: Tuple = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: _A: Dict = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: _A: Dict = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: _A: Any = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: _A: Optional[Any] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: _A: int = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: _A: int = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: _A: int = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: _A: List[str] = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: _A: Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: _A: List[Any] = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , lowerCAmelCase_ : List[Any] , *lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return super().__call__(__lowerCamelCase , *__lowerCamelCase , num_workers=__lowerCamelCase , batch_size=__lowerCamelCase , **__lowerCamelCase ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=6_4 , lowerCAmelCase_ : Any = 0 , lowerCAmelCase_ : Any = 5_1_2 / 1_5_0_0 , lowerCAmelCase_ : Optional[int] = 3_2 , lowerCAmelCase_ : List[Any] = 1 , ): """simple docstring""" _A: Optional[int] = load_image(__lowerCamelCase ) _A: str = self.image_processor.size['''longest_edge'''] _A , _A , _A , _A: int = self.image_processor.generate_crop_boxes( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _A: Optional[int] = self.image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": _A: Any = self.get_inference_context() with inference_context(): _A: Any = self._ensure_tensor_on_device(__lowerCamelCase , device=self.device ) _A: List[Any] = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) _A: Optional[int] = image_embeddings _A: Dict = grid_points.shape[1] _A: Optional[int] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , __lowerCamelCase , __lowerCamelCase ): _A: Dict = grid_points[:, i : i + points_per_batch, :, :] _A: Tuple = input_labels[:, i : i + points_per_batch] _A: List[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any=0.88 , lowerCAmelCase_ : int=0.95 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Dict=1 , ): """simple docstring""" _A: Tuple = model_inputs.pop('''input_boxes''' ) _A: List[Any] = model_inputs.pop('''is_last''' ) _A: Optional[int] = model_inputs.pop('''original_sizes''' ).tolist() _A: Any = model_inputs.pop('''reshaped_input_sizes''' ).tolist() _A: List[Any] = self.model(**__lowerCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _A: Union[str, Any] = model_outputs['''pred_masks'''] _A: List[Any] = self.image_processor.post_process_masks( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , binarize=__lowerCamelCase ) _A: str = model_outputs['''iou_scores'''] _A , _A , _A: str = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __magic_name__ ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[str]=0.7 , ): """simple docstring""" _A: List[str] = [] _A: int = [] _A: List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) _A: Any = torch.cat(__lowerCamelCase ) _A: Union[str, Any] = torch.cat(__lowerCamelCase ) _A , _A , _A , _A: List[Any] = self.image_processor.post_process_for_mask_generation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _A: List[Any] = defaultdict(__lowerCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowerCamelCase ) _A: Dict = {} if output_rle_mask: _A: List[str] = rle_mask if output_bboxes_mask: _A: Dict = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCamelCase__ ( a ) -> Any: _A: str = FileLock(str(tmpdir / '''foo.lock''' ) ) _A: Optional[int] = FileLock(str(tmpdir / '''foo.lock''' ) ) _A: Any = 0.01 with locka.acquire(): with pytest.raises(__lowerCamelCase ): _A: int = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def lowerCamelCase__ ( a ) -> str: _A: List[str] = '''a''' * 10_00 + '''.lock''' _A: str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 _A: str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
368
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = GPTSanJapaneseTokenizer __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = {'''do_clean_text''': False, '''add_prefix_space''': False} def __magic_name__ ( self : Any ): """simple docstring""" super().setUp() # fmt: off _A: Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _A: Union[str, Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _A: str = {'''unk_token''': '''<unk>'''} _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A , _A: Optional[int] = self.get_input_output_texts(lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: Tuple = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def __magic_name__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = self.get_tokenizer() # Testing tokenization _A: List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' _A: Dict = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _A: List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _A: Dict = tokens + [tokenizer.unk_token] _A: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _A: Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = self.get_tokenizer() # Testing tokenization _A: Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _A: str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' _A: Tuple = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Union[str, Any] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: str = '''こんにちは、世界。こんばんは、世界。😀''' _A: List[Any] = tokenizer.encode(prefix_text + input_text ) _A: Optional[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _A: List[Any] = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _A: Union[str, Any] = tokenizer.decode(lowerCAmelCase_ ) _A: Any = tokenizer.decode(lowerCAmelCase_ ) _A: Dict = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _A: Optional[int] = '''こんにちは、世界。''' _A: Optional[int] = '''こんばんは、㔺界。😀''' _A: Any = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: int = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _A: Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) _A: Any = [1] * (len_prefix + len_text + 1) + [0] _A: Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A: Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids _A: List[str] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _A: Dict = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: List[Any] = tokenizer.encode('''あンいワ''' ) _A: Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _A: Union[str, Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _A: Optional[int] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _A: Tuple = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _A: Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __magic_name__ ( self : Tuple ): """simple docstring""" # tokenizer has no padding token pass
301
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCAmelCase__ : Tuple = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def lowerCamelCase__ ( a , a , a , a=None ) -> str: _A: Union[str, Any] = XLNetConfig.from_json_file(_snake_case ) _A: Dict = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _A: Optional[Any] = finetuning_task _A: Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _A: Tuple = XLNetForSequenceClassification(_snake_case ) elif "squad" in finetuning_task: _A: List[Any] = finetuning_task _A: Dict = XLNetForQuestionAnswering(_snake_case ) else: _A: Union[str, Any] = XLNetLMHeadModel(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_snake_case , _snake_case , _snake_case ) # Save pytorch-model _A: Any = os.path.join(_snake_case , _snake_case ) _A: Tuple = os.path.join(_snake_case , _snake_case ) print(f"""Save PyTorch model to {os.path.abspath(_snake_case )}""" ) torch.save(model.state_dict() , _snake_case ) print(f"""Save configuration file to {os.path.abspath(_snake_case )}""" ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
369
def lowerCamelCase__ ( a = 10**9 ) -> int: _A: Dict = 1 _A: Union[str, Any] = 2 _A: List[str] = 0 _A: List[Any] = 0 _A: int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _A: List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
301
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase ( _a ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : int=0.01 , lowerCAmelCase_ : Tuple=1_0_0_0 ): """simple docstring""" _A: Union[str, Any] = p_stop _A: Dict = max_length def __iter__( self : Union[str, Any] ): """simple docstring""" _A: int = 0 _A: Any = False while not stop and count < self.max_length: yield count count += 1 _A: List[str] = random.random() < self.p_stop class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[int]=True ): """simple docstring""" _A: Union[str, Any] = [ BatchSamplerShard(_a , 2 , _a , split_batches=_a , even_batches=_a ) for i in range(2 ) ] _A: Union[str, Any] = [list(_a ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_a ) for shard in batch_sampler_shards] , [len(_a ) for e in expected] ) self.assertListEqual(_a , _a ) def __magic_name__ ( self : List[Any] ): """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. _A: Optional[int] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) _A: int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a ) _A: Tuple = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A: int = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(_a , _a ) _A: List[str] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A: Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(_a , _a ) _A: Optional[int] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A: List[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(_a , _a ) _A: Optional[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is very small. _A: str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_a , _a ) _A: Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [[], []] self.check_batch_sampler_shards(_a , _a ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. _A: List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) _A: Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: str = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size. _A: List[Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: str = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: int = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A: Any = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: Tuple = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is very small. _A: Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: List[Any] = [[], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) def __magic_name__ ( self : List[str] ): """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. _A: str = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) _A: Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Optional[Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A: Optional[Any] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A: List[str] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Optional[Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A: Optional[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: List[str] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is very small. _A: Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: Optional[Any] = [[], []] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) def __magic_name__ ( self : List[Any] ): """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. _A: Optional[int] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) _A: Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size. _A: Dict = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: Tuple = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A: Optional[Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: List[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: int = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is very small. _A: int = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: int = [[], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] _A: List[str] = [BatchSamplerShard(_a , 2 , _a , even_batches=_a ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Optional[Any]=False ): """simple docstring""" random.seed(_a ) _A: int = list(_a ) _A: List[str] = [ IterableDatasetShard( _a , batch_size=_a , drop_last=_a , num_processes=_a , process_index=_a , split_batches=_a , ) for i in range(_a ) ] _A: List[str] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_a ) iterable_dataset_lists.append(list(_a ) ) _A: Optional[int] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _A: Optional[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_a ) , len(_a ) ) self.assertTrue(len(_a ) % shard_batch_size == 0 ) _A: Tuple = [] for idx in range(0 , len(_a ) , _a ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_a ) < len(_a ): reference += reference self.assertListEqual(_a , reference[: len(_a )] ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[Any] = 4_2 _A: int = RandomIterableDataset() self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) # Edge case with a very small dataset _A: str = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=_a ) _A: Any = SkipBatchSampler(_a , 2 ) self.assertListEqual(list(_a ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = DataLoader(list(range(1_6 ) ) , batch_size=4 ) _A: Any = skip_first_batches(_a , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: str = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" Accelerator() _A: List[Any] = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase__ : List[str] = logging.getLogger(__name__) class UpperCAmelCase ( _a ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=None ): """simple docstring""" super().__init__( snake_case_ , question_encoder_tokenizer=snake_case_ , generator_tokenizer=snake_case_ , index=snake_case_ , init_retrieval=snake_case_ , ) _A: int = None def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually _A: Optional[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port _A: int = str(distributed_port + 1 ) _A: List[str] = dist.new_group(ranks=snake_case_ , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int=torch.floataa ): """simple docstring""" _A: str = torch.empty(snake_case_ , dtype=snake_case_ ) dist.scatter(snake_case_ , src=0 , scatter_list=snake_case_ , group=self.process_group ) return target_tensor def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Dict = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _A: Dict = next((addr for addr in addrs if addr.startswith('''e''' )) , snake_case_ ) return ifname def __magic_name__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int ): """simple docstring""" # single GPU training if not dist.is_initialized(): _A: Union[str, Any] = self._main_retrieve(snake_case_ , snake_case_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case_ ) # distributed training _A: Optional[int] = dist.get_world_size(group=self.process_group ) # gather logic _A: str = None if self._is_main(): _A: Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(snake_case_ )] dist.gather(torch.tensor(snake_case_ ) , dst=0 , gather_list=snake_case_ , group=self.process_group ) # scatter logic _A: Union[str, Any] = question_hidden_states.shape[0] _A: List[str] = [] _A: Dict = [] if self._is_main(): assert len(snake_case_ ) == world_size _A: Union[str, Any] = self._main_retrieve(torch.cat(snake_case_ ).numpy() , snake_case_ ) _A: Dict = torch.tensor(snake_case_ ), torch.tensor(snake_case_ ) _A: Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) _A: Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) _A: Union[str, Any] = self._scattered(snake_case_ , [n_queries, n_docs] , target_type=torch.intaa ) _A: Dict = self._scattered(snake_case_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case_ )
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
0
"""simple docstring""" def lowerCamelCase__ ( a = 50 ) -> int: _A: Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
350
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
0
"""simple docstring""" def lowerCamelCase__ ( a , a ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
"""simple docstring""" def lowerCamelCase__ ( a = 1_00 ) -> int: _A: List[str] = n * (n + 1) * (2 * n + 1) / 6 _A: Optional[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
352
from __future__ import annotations UpperCAmelCase__ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( a , a , a , a ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( a ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( a ) -> Matrix | None: if location := find_empty_location(a ): _A , _A: Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): _A: str = digit if sudoku(a ) is not None: return grid _A: Tuple = 0 return None def lowerCamelCase__ ( a ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase__ : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
301
0
from __future__ import annotations from collections import namedtuple def lowerCamelCase__ ( a , a , a ) -> Tuple: _A: Optional[int] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0