code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CycleDiffusionPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ ( self : int ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCamelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(A_ ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ ( self : str , A_ : List[str] , A_ : Optional[Any]=0 ) -> Any: """simple docstring""" lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase_ = image / 2 + 0.5 if str(A_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(A_ ) else: lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_ = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = CycleDiffusionPipeline(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = self.get_dummy_inputs(A_ ) lowerCamelCase_ = pipe(**A_ ) lowerCamelCase_ = output.images lowerCamelCase_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = self.get_dummy_components() for name, module in components.items(): if hasattr(A_ , 'half' ): lowerCamelCase_ = module.half() lowerCamelCase_ = CycleDiffusionPipeline(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = self.get_dummy_inputs(A_ ) lowerCamelCase_ = pipe(**A_ ) lowerCamelCase_ = output.images lowerCamelCase_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ ( self : Tuple ) -> int: """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def a__ ( self : str ) -> int: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def a__ ( self : int ) -> Optional[Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def a__ ( self : Any ) -> Tuple: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) lowerCamelCase_ = init_image.resize((512, 512) ) lowerCamelCase_ = 'CompVis/stable-diffusion-v1-4' lowerCamelCase_ = DDIMScheduler.from_pretrained(A_ , subfolder='scheduler' ) lowerCamelCase_ = CycleDiffusionPipeline.from_pretrained( A_ , scheduler=A_ , safety_checker=A_ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'A black colored car' lowerCamelCase_ = 'A blue colored car' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , source_prompt=A_ , image=A_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) lowerCamelCase_ = init_image.resize((512, 512) ) lowerCamelCase_ = 'CompVis/stable-diffusion-v1-4' lowerCamelCase_ = DDIMScheduler.from_pretrained(A_ , subfolder='scheduler' ) lowerCamelCase_ = CycleDiffusionPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'A black colored car' lowerCamelCase_ = 'A blue colored car' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , source_prompt=A_ , image=A_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images assert np.abs(image - expected_image ).max() < 2E-2
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features['label'].names if training_args.do_eval: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features['label'].names if training_args.do_predict: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features['label'].names # Labels lowerCamelCase_ = len(lowercase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , idalabel={str(lowercase ): label for i, label in enumerate(lowercase )} , labelaid={label: i for i, label in enumerate(lowercase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowercase : Optional[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowercase , max_length=data_args.max_seq_length , truncation=lowercase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowercase ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowercase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCamelCase_ = train_dataset.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowercase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCamelCase_ = eval_dataset.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowercase ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowercase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): lowerCamelCase_ = predict_dataset.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function lowerCamelCase_ = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase : EvalPrediction ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions lowerCamelCase_ = np.argmax(lowercase , axis=1 ) return metric.compute(predictions=lowercase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowercase ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) lowerCamelCase_ = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowercase ) trainer.save_metrics('train' , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowercase ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) lowerCamelCase_ = min(lowercase , len(lowercase ) ) trainer.log_metrics('eval' , lowercase ) trainer.save_metrics('eval' , lowercase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowercase , metric_key_prefix='predict' ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase ) ) lowerCamelCase_ = min(lowercase , len(lowercase ) ) trainer.log_metrics('predict' , lowercase ) trainer.save_metrics('predict' , lowercase ) lowerCamelCase_ = np.argmax(lowercase , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowercase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowercase ): lowerCamelCase_ = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({'''summary''': Value('''string''' )} ) UpperCamelCase = "text" UpperCamelCase = "summary" @property def a__ ( self : int ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = filter(lambda lowercase : p.requires_grad , model.parameters() ) lowerCamelCase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase : int = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Any ): '''simple docstring''' if metric == "rouge2": lowerCamelCase_ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": lowerCamelCase_ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": lowerCamelCase_ = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) lowerCamelCase_ = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=f"""val_{metric}""" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=lowercase , verbose=lowercase , ) class A( pl.Callback ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : List[Any] , A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = {f"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A_ ) @rank_zero_only def a__ ( self : Optional[Any] , A_ : pl.Trainer , A_ : pl.LightningModule , A_ : str , A_ : Dict=True ) -> None: """simple docstring""" logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) lowerCamelCase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results lowerCamelCase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCamelCase_ = od / 'test_results.txt' lowerCamelCase_ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCamelCase_ = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" lowerCamelCase_ = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=A_ ) generations_file.parent.mkdir(exist_ok=A_ ) with open(A_ , 'a+' ) as writer: for key in sorted(A_ ): if key in ["log", "progress_bar", "preds"]: continue lowerCamelCase_ = metrics[key] if isinstance(A_ , torch.Tensor ): lowerCamelCase_ = val.item() lowerCamelCase_ = f"""{key}: {val:.6f}\n""" writer.write(A_ ) if not save_generations: return if "preds" in metrics: lowerCamelCase_ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(A_ ) @rank_zero_only def a__ ( self : Union[str, Any] , A_ : Optional[int] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" try: lowerCamelCase_ = pl_module.model.model.num_parameters() except AttributeError: lowerCamelCase_ = pl_module.model.num_parameters() lowerCamelCase_ = count_trainable_parameters(A_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def a__ ( self : Optional[int] , A_ : pl.Trainer , A_ : pl.LightningModule ) -> List[Any]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(A_ , A_ , 'test' ) @rank_zero_only def a__ ( self : Optional[Any] , A_ : pl.Trainer , A_ : Optional[int] ) -> Tuple: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''maskformer-swin''' UpperCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , A_ : Optional[Any]=224 , A_ : Dict=4 , A_ : str=3 , A_ : List[str]=96 , A_ : Union[str, Any]=[2, 2, 6, 2] , A_ : int=[3, 6, 12, 24] , A_ : Tuple=7 , A_ : Optional[Any]=4.0 , A_ : List[Any]=True , A_ : str=0.0 , A_ : str=0.0 , A_ : Dict=0.1 , A_ : Union[str, Any]="gelu" , A_ : Dict=False , A_ : List[str]=0.02 , A_ : List[str]=1E-5 , A_ : Union[str, Any]=None , A_ : Union[str, Any]=None , **A_ : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = depths lowerCamelCase_ = len(A_ ) lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ = int(embed_dim * 2 ** (len(A_ ) - 1) ) lowerCamelCase_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
import argparse import os import re lowerCamelCase : List[str] = "src/diffusers" # Pattern that looks at the indentation in a line. lowerCamelCase : Dict = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase : Dict = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase : str = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase : str = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase : Any = re.compile(r"\[([^\]]+)\]") def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = _re_indent.search(lowercase ) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Tuple="" , lowercase : List[str]=None , lowercase : Any=None ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowercase ): index += 1 lowerCamelCase_ = ['\n'.join(lines[:index] )] else: lowerCamelCase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCamelCase_ = [lines[index]] index += 1 while index < len(lowercase ) and (end_prompt is None or not lines[index].startswith(lowercase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowercase ) ) if index < len(lowercase ) - 1: lowerCamelCase_ = [lines[index + 1]] index += 1 else: lowerCamelCase_ = [] else: blocks.append('\n'.join(lowercase ) ) lowerCamelCase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase ) > 0: blocks.append('\n'.join(lowercase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' def _inner(lowercase : str ): return key(lowercase ).lower().replace('_' , '' ) return _inner def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any]=None ): '''simple docstring''' def noop(lowercase : int ): return x if key is None: lowerCamelCase_ = noop # Constants are all uppercase, they go first. lowerCamelCase_ = [obj for obj in objects if key(lowercase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCamelCase_ = [obj for obj in objects if key(lowercase )[0].isupper() and not key(lowercase ).isupper()] # Functions begin with a lowercase, they go last. lowerCamelCase_ = [obj for obj in objects if not key(lowercase )[0].isupper()] lowerCamelCase_ = ignore_underscore(lowercase ) return sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' def _replace(lowercase : Dict ): lowerCamelCase_ = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCamelCase_ = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(lowercase )] ) + "]" lowerCamelCase_ = import_statement.split('\n' ) if len(lowercase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCamelCase_ = 2 if lines[1].strip() == '[' else 1 lowerCamelCase_ = [(i, _re_strip_line.search(lowercase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCamelCase_ = sort_objects(lowercase , key=lambda lowercase : x[1] ) lowerCamelCase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCamelCase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCamelCase_ = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] lowerCamelCase_ = get_indent(lines[1] ) + ', '.join([f"""\"{k}\"""" for k in sort_objects(lowercase )] ) return "\n".join(lowercase ) else: # Finally we have to deal with imports fitting on one line lowerCamelCase_ = _re_bracket_content.sub(_replace , lowercase ) return import_statement def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Dict=True ): '''simple docstring''' with open(lowercase , 'r' ) as f: lowerCamelCase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCamelCase_ = split_code_in_indented_blocks( lowercase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCamelCase_ = main_blocks[block_idx] lowerCamelCase_ = block.split('\n' ) # Get to the start of the imports. lowerCamelCase_ = 0 while line_idx < len(lowercase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCamelCase_ = len(lowercase ) else: line_idx += 1 if line_idx >= len(lowercase ): continue # Ignore beginning and last line: they don't contain anything. lowerCamelCase_ = '\n'.join(block_lines[line_idx:-1] ) lowerCamelCase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCamelCase_ = split_code_in_indented_blocks(lowercase , indent_level=lowercase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCamelCase_ = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCamelCase_ = [(pattern.search(lowercase ).groups()[0] if pattern.search(lowercase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCamelCase_ = [(i, key) for i, key in enumerate(lowercase ) if key is not None] lowerCamelCase_ = [x[0] for x in sorted(lowercase , key=lambda lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCamelCase_ = 0 lowerCamelCase_ = [] for i in range(len(lowercase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCamelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase ) count += 1 # And we put our main block back together with its first and last line. lowerCamelCase_ = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(lowercase , 'w' ) as f: f.write('\n'.join(lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : str=True ): '''simple docstring''' lowerCamelCase_ = [] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: lowerCamelCase_ = sort_imports(os.path.join(lowercase , '__init__.py' ) , check_only=lowercase ) if result: lowerCamelCase_ = [os.path.join(lowercase , '__init__.py' )] if len(lowercase ) > 0: raise ValueError(f"""Would overwrite {len(lowercase )} files, run `make style`.""" ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
from functools import lru_cache def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = 2 lowerCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowercase ) if n > 1: factors.add(lowercase ) return factors @lru_cache def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return len(unique_prime_factors(lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : list ): '''simple docstring''' return len(set(lowercase ) ) in (0, 1) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = 2 while True: # Increment each value of a generated range lowerCamelCase_ = [base + i for i in range(lowercase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase_ = [upf_len(lowercase ) for x in group] checker.append(lowercase ) # If all numbers in the list are equal, return the group variable. if equality(lowercase ): return group # Increment our base variable by 1 base += 1 def _SCREAMING_SNAKE_CASE ( lowercase : int = 4 ): '''simple docstring''' lowerCamelCase_ = run(lowercase ) return results[0] if len(lowercase ) else None if __name__ == "__main__": print(solution())
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Optional[Any] = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
import qiskit def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = qubits # Using Aer's simulator lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(lowercase , lowercase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowercase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowercase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowercase ) ) , list(range(lowercase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCamelCase_ = qiskit.execute(lowercase , lowercase , shots=10_00 ) return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BioGptTokenizer UpperCamelCase = False def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(A_ ) ) def a__ ( self : Optional[int] , A_ : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = 'lower newer' lowerCamelCase_ = 'lower newer' return input_text, output_text def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase_ = 'lower' lowerCamelCase_ = ['low', 'er</w>'] lowerCamelCase_ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokens + ['<unk>'] lowerCamelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _SCREAMING_SNAKE_CASE ( *lowercase : Dict ): '''simple docstring''' with open(lowercase , 'r' ) as fh: fcntl.flock(lowercase , fcntl.LOCK_EX ) try: print(*lowercase ) finally: fcntl.flock(lowercase , fcntl.LOCK_UN ) lowerCamelCase : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowerCamelCase : Tuple = torch.device("cuda", local_rank) lowerCamelCase : int = socket.gethostname() lowerCamelCase : Any = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCamelCase : int = dist.get_rank() lowerCamelCase : Optional[int] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
651
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : int = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : int , A_ : UNetaDModel , A_ : ScoreSdeVeScheduler ) -> List[Any]: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : List[str] , A_ : int = 1 , A_ : int = 2000 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[str] = "pil" , A_ : bool = True , **A_ : str , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = self.unet.config.sample_size lowerCamelCase_ = (batch_size, 3, img_size, img_size) lowerCamelCase_ = self.unet lowerCamelCase_ = randn_tensor(A_ , generator=A_ ) * self.scheduler.init_noise_sigma lowerCamelCase_ = sample.to(self.device ) self.scheduler.set_timesteps(A_ ) self.scheduler.set_sigmas(A_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCamelCase_ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCamelCase_ = self.unet(A_ , A_ ).sample lowerCamelCase_ = self.scheduler.step_correct(A_ , A_ , generator=A_ ).prev_sample # prediction step lowerCamelCase_ = model(A_ , A_ ).sample lowerCamelCase_ = self.scheduler.step_pred(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_ , lowerCamelCase_ = output.prev_sample, output.prev_sample_mean lowerCamelCase_ = sample_mean.clamp(0 , 1 ) lowerCamelCase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A_ )
651
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : dict ): '''simple docstring''' lowerCamelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase_ = set() return any( node not in visited and depth_first_search(lowercase , lowercase , lowercase , lowercase ) for node in graph ) def _SCREAMING_SNAKE_CASE ( lowercase : dict , lowercase : int , lowercase : set , lowercase : set ): '''simple docstring''' visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase , lowercase , lowercase , lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
651
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
1
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
import pytest lowerCamelCase : Optional[int] = "__dummy_dataset1__" lowerCamelCase : Tuple = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = dataset_loading_script_name lowerCamelCase_ = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=lowercase ) lowerCamelCase_ = script_dir / f"""{script_name}.py""" with open(lowercase , 'w' ) as f: f.write(lowercase ) return str(lowercase )
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : str = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''camembert''' def __init__( self : Dict , A_ : List[Any]=30522 , A_ : Tuple=768 , A_ : Optional[Any]=12 , A_ : str=12 , A_ : Union[str, Any]=3072 , A_ : Union[str, Any]="gelu" , A_ : Optional[Any]=0.1 , A_ : Any=0.1 , A_ : List[Any]=512 , A_ : Union[str, Any]=2 , A_ : Any=0.02 , A_ : int=1E-12 , A_ : Dict=1 , A_ : int=0 , A_ : List[str]=2 , A_ : List[str]="absolute" , A_ : Tuple=True , A_ : str=None , **A_ : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''''' UpperCamelCase = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : str , A_ : Optional[DatasetInfo] = None , A_ : Optional[str] = None , **A_ : Tuple , ) -> int: """simple docstring""" super().__init__(self , **A_ ) lowerCamelCase_ = repo_info lowerCamelCase_ = token lowerCamelCase_ = None def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" if self.dir_cache is None: lowerCamelCase_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCamelCase_ = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(A_ ): {'name': str(A_ ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def a__ ( self : str , A_ : str , A_ : str = "rb" , **A_ : Any , ) -> Union[str, Any]: """simple docstring""" if not isinstance(self.repo_info , A_ ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) lowerCamelCase_ = hf_hub_url(self.repo_info.id , A_ , revision=self.repo_info.sha ) return fsspec.open( A_ , mode=A_ , headers=get_authentication_headers_for_url(A_ , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def a__ ( self : Union[str, Any] , A_ : str , **A_ : Any ) -> str: """simple docstring""" self._get_dirs() lowerCamelCase_ = self._strip_protocol(A_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A_ ) def a__ ( self : Union[str, Any] , A_ : Any , A_ : Tuple=False , **A_ : Optional[Any] ) -> str: """simple docstring""" self._get_dirs() lowerCamelCase_ = PurePosixPath(path.strip('/' ) ) lowerCamelCase_ = {} for p, f in self.dir_cache.items(): lowerCamelCase_ = PurePosixPath(p.strip('/' ) ) lowerCamelCase_ = p.parent if root == path: lowerCamelCase_ = f lowerCamelCase_ = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : int = 10 , lowercase : int = 10_00 , lowercase : bool = True ): '''simple docstring''' assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return int((number_a + number_a) / 2 ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(lowercase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) lowerCamelCase_ = lower lowerCamelCase_ = higher lowerCamelCase_ = [] while True: lowerCamelCase_ = get_avg(lowercase , lowercase ) last_numbers.append(lowercase ) if answer(lowercase ) == "low": lowerCamelCase_ = number elif answer(lowercase ) == "high": lowerCamelCase_ = number else: break print(f"""guess the number : {last_numbers[-1]}""" ) print(f"""details : {last_numbers!s}""" ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = int(input('Enter lower value : ' ).strip() ) lowerCamelCase_ = int(input('Enter high value : ' ).strip() ) lowerCamelCase_ = int(input('Enter value to guess : ' ).strip() ) guess_the_number(lowercase , lowercase , lowercase ) if __name__ == "__main__": main()
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase : Optional[int] = 2 class A: '''simple docstring''' def __init__( self : Tuple , *, # begin keyword-only arguments A_ : Optional[Any]="<s>" , A_ : Tuple="<pad>" , A_ : Any="</s>" , A_ : Optional[int]="<unk>" , A_ : int=None , ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = bos, unk, pad, eos lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = {} lowerCamelCase_ = self.add_symbol(A_ ) lowerCamelCase_ = self.add_symbol(A_ ) lowerCamelCase_ = self.add_symbol(A_ ) lowerCamelCase_ = self.add_symbol(A_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A_ ) lowerCamelCase_ = len(self.symbols ) def __eq__( self : str , A_ : Dict ) -> str: """simple docstring""" return self.indices == other.indices def __getitem__( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[str] ) -> Union[str, Any]: """simple docstring""" return len(self.symbols ) def __contains__( self : Any , A_ : Dict ) -> Union[str, Any]: """simple docstring""" return sym in self.indices @classmethod def a__ ( cls : Dict , A_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = cls() d.add_from_file(A_ ) return d def a__ ( self : Any , A_ : Tuple , A_ : Tuple=1 , A_ : Tuple=False ) -> Dict: """simple docstring""" if word in self.indices and not overwrite: lowerCamelCase_ = self.indices[word] lowerCamelCase_ = self.count[idx] + n return idx else: lowerCamelCase_ = len(self.symbols ) lowerCamelCase_ = idx self.symbols.append(A_ ) self.count.append(A_ ) return idx def a__ ( self : int , A_ : List[Any] ) -> Optional[int]: """simple docstring""" return 0 def a__ ( self : Dict , A_ : Optional[Any] ) -> Optional[int]: """simple docstring""" if isinstance(A_ , A_ ): try: with open(A_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(A_ ) ) return lowerCamelCase_ = f.readlines() lowerCamelCase_ = self._load_meta(A_ ) for line in lines[indices_start_line:]: try: lowerCamelCase_ , lowerCamelCase_ = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": lowerCamelCase_ = True lowerCamelCase_ , lowerCamelCase_ = line.rsplit(' ' , 1 ) else: lowerCamelCase_ = False lowerCamelCase_ = int(A_ ) lowerCamelCase_ = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(A_ ) ) self.add_symbol(A_ , n=A_ , overwrite=A_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = dict((re.sub(r'@@$' , '' , lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , lowercase ), v) for k, v in d.items() ) lowerCamelCase_ = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowerCamelCase_ = d[k] # restore return da def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' if not os.path.exists(lowercase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowercase , exist_ok=lowercase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowerCamelCase_ = os.path.join(lowercase , 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) lowerCamelCase_ = torch.load(lowercase , map_location='cpu' ) lowerCamelCase_ = chkpt['cfg']['model'] # dicts lowerCamelCase_ = os.path.join(lowercase , 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) lowerCamelCase_ = Dictionary.load(lowercase ) lowerCamelCase_ = rewrite_dict_keys(src_dict.indices ) lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = os.path.join(lowercase , VOCAB_FILES_NAMES['vocab_file'] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # merges_file (bpecodes) lowerCamelCase_ = os.path.join(lowercase , 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) lowerCamelCase_ = os.path.join(lowercase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase , lowercase ) # model config lowerCamelCase_ = os.path.join(lowercase , 'config.json' ) lowerCamelCase_ = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # tokenizer config lowerCamelCase_ = os.path.join(lowercase , lowercase ) lowerCamelCase_ = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # model lowerCamelCase_ = chkpt['model'] # remove unneeded keys lowerCamelCase_ = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase , lowercase ) lowerCamelCase_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): lowerCamelCase_ = model_state_dict.pop(lowercase ) else: lowerCamelCase_ = model_state_dict.pop(lowercase ) lowerCamelCase_ = BioGptConfig.from_pretrained(lowercase ) lowerCamelCase_ = BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save lowerCamelCase_ = os.path.join(lowercase , lowercase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowercase , lowercase ) print('Conversion is done!' ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase : str = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCamelCase_ = flax_key_tuple[:-1] + ('weight',) lowerCamelCase_ = torch.permute(lowercase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase ): # linear layer lowerCamelCase_ = flax_key_tuple[:-1] + ('weight',) lowerCamelCase_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase_ = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Any , lowercase : Tuple ): '''simple docstring''' if "metadata" in layer: lowerCamelCase_ = layer.split('metadata' ) lowerCamelCase_ = ''.join(split_layer[0] )[:-1] lowerCamelCase_ = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: lowerCamelCase_ = layer.split('kvstore' ) lowerCamelCase_ = ''.join(split_layer[0] )[:-1] lowerCamelCase_ = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: lowerCamelCase_ = layer.split('/' ) lowerCamelCase_ = '/'.join(split_layer[:-1] ) lowerCamelCase_ = (split_layer[-1],) if "kvstore/path" in layer: lowerCamelCase_ = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: lowerCamelCase_ = 'file' else: lowerCamelCase_ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = rename_keys(lowercase ) lowerCamelCase_ = {} for k, v in current_block.items(): lowerCamelCase_ = v lowerCamelCase_ = new_current_block torch.save(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : List[str] , lowercase : Optional[Any] , lowercase : int , lowercase : str = WEIGHTS_NAME ): '''simple docstring''' lowerCamelCase_ = convert_file_size_to_int(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 os.makedirs(lowercase , exist_ok=lowercase ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: lowerCamelCase_ = serialization.msgpack_restore(fp.read() )['optimizer']['target'] lowerCamelCase_ = flatten_dict(lowercase , sep='/' ) lowerCamelCase_ = {} for layer in checkpoint_info.keys(): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = get_key_and_tensorstore_dict( lowercase , lowercase , lowercase ) if curr_real_layer_name in all_layers: lowerCamelCase_ = content else: lowerCamelCase_ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCamelCase_ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowerCamelCase_ = torch.tensor(lowercase ) lowerCamelCase_ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowerCamelCase_ , lowerCamelCase_ = rename_base_flax_keys(tuple(key.split('/' ) ) , lowercase ) lowerCamelCase_ = '/'.join(lowercase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCamelCase_ = os.path.join( lowercase , weights_name.replace('.bin' , f"""-{len(lowercase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase , lowercase ) sharded_state_dicts.append(current_block.keys() ) del current_block lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = raw_weights.to(getattr(lowercase , lowercase ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowerCamelCase_ = os.path.join(lowercase , weights_name.replace('.bin' , f"""-{len(lowercase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase , lowercase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCamelCase_ = {} lowerCamelCase_ = {} for idx, shard in enumerate(lowercase ): lowerCamelCase_ = weights_name.replace( '.bin' , f"""-{idx+1:05d}-of-{len(lowercase ):05d}.bin""" ) # len(sharded_state_dicts):05d} lowerCamelCase_ = os.path.join(lowercase , weights_name.replace('.bin' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowercase , os.path.join(lowercase , lowercase ) ) lowerCamelCase_ = shard for key in shard: lowerCamelCase_ = shard_file # Add the metadata lowerCamelCase_ = {'total_size': total_size} lowerCamelCase_ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowercase , lowercase ) , 'w' , encoding='utf-8' ) as f: lowerCamelCase_ = json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + '\n' f.write(lowercase ) return metadata, index if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) lowerCamelCase : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCamelCase_ = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) lowerCamelCase_ = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) lowerCamelCase_ = TaTokenizer.from_pretrained('t5-small' ) lowerCamelCase_ = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' lowerCamelCase_ = tokenizer(lowercase , return_tensors='pt' ).input_ids lowerCamelCase_ = model.generate(lowercase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
import heapq as hq import math from collections.abc import Iterator class A: '''simple docstring''' def __init__( self : List[str] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = str(id_ ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = [] lowerCamelCase_ = {} # {vertex:distance} def __lt__( self : Dict , A_ : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.key < other.key def __repr__( self : Optional[Any] ) -> Dict: """simple docstring""" return self.id def a__ ( self : int , A_ : Optional[Any] ) -> List[str]: """simple docstring""" self.neighbors.append(A_ ) def a__ ( self : Optional[Any] , A_ : Any , A_ : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = weight def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase ) graph[b - 1].add_edge(graph[a - 1] , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : list , lowercase : Vertex ): '''simple docstring''' lowerCamelCase_ = [] for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = graph[:] while q: lowerCamelCase_ = min(lowercase ) q.remove(lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] for i in range(1 , len(lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _SCREAMING_SNAKE_CASE ( lowercase : list , lowercase : Vertex ): '''simple docstring''' for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = list(lowercase ) hq.heapify(lowercase ) while h: lowerCamelCase_ = hq.heappop(lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] hq.heapify(lowercase ) for i in range(1 , len(lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCamelCase : List[str] = logging.getLogger() def _SCREAMING_SNAKE_CASE ( lowercase : Path , lowercase : list ): '''simple docstring''' lowerCamelCase_ = '\n'.join(lowercase ) Path(lowercase ).open('w' ).writelines(lowercase ) lowerCamelCase : Optional[int] = "patrickvonplaten/t5-tiny-random" lowerCamelCase : Union[str, Any] = "sshleifer/bart-tiny-random" lowerCamelCase : Tuple = "sshleifer/tiny-mbart" lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : List[str] , A_ : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowerCamelCase_ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowerCamelCase_ = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(A_ , A_ ) lowerCamelCase_ = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) lowerCamelCase_ = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowerCamelCase_ = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(A_ , 'argv' , A_ ): run_generate() assert Path(A_ ).exists() # os.remove(Path(output_file_name)) def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" self.run_eval_tester(A_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def a__ ( self : Optional[int] , A_ : str ) -> int: """simple docstring""" self.run_eval_tester(A_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def a__ ( self : Union[str, Any] , A_ : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowerCamelCase_ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowerCamelCase_ = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } lowerCamelCase_ = Path(self.get_auto_remove_tmp_dir() ) lowerCamelCase_ = str(tmp_dir / 'scores.json' ) lowerCamelCase_ = str(tmp_dir / 'val.target' ) _dump_articles(A_ , text['en'] ) _dump_articles(A_ , text['de'] ) lowerCamelCase_ = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowerCamelCase_ = f""" run_eval_search.py {model} {str(A_ )} {str(A_ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(A_ , 'argv' , A_ ): with CaptureStdout() as cs: run_search() lowerCamelCase_ = [' num_beams | length_penalty', model, 'Best score args'] lowerCamelCase_ = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(A_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(A_ ).exists() os.remove(Path(A_ ) )
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : Optional[Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCamelCase : Optional[int] = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCamelCase : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCamelCase : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def a__ ( self : int , A_ : Union[str, Any] ) -> Tuple: """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : Any , A_ : Tuple=0.9 , A_ : List[Any]=3 , A_ : Optional[Any]=0.5 ) -> Optional[int]: """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): lowerCamelCase_ = [ meteor_score.single_meteor_score( word_tokenize(A_ ) , word_tokenize(A_ ) , alpha=A_ , beta=A_ , gamma=A_ ) for ref, pred in zip(A_ , A_ ) ] else: lowerCamelCase_ = [ meteor_score.single_meteor_score(A_ , A_ , alpha=A_ , beta=A_ , gamma=A_ ) for ref, pred in zip(A_ , A_ ) ] return {"meteor": np.mean(A_ )}
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : List[Any] = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” lowerCamelCase : int = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCamelCase : Optional[int] = 0 lowerCamelCase : List[Any] = 0xe0_00 lowerCamelCase : List[Any] = 0xe0_01 lowerCamelCase : Any = 0xe0_02 lowerCamelCase : Dict = 0xe0_03 lowerCamelCase : Union[str, Any] = 0xe0_04 # Maps special codepoints to human-readable names. lowerCamelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , A_ : int=chr(A_ ) , A_ : Tuple=chr(A_ ) , A_ : Dict=chr(A_ ) , A_ : Optional[int]=chr(A_ ) , A_ : Any=chr(A_ ) , A_ : List[str]=chr(A_ ) , A_ : str=False , A_ : Dict=2048 , **A_ : Dict , ) -> Any: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , model_max_length=A_ , **A_ , ) # Creates a mapping for looking up the IDs of special symbols. lowerCamelCase_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCamelCase_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCamelCase_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCamelCase_ = UNICODE_VOCAB_SIZE lowerCamelCase_ = len(self._special_codepoints ) @property def a__ ( self : int ) -> int: """simple docstring""" return self._unicode_vocab_size def a__ ( self : List[str] , A_ : str ) -> List[str]: """simple docstring""" return list(A_ ) def a__ ( self : int , A_ : str ) -> int: """simple docstring""" try: return ord(A_ ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def a__ ( self : List[str] , A_ : int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(A_ ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def a__ ( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" return "".join(A_ ) def a__ ( self : List[str] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def a__ ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) lowerCamelCase_ = [1] + ([0] * len(A_ )) + [1] if token_ids_a is not None: result += ([0] * len(A_ )) + [1] return result def a__ ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def a__ ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Any: """simple docstring""" return ()
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = AutoConfig.from_pretrained(lowercase ) lowerCamelCase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase ) lowerCamelCase_ = checkpoints.load_tax_checkpoint(lowercase ) lowerCamelCase_ = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": lowerCamelCase_ = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCamelCase_ = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): lowerCamelCase_ = f"""layers_{str(lowercase )}""" # Self-Attention lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase_ = flax_model.params['encoder']['block'][str(lowercase )]['layer'] lowerCamelCase_ = tax_attention_key lowerCamelCase_ = tax_attention_out lowerCamelCase_ = tax_attention_query lowerCamelCase_ = tax_attention_value lowerCamelCase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = tax_global_layer_norm if split_mlp_wi: lowerCamelCase_ = tax_mlp_wi_a lowerCamelCase_ = tax_mlp_wi_a else: lowerCamelCase_ = tax_mlp_wi lowerCamelCase_ = tax_mlp_wo lowerCamelCase_ = tax_mlp_layer_norm lowerCamelCase_ = flax_model_encoder_layer_block # Only for layer 0: lowerCamelCase_ = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T lowerCamelCase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T lowerCamelCase_ = tax_encoder_global_rel_embedding # Assigning lowerCamelCase_ = tax_model['target']['encoder']['encoder_norm']['scale'] lowerCamelCase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCamelCase_ = f"""layers_{str(lowercase )}""" # Self-Attention lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] lowerCamelCase_ = tax_enc_dec_attention_module['key']['kernel'] lowerCamelCase_ = tax_enc_dec_attention_module['out']['kernel'] lowerCamelCase_ = tax_enc_dec_attention_module['query']['kernel'] lowerCamelCase_ = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase_ = flax_model.params['decoder']['block'][str(lowercase )]['layer'] lowerCamelCase_ = tax_attention_key lowerCamelCase_ = tax_attention_out lowerCamelCase_ = tax_attention_query lowerCamelCase_ = tax_attention_value lowerCamelCase_ = tax_pre_attention_layer_norm lowerCamelCase_ = tax_enc_dec_attention_key lowerCamelCase_ = tax_enc_dec_attention_out lowerCamelCase_ = tax_enc_dec_attention_query lowerCamelCase_ = tax_enc_dec_attention_value lowerCamelCase_ = tax_cross_layer_norm if split_mlp_wi: lowerCamelCase_ = tax_mlp_wi_a lowerCamelCase_ = tax_mlp_wi_a else: lowerCamelCase_ = tax_mlp_wi lowerCamelCase_ = tax_mlp_wo lowerCamelCase_ = txa_mlp_layer_norm lowerCamelCase_ = flax_model_decoder_layer_block # Decoder Normalization lowerCamelCase_ = tax_model['target']['decoder']['decoder_norm']['scale'] lowerCamelCase_ = txa_decoder_norm # Only for layer 0: lowerCamelCase_ = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T lowerCamelCase_ = tax_decoder_rel_embedding # Token Embeddings lowerCamelCase_ = tax_model['target']['token_embedder']['embedding'] lowerCamelCase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCamelCase_ = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(lowercase ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) lowerCamelCase : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = GPTSwaTokenizer UpperCamelCase = False UpperCamelCase = True UpperCamelCase = False def a__ ( self : Optional[int] ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = GPTSwaTokenizer(A_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str , A_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ = 'This is a test' lowerCamelCase_ = 'This is a test' return input_text, output_text def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ = '<s>' lowerCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(A_ ) , 2000 ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def a__ ( self : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = GPTSwaTokenizer(A_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [465, 287, 265, 631, 842] ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( A_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCamelCase_ = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(A_ ) # fmt: off self.assertListEqual( A_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def a__ ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = GPTSwaTokenizer(A_ ) lowerCamelCase_ = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCamelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(A_ , A_ ): self.assertListEqual(tokenizer.encode_fast(A_ ) , A_ ) # Test that decode_fast returns the input text for text, token_ids in zip(A_ , A_ ): self.assertEqual(tokenizer.decode_fast(A_ ) , A_ ) @slow def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCamelCase_ = {'input_ids': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=A_ , )
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase : List[str] = TypeVar("KEY") lowerCamelCase : str = TypeVar("VAL") @dataclass(frozen=UpperCamelCase , slots=UpperCamelCase ) class A( Generic[KEY, VAL] ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 class A( _Item ): '''simple docstring''' def __init__( self : Tuple ) -> None: """simple docstring""" super().__init__(A_ , A_ ) def __bool__( self : List[Any] ) -> bool: """simple docstring""" return False lowerCamelCase : Optional[Any] = _DeletedItem() class A( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : str , A_ : int = 8 , A_ : float = 0.75 ) -> None: """simple docstring""" lowerCamelCase_ = initial_block_size lowerCamelCase_ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase_ = capacity_factor lowerCamelCase_ = 0 def a__ ( self : Dict , A_ : KEY ) -> int: """simple docstring""" return hash(A_ ) % len(self._buckets ) def a__ ( self : List[Any] , A_ : int ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def a__ ( self : Tuple , A_ : int , A_ : KEY , A_ : VAL ) -> bool: """simple docstring""" lowerCamelCase_ = self._buckets[ind] if not stored: lowerCamelCase_ = _Item(A_ , A_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase_ = _Item(A_ , A_ ) return True else: return False def a__ ( self : List[str] ) -> bool: """simple docstring""" lowerCamelCase_ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(A_ ) def a__ ( self : Dict ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase_ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ ( self : Any , A_ : int ) -> None: """simple docstring""" lowerCamelCase_ = self._buckets lowerCamelCase_ = [None] * new_size lowerCamelCase_ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def a__ ( self : Tuple ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def a__ ( self : Any ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def a__ ( self : Tuple , A_ : KEY ) -> Iterator[int]: """simple docstring""" lowerCamelCase_ = self._get_bucket_index(A_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase_ = self._get_next_ind(A_ ) def a__ ( self : int , A_ : KEY , A_ : VAL ) -> None: """simple docstring""" for ind in self._iterate_buckets(A_ ): if self._try_set(A_ , A_ , A_ ): break def __setitem__( self : List[str] , A_ : KEY , A_ : VAL ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(A_ , A_ ) def __delitem__( self : int , A_ : KEY ) -> None: """simple docstring""" for ind in self._iterate_buckets(A_ ): lowerCamelCase_ = self._buckets[ind] if item is None: raise KeyError(A_ ) if item is _deleted: continue if item.key == key: lowerCamelCase_ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[int] , A_ : KEY ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(A_ ): lowerCamelCase_ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(A_ ) def __len__( self : int ) -> int: """simple docstring""" return self._len def __iter__( self : List[Any] ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = ' ,'.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : int = 10_00 ): '''simple docstring''' lowerCamelCase_ = 2**power lowerCamelCase_ = str(lowercase ) lowerCamelCase_ = list(lowercase ) lowerCamelCase_ = 0 for i in list_num: sum_of_num += int(lowercase ) return sum_of_num if __name__ == "__main__": lowerCamelCase : int = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) lowerCamelCase : Optional[Any] = solution(power) print("Sum of the digits is: ", result)
651
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
1
import requests lowerCamelCase : List[Any] = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
import pickle import numpy as np from matplotlib import pyplot as plt class A: '''simple docstring''' def __init__( self : Tuple , A_ : Dict , A_ : Dict , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Union[str, Any]=0.2 , A_ : List[Any]=0.2 ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = bp_numa lowerCamelCase_ = bp_numa lowerCamelCase_ = bp_numa lowerCamelCase_ = conva_get[:2] lowerCamelCase_ = conva_get[2] lowerCamelCase_ = size_pa lowerCamelCase_ = rate_w lowerCamelCase_ = rate_t lowerCamelCase_ = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCamelCase_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase_ = -2 * np.random.rand(self.conva[1] ) + 1 lowerCamelCase_ = -2 * np.random.rand(self.num_bpa ) + 1 lowerCamelCase_ = -2 * np.random.rand(self.num_bpa ) + 1 def a__ ( self : Optional[Any] , A_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(A_ , 'wb' ) as f: pickle.dump(A_ , A_ ) print(f"""Model saved: {save_path}""" ) @classmethod def a__ ( cls : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" with open(A_ , 'rb' ) as f: lowerCamelCase_ = pickle.load(A_ ) # noqa: S301 lowerCamelCase_ = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowerCamelCase_ = model_dic.get('size_pooling1' ) lowerCamelCase_ = model_dic.get('num_bp1' ) lowerCamelCase_ = model_dic.get('num_bp2' ) lowerCamelCase_ = model_dic.get('num_bp3' ) lowerCamelCase_ = model_dic.get('rate_weight' ) lowerCamelCase_ = model_dic.get('rate_thre' ) # create model instance lowerCamelCase_ = CNN(A_ , A_ , A_ , A_ , A_ , A_ , A_ ) # modify model parameter lowerCamelCase_ = model_dic.get('w_conv1' ) lowerCamelCase_ = model_dic.get('wkj' ) lowerCamelCase_ = model_dic.get('vji' ) lowerCamelCase_ = model_dic.get('thre_conv1' ) lowerCamelCase_ = model_dic.get('thre_bp2' ) lowerCamelCase_ = model_dic.get('thre_bp3' ) return conv_ins def a__ ( self : Optional[int] , A_ : Any ) -> List[str]: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def a__ ( self : Any , A_ : Any ) -> Optional[Any]: """simple docstring""" return round(A_ , 3 ) def a__ ( self : int , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = convs[0] lowerCamelCase_ = convs[1] lowerCamelCase_ = np.shape(A_ )[0] # get the data slice of original image data, data_focus lowerCamelCase_ = [] for i_focus in range(0 , size_data - size_conv + 1 , A_ ): for j_focus in range(0 , size_data - size_conv + 1 , A_ ): lowerCamelCase_ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(A_ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCamelCase_ = [] lowerCamelCase_ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(A_ ): lowerCamelCase_ = [] for i_focus in range(len(A_ ) ): lowerCamelCase_ = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(A_ ) ) lowerCamelCase_ = np.asmatrix(A_ ).reshape( A_ , A_ ) data_featuremap.append(A_ ) # expanding the data slice to One dimenssion lowerCamelCase_ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(A_ ) ) lowerCamelCase_ = np.asarray(A_ ) return focus_list, data_featuremap def a__ ( self : Tuple , A_ : int , A_ : List[str] , A_ : str="average_pool" ) -> int: """simple docstring""" lowerCamelCase_ = len(featuremaps[0] ) lowerCamelCase_ = int(size_map / size_pooling ) lowerCamelCase_ = [] for i_map in range(len(A_ ) ): lowerCamelCase_ = featuremaps[i_map] lowerCamelCase_ = [] for i_focus in range(0 , A_ , A_ ): for j_focus in range(0 , A_ , A_ ): lowerCamelCase_ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(A_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(A_ ) ) lowerCamelCase_ = np.asmatrix(A_ ).reshape(A_ , A_ ) featuremap_pooled.append(A_ ) return featuremap_pooled def a__ ( self : List[str] , A_ : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = [] for i in range(len(A_ ) ): lowerCamelCase_ = np.shape(data[i] ) lowerCamelCase_ = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCamelCase_ = data_listed.getA().tolist()[0] data_expanded.extend(A_ ) lowerCamelCase_ = np.asarray(A_ ) return data_expanded def a__ ( self : Optional[Any] , A_ : Dict ) -> int: """simple docstring""" lowerCamelCase_ = np.asarray(A_ ) lowerCamelCase_ = np.shape(A_ ) lowerCamelCase_ = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def a__ ( self : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : int , A_ : int , A_ : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = 0 for i_map in range(A_ ): lowerCamelCase_ = np.ones((size_map, size_map) ) for i in range(0 , A_ , A_ ): for j in range(0 , A_ , A_ ): lowerCamelCase_ = pd_pool[ i_pool ] lowerCamelCase_ = i_pool + 1 lowerCamelCase_ = np.multiply( A_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(A_ ) return pd_all def a__ ( self : Dict , A_ : int , A_ : Dict , A_ : Dict , A_ : int , A_ : Tuple , A_ : Dict=bool ) -> int: """simple docstring""" print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(A_ )) ) print((' - - Shape: Teach_Data ', np.shape(A_ )) ) lowerCamelCase_ = 0 lowerCamelCase_ = [] lowerCamelCase_ = 10000 while rp < n_repeat and mse >= error_accuracy: lowerCamelCase_ = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(A_ ) ): # print('------------Learning Image: %d--------------'%p) lowerCamelCase_ = np.asmatrix(datas_train[p] ) lowerCamelCase_ = np.asarray(datas_teach[p] ) lowerCamelCase_ , lowerCamelCase_ = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ = self.pooling(A_ , self.size_poolinga ) lowerCamelCase_ = np.shape(A_ ) lowerCamelCase_ = self._expand(A_ ) lowerCamelCase_ = data_bp_input lowerCamelCase_ = np.dot(A_ , self.vji.T ) - self.thre_bpa lowerCamelCase_ = self.sig(A_ ) lowerCamelCase_ = np.dot(A_ , self.wkj.T ) - self.thre_bpa lowerCamelCase_ = self.sig(A_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCamelCase_ = np.multiply( (data_teach - bp_outa) , np.multiply(A_ , (1 - bp_outa) ) ) lowerCamelCase_ = np.multiply( np.dot(A_ , self.wkj ) , np.multiply(A_ , (1 - bp_outa) ) ) lowerCamelCase_ = np.dot(A_ , self.vji ) lowerCamelCase_ = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCamelCase_ = pd_conva_pooled.T.getA().tolist() lowerCamelCase_ = self._calculate_gradient_from_pool( A_ , A_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCamelCase_ = self._expand_mat(pd_conva_all[k_conv] ) lowerCamelCase_ = self.rate_weight * np.dot(A_ , A_ ) lowerCamelCase_ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCamelCase_ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCamelCase_ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCamelCase_ = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCamelCase_ = self.thre_bpa - pd_k_all * self.rate_thre lowerCamelCase_ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCamelCase_ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCamelCase_ = rp + 1 lowerCamelCase_ = error_count / patterns all_mse.append(A_ ) def draw_error(): lowerCamelCase_ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(A_ , '+-' ) plt.plot(A_ , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(A_ , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def a__ ( self : Any , A_ : str ) -> int: """simple docstring""" lowerCamelCase_ = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(A_ )) ) for p in range(len(A_ ) ): lowerCamelCase_ = np.asmatrix(datas_test[p] ) lowerCamelCase_ , lowerCamelCase_ = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ = self.pooling(A_ , self.size_poolinga ) lowerCamelCase_ = self._expand(A_ ) lowerCamelCase_ = data_bp_input lowerCamelCase_ = bp_outa * self.vji.T - self.thre_bpa lowerCamelCase_ = self.sig(A_ ) lowerCamelCase_ = bp_outa * self.wkj.T - self.thre_bpa lowerCamelCase_ = self.sig(A_ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCamelCase_ = [list(map(self.do_round , A_ ) ) for each in produce_out] return np.asarray(A_ ) def a__ ( self : Dict , A_ : str ) -> Any: """simple docstring""" lowerCamelCase_ = np.asmatrix(A_ ) lowerCamelCase_ , lowerCamelCase_ = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ = self.pooling(A_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
651
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCamelCase : int = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , *A_ : Union[str, Any] , **A_ : Union[str, Any] ) -> None: """simple docstring""" warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
651
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCamelCase : Any = "base_with_context" def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase_ = weights[f"""layers_{lyr_num}"""] lowerCamelCase_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase_ = ly_weight['attention'] lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase_ = weights[f"""layers_{lyr_num}"""] lowerCamelCase_ = ly_weight['attention'] lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase_ = weights[f"""layers_{lyr_num}"""] lowerCamelCase_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase_ = ly_weight['self_attention'] lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase_ = ly_weight['MultiHeadDotProductAttention_0'] lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowerCamelCase_ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def _SCREAMING_SNAKE_CASE ( lowercase : Any ): '''simple docstring''' lowerCamelCase_ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase_ = jnp.tree_util.tree_map(onp.array , lowercase ) lowerCamelCase_ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowerCamelCase_ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowerCamelCase_ = inference.parse_training_gin_file(lowercase , lowercase ) lowerCamelCase_ = inference.InferenceModel(args.checkpoint_path , lowercase ) lowerCamelCase_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowerCamelCase_ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase_ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase_ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase_ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , lowercase ) lowerCamelCase_ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , lowercase ) lowerCamelCase_ = load_decoder(ta_checkpoint['target']['decoder'] , lowercase ) lowerCamelCase_ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowerCamelCase_ = SpectrogramDiffusionPipeline( notes_encoder=lowercase , continuous_encoder=lowercase , decoder=lowercase , scheduler=lowercase , melgan=lowercase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) lowerCamelCase : Optional[int] = parser.parse_args() main(args)
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = 3_84 lowerCamelCase_ = 7 if "tiny" in model_name: lowerCamelCase_ = 96 lowerCamelCase_ = (2, 2, 6, 2) lowerCamelCase_ = (3, 6, 12, 24) elif "small" in model_name: lowerCamelCase_ = 96 lowerCamelCase_ = (2, 2, 18, 2) lowerCamelCase_ = (3, 6, 12, 24) elif "base" in model_name: lowerCamelCase_ = 1_28 lowerCamelCase_ = (2, 2, 18, 2) lowerCamelCase_ = (4, 8, 16, 32) lowerCamelCase_ = 12 lowerCamelCase_ = 5_12 elif "large" in model_name: lowerCamelCase_ = 1_92 lowerCamelCase_ = (2, 2, 18, 2) lowerCamelCase_ = (6, 12, 24, 48) lowerCamelCase_ = 12 lowerCamelCase_ = 7_68 # set label information lowerCamelCase_ = 1_50 lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = 'ade20k-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = SwinConfig( embed_dim=lowercase , depths=lowercase , num_heads=lowercase , window_size=lowercase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowerCamelCase_ = UperNetConfig( backbone_config=lowercase , auxiliary_in_channels=lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase , ) return config def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = dct.pop(lowercase ) lowerCamelCase_ = val def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[:dim, :] lowerCamelCase_ = in_proj_bias[: dim] lowerCamelCase_ = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase_ = in_proj_bias[ dim : dim * 2 ] lowerCamelCase_ = in_proj_weight[ -dim :, : ] lowerCamelCase_ = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = x.shape lowerCamelCase_ = x.reshape(lowercase , 4 , in_channel // 4 ) lowerCamelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowercase , lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = x.shape lowerCamelCase_ = x.reshape(lowercase , in_channel // 4 , 4 ) lowerCamelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowercase , lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = x.shape[0] lowerCamelCase_ = x.reshape(4 , in_channel // 4 ) lowerCamelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = x.shape[0] lowerCamelCase_ = x.reshape(in_channel // 4 , 4 ) lowerCamelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowerCamelCase_ = model_name_to_url[model_name] lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' , file_name=lowercase )[ 'state_dict' ] for name, param in state_dict.items(): print(lowercase , param.shape ) lowerCamelCase_ = get_upernet_config(lowercase ) lowerCamelCase_ = UperNetForSemanticSegmentation(lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowercase ) if "bn" in key: lowerCamelCase_ = key.replace('bn' , 'batch_norm' ) lowerCamelCase_ = val # rename keys lowerCamelCase_ = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCamelCase_ = reverse_correct_unfold_reduction_order(lowercase ) if "norm" in key: lowerCamelCase_ = reverse_correct_unfold_norm_order(lowercase ) model.load_state_dict(lowercase ) # verify on image lowerCamelCase_ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) lowerCamelCase_ = SegformerImageProcessor() lowerCamelCase_ = processor(lowercase , return_tensors='pt' ).pixel_values with torch.no_grad(): lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowerCamelCase_ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowerCamelCase_ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowerCamelCase_ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowerCamelCase_ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''Wav2Vec2FeatureExtractor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : Tuple , A_ : Any , A_ : Any ) -> Any: """simple docstring""" super().__init__(A_ , A_ ) lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False @classmethod def a__ ( cls : Optional[int] , A_ : Optional[int] , **A_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" try: return super().from_pretrained(A_ , **A_ ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , A_ , ) lowerCamelCase_ = WavaVecaFeatureExtractor.from_pretrained(A_ , **A_ ) lowerCamelCase_ = WavaVecaCTCTokenizer.from_pretrained(A_ , **A_ ) return cls(feature_extractor=A_ , tokenizer=A_ ) def __call__( self : Any , *A_ : str , **A_ : Dict ) -> List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*A_ , **A_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase_ = kwargs.pop('raw_speech' ) else: lowerCamelCase_ = kwargs.pop('audio' , A_ ) lowerCamelCase_ = kwargs.pop('sampling_rate' , A_ ) lowerCamelCase_ = kwargs.pop('text' , A_ ) if len(A_ ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase_ = self.feature_extractor(A_ , *A_ , sampling_rate=A_ , **A_ ) if text is not None: lowerCamelCase_ = self.tokenizer(A_ , **A_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase_ = encodings['input_ids'] return inputs def a__ ( self : int , *A_ : Any , **A_ : Tuple ) -> List[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*A_ , **A_ ) lowerCamelCase_ = kwargs.pop('input_features' , A_ ) lowerCamelCase_ = kwargs.pop('labels' , A_ ) if len(A_ ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if input_features is not None: lowerCamelCase_ = self.feature_extractor.pad(A_ , *A_ , **A_ ) if labels is not None: lowerCamelCase_ = self.tokenizer.pad(A_ , **A_ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase_ = labels['input_ids'] return input_features def a__ ( self : Union[str, Any] , *A_ : List[str] , **A_ : str ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def a__ ( self : Optional[int] , *A_ : Tuple , **A_ : str ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @contextmanager def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer yield lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : List[Any] , lowercase : int , lowercase : Dict , lowercase : Optional[Any] ): '''simple docstring''' with open(lowercase ) as metadata_file: lowerCamelCase_ = json.load(lowercase ) lowerCamelCase_ = LukeConfig(use_entity_aware_attention=lowercase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path lowerCamelCase_ = torch.load(lowercase , map_location='cpu' )['module'] # Load the entity vocab file lowerCamelCase_ = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] lowerCamelCase_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCamelCase_ = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase_ = AddedToken('<ent>' , lstrip=lowercase , rstrip=lowercase ) lowerCamelCase_ = AddedToken('<ent2>' , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'r' ) as f: lowerCamelCase_ = json.load(lowercase ) lowerCamelCase_ = 'MLukeTokenizer' with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowercase , lowercase ) lowerCamelCase_ = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens lowerCamelCase_ = tokenizer.convert_tokens_to_ids(['@'] )[0] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(['#'] )[0] lowerCamelCase_ = state_dict['embeddings.word_embeddings.weight'] lowerCamelCase_ = word_emb[ent_init_index].unsqueeze(0 ) lowerCamelCase_ = word_emb[enta_init_index].unsqueeze(0 ) lowerCamelCase_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCamelCase_ = state_dict[bias_name] lowerCamelCase_ = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCamelCase_ = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCamelCase_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase_ = f"""encoder.layer.{layer_index}.attention.self.""" lowerCamelCase_ = state_dict[prefix + matrix_name] lowerCamelCase_ = state_dict[prefix + matrix_name] lowerCamelCase_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase_ = state_dict['entity_embeddings.entity_embeddings.weight'] lowerCamelCase_ = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) lowerCamelCase_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCamelCase_ = state_dict['entity_predictions.bias'] lowerCamelCase_ = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) lowerCamelCase_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCamelCase_ = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) lowerCamelCase_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): lowerCamelCase_ = state_dict[key] else: lowerCamelCase_ = state_dict[key] lowerCamelCase_ , lowerCamelCase_ = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCamelCase_ = MLukeTokenizer.from_pretrained(lowercase , task='entity_classification' ) lowerCamelCase_ = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' lowerCamelCase_ = (0, 9) lowerCamelCase_ = tokenizer(lowercase , entity_spans=[span] , return_tensors='pt' ) lowerCamelCase_ = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase_ = torch.Size((1, 33, 7_68) ) lowerCamelCase_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase_ = torch.Size((1, 1, 7_68) ) lowerCamelCase_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCamelCase_ = MLukeTokenizer.from_pretrained(lowercase ) lowerCamelCase_ = 'Tokyo is the capital of <mask>.' lowerCamelCase_ = (24, 30) lowerCamelCase_ = tokenizer(lowercase , entity_spans=[span] , return_tensors='pt' ) lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = encoding['input_ids'][0].tolist() lowerCamelCase_ = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) lowerCamelCase_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) lowerCamelCase_ = outputs.entity_logits[0][0].argmax().item() lowerCamelCase_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowercase ) ) model.save_pretrained(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = ['[MASK]', '[PAD]', '[UNK]'] lowerCamelCase_ = [json.loads(lowercase ) for line in open(lowercase )] lowerCamelCase_ = {} for entry in data: lowerCamelCase_ = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCamelCase_ = entity_id break lowerCamelCase_ = f"""{language}:{entity_name}""" lowerCamelCase_ = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
from math import sqrt def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00_00 ): '''simple docstring''' lowerCamelCase_ = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''trocr''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : str , A_ : List[str]=50265 , A_ : List[Any]=1024 , A_ : Any=12 , A_ : int=16 , A_ : Optional[Any]=4096 , A_ : List[str]="gelu" , A_ : List[Any]=512 , A_ : List[Any]=0.1 , A_ : List[str]=0.0 , A_ : Optional[int]=0.0 , A_ : Optional[int]=2 , A_ : Optional[int]=0.02 , A_ : List[Any]=0.0 , A_ : int=True , A_ : Optional[int]=False , A_ : Any=True , A_ : Optional[Any]=True , A_ : List[Any]=1 , A_ : List[str]=0 , A_ : List[str]=2 , **A_ : str , ) -> int: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = d_model lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = activation_function lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = init_std lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = scale_embedding lowerCamelCase_ = use_learned_position_embeddings lowerCamelCase_ = layernorm_embedding super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , **A_ , )
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''sew-d''' def __init__( self : int , A_ : Optional[int]=32 , A_ : int=768 , A_ : List[str]=12 , A_ : str=12 , A_ : int=3072 , A_ : Tuple=2 , A_ : str=512 , A_ : List[str]=256 , A_ : Any=True , A_ : List[Any]=True , A_ : str=("p2c", "c2p") , A_ : Dict="layer_norm" , A_ : List[str]="gelu_python" , A_ : str=0.1 , A_ : Optional[int]=0.1 , A_ : Optional[Any]=0.1 , A_ : Tuple=0.0 , A_ : Tuple=0.1 , A_ : Union[str, Any]=0.02 , A_ : Dict=1E-7 , A_ : Union[str, Any]=1E-5 , A_ : Any="group" , A_ : Union[str, Any]="gelu" , A_ : Optional[int]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A_ : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A_ : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A_ : Any=False , A_ : List[str]=128 , A_ : Tuple=16 , A_ : int=True , A_ : Tuple=0.05 , A_ : Any=10 , A_ : int=2 , A_ : Any=0.0 , A_ : int=10 , A_ : List[str]=0 , A_ : Optional[int]="mean" , A_ : str=False , A_ : List[Any]=False , A_ : Union[str, Any]=256 , A_ : Optional[Any]=0 , A_ : List[Any]=1 , A_ : int=2 , **A_ : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(A_ ) lowerCamelCase_ = list(A_ ) lowerCamelCase_ = list(A_ ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = squeeze_factor lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = position_buckets lowerCamelCase_ = share_att_key lowerCamelCase_ = relative_attention lowerCamelCase_ = norm_rel_ebd lowerCamelCase_ = list(A_ ) lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = feature_layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # sequence classification lowerCamelCase_ = use_weighted_layer_sum lowerCamelCase_ = classifier_proj_size @property def a__ ( self : str ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
from math import isqrt def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase ) + 1 ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int = 10**6 ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Any = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''codegen''' UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , A_ : List[str]=50400 , A_ : str=2048 , A_ : int=2048 , A_ : Union[str, Any]=4096 , A_ : str=28 , A_ : Optional[Any]=16 , A_ : Dict=64 , A_ : int=None , A_ : Optional[Any]="gelu_new" , A_ : List[Any]=0.0 , A_ : Dict=0.0 , A_ : Dict=0.0 , A_ : Dict=1E-5 , A_ : Union[str, Any]=0.02 , A_ : Optional[Any]=True , A_ : Union[str, Any]=50256 , A_ : Optional[int]=50256 , A_ : Dict=False , **A_ : Union[str, Any] , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = n_ctx lowerCamelCase_ = n_positions lowerCamelCase_ = n_embd lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = n_inner lowerCamelCase_ = rotary_dim lowerCamelCase_ = activation_function lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = attn_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = use_cache lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id super().__init__( bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , A_ : PretrainedConfig , A_ : str = "default" , A_ : List[PatchingSpec] = None , A_ : bool = False , ) -> Optional[Any]: """simple docstring""" super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ ) if not getattr(self._config , 'pad_token_id' , A_ ): # TODO: how to do that better? lowerCamelCase_ = 0 @property def a__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCamelCase_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) lowerCamelCase_ = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return common_inputs @property def a__ ( self : str ) -> int: """simple docstring""" return self._config.n_layer @property def a__ ( self : List[str] ) -> int: """simple docstring""" return self._config.n_head def a__ ( self : Union[str, Any] , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCamelCase_ = super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() lowerCamelCase_ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase_ = seqlen + 2 lowerCamelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase_ = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] lowerCamelCase_ = common_inputs['attention_mask'] if self.use_past: lowerCamelCase_ = ordered_inputs['attention_mask'].dtype lowerCamelCase_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def a__ ( self : List[Any] ) -> int: """simple docstring""" return 13
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCamelCase : Optional[int] = get_logger(__name__) class A( enum.Enum ): '''simple docstring''' UpperCamelCase = '''all_checks''' UpperCamelCase = '''basic_checks''' UpperCamelCase = '''no_checks''' class A( UpperCamelCase ): '''simple docstring''' class A( UpperCamelCase ): '''simple docstring''' class A( UpperCamelCase ): '''simple docstring''' class A( UpperCamelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( lowercase : Optional[dict] , lowercase : dict , lowercase : Union[str, Any]=None ): '''simple docstring''' if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(lowercase ) - set(lowercase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase ) - set(lowercase ) ) ) if len(set(lowercase ) - set(lowercase ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase ) - set(lowercase ) ) ) lowerCamelCase_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCamelCase_ = ' for ' + verification_name if verification_name is not None else '' if len(lowercase ) > 0: raise NonMatchingChecksumError( f"""Checksums didn't match{for_verification_name}:\n""" f"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A( UpperCamelCase ): '''simple docstring''' class A( UpperCamelCase ): '''simple docstring''' class A( UpperCamelCase ): '''simple docstring''' class A( UpperCamelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( lowercase : Optional[dict] , lowercase : dict ): '''simple docstring''' if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(lowercase ) - set(lowercase ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase ) - set(lowercase ) ) ) if len(set(lowercase ) - set(lowercase ) ) > 0: raise UnexpectedSplits(str(set(lowercase ) - set(lowercase ) ) ) lowerCamelCase_ = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase ) > 0: raise NonMatchingSplitsSizesError(str(lowercase ) ) logger.info('All the splits matched successfully.' ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : bool = True ): '''simple docstring''' if record_checksum: lowerCamelCase_ = shaaaa() with open(lowercase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(lowercase ) lowerCamelCase_ = m.hexdigest() else: lowerCamelCase_ = None return {"num_bytes": os.path.getsize(lowercase ), "checksum": checksum} def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A: '''simple docstring''' UpperCamelCase = LEDConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : List[Any] , A_ : int , A_ : Tuple=13 , A_ : Optional[int]=7 , A_ : Any=True , A_ : Optional[int]=False , A_ : Tuple=99 , A_ : Any=32 , A_ : List[Any]=2 , A_ : int=4 , A_ : Tuple=37 , A_ : List[Any]=0.1 , A_ : Dict=0.1 , A_ : List[Any]=20 , A_ : Optional[Any]=2 , A_ : Union[str, Any]=1 , A_ : Dict=0 , A_ : Any=4 , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id lowerCamelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowerCamelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowerCamelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowerCamelCase_ = prepare_led_inputs_dict(A_ , A_ , A_ ) lowerCamelCase_ = tf.concat( [tf.zeros_like(A_ )[:, :-1], tf.ones_like(A_ )[:, -1:]] , axis=-1 , ) lowerCamelCase_ = global_attention_mask return config, inputs_dict def a__ ( self : List[Any] , A_ : Union[str, Any] , A_ : str ) -> Dict: """simple docstring""" lowerCamelCase_ = TFLEDModel(config=A_ ).get_decoder() lowerCamelCase_ = inputs_dict['input_ids'] lowerCamelCase_ = input_ids[:1, :] lowerCamelCase_ = inputs_dict['attention_mask'][:1, :] lowerCamelCase_ = 1 # first forward pass lowerCamelCase_ = model(A_ , attention_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_ = model(A_ , attention_mask=A_ )[0] lowerCamelCase_ = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Dict=None , lowercase : Union[str, Any]=None , lowercase : List[Any]=None , lowercase : Dict=None , ): '''simple docstring''' if attention_mask is None: lowerCamelCase_ = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFLEDModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = tf.zeros_like(inputs_dict['attention_mask'] ) lowerCamelCase_ = 2 lowerCamelCase_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) lowerCamelCase_ = True lowerCamelCase_ = self.model_tester.seq_length lowerCamelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(A_ : Optional[int] ): lowerCamelCase_ = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(A_ : Any ): lowerCamelCase_ = [t.numpy() for t in outputs.encoder_attentions] lowerCamelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" pass def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return tf.constant(lowercase , dtype=tf.intaa ) lowerCamelCase : int = 1e-4 @slow @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here lowerCamelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = prepare_led_inputs_dict(model.config , A_ , A_ ) lowerCamelCase_ = model(**A_ )[0] lowerCamelCase_ = (1, 1024, 768) self.assertEqual(output.shape , A_ ) # change to expected output here lowerCamelCase_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-3 ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here lowerCamelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCamelCase_ = prepare_led_inputs_dict(model.config , A_ , A_ ) lowerCamelCase_ = model(**A_ )[0] lowerCamelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , A_ ) # change to expected output here lowerCamelCase_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-3 , rtol=1E-3 )
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCamelCase_ = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], 'do_convert_rgb': True, } lowerCamelCase_ = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A_ , A_ ) def a__ ( self : Dict , **A_ : List[str] ) -> Any: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : Union[str, Any] , **A_ : Optional[Any] ) -> List[str]: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : Optional[int] , **A_ : Optional[Any] ) -> List[Any]: """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) lowerCamelCase_ = self.get_image_processor(do_normalize=A_ ) lowerCamelCase_ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(A_ , return_tensors='np' ) lowerCamelCase_ = processor(images=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCamelCase_ = 'Alexandra,T-shirt的价格是15便士。' lowerCamelCase_ = processor(text=A_ ) lowerCamelCase_ = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCamelCase_ = 'Alexandra,T-shirt的价格是15便士。' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(A_ ) lowerCamelCase_ = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCamelCase_ = 'Alexandra,T-shirt的价格是15便士。' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCamelCase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class A: '''simple docstring''' UpperCamelCase = True UpperCamelCase = None # Automatically constructed UpperCamelCase = "PIL.Image.Image" UpperCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase = field(default='''Image''' , init=UpperCamelCase , repr=UpperCamelCase ) def __call__( self : str ) -> Optional[int]: """simple docstring""" return self.pa_type def a__ ( self : Optional[Any] , A_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(A_ , A_ ): lowerCamelCase_ = np.array(A_ ) if isinstance(A_ , A_ ): return {"path": value, "bytes": None} elif isinstance(A_ , A_ ): return {"path": None, "bytes": value} elif isinstance(A_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(A_ ) elif isinstance(A_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(A_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def a__ ( self : Optional[int] , A_ : dict , A_ : Dict=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: lowerCamelCase_ = {} lowerCamelCase_ , lowerCamelCase_ = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(A_ ): lowerCamelCase_ = PIL.Image.open(A_ ) else: lowerCamelCase_ = path.split('::' )[-1] try: lowerCamelCase_ = string_to_dict(A_ , config.HUB_DATASETS_URL )['repo_id'] lowerCamelCase_ = token_per_repo_id.get(A_ ) except ValueError: lowerCamelCase_ = None with xopen(A_ , 'rb' , use_auth_token=A_ ) as f: lowerCamelCase_ = BytesIO(f.read() ) lowerCamelCase_ = PIL.Image.open(bytes_ ) else: lowerCamelCase_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def a__ ( self : Optional[int] , A_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.binary() ) lowerCamelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.string() ) lowerCamelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCamelCase_ = storage.field('bytes' ) else: lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCamelCase_ = storage.field('path' ) else: lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.string() ) lowerCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCamelCase_ = pa.array( [encode_np_array(np.array(A_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCamelCase_ = pa.array([None] * len(A_ ) , type=pa.string() ) lowerCamelCase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(A_ , self.pa_type ) def a__ ( self : str , A_ : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(A_ : List[Any] ): with xopen(A_ , 'rb' ) as f: lowerCamelCase_ = f.read() return bytes_ lowerCamelCase_ = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase_ = pa.array( [os.path.basename(A_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(A_ , self.pa_type ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCamelCase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _SCREAMING_SNAKE_CASE ( lowercase : "PIL.Image.Image" ): '''simple docstring''' lowerCamelCase_ = BytesIO() if image.format in list_image_compression_formats(): lowerCamelCase_ = image.format else: lowerCamelCase_ = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowercase , format=lowercase ) return buffer.getvalue() def _SCREAMING_SNAKE_CASE ( lowercase : "PIL.Image.Image" ): '''simple docstring''' if hasattr(lowercase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase )} def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) lowerCamelCase_ = array.dtype lowerCamelCase_ = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER lowerCamelCase_ = dtype.kind lowerCamelCase_ = dtype.itemsize lowerCamelCase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCamelCase_ = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCamelCase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCamelCase_ = dtype_byteorder + dtype_kind + str(lowercase ) lowerCamelCase_ = np.dtype(lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) lowerCamelCase_ = PIL.Image.fromarray(array.astype(lowercase ) ) return {"path": None, "bytes": image_to_bytes(lowercase )} def _SCREAMING_SNAKE_CASE ( lowercase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: lowerCamelCase_ , lowerCamelCase_ = first_non_null_value(lowercase ) if isinstance(lowercase , lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase , np.ndarray ): lowerCamelCase_ = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] elif isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] else: return objs else: return objs
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
import numpy as np from transformers import Pipeline def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = np.max(lowercase , axis=-1 , keepdims=lowercase ) lowerCamelCase_ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : int , **A_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = {} if "second_text" in kwargs: lowerCamelCase_ = kwargs['second_text'] return preprocess_kwargs, {}, {} def a__ ( self : Tuple , A_ : Dict , A_ : Tuple=None ) -> Dict: """simple docstring""" return self.tokenizer(A_ , text_pair=A_ , return_tensors=self.framework ) def a__ ( self : Any , A_ : Any ) -> Dict: """simple docstring""" return self.model(**A_ ) def a__ ( self : int , A_ : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = model_outputs.logits[0].numpy() lowerCamelCase_ = softmax(A_ ) lowerCamelCase_ = np.argmax(A_ ) lowerCamelCase_ = self.model.config.idalabel[best_class] lowerCamelCase_ = probabilities[best_class].item() lowerCamelCase_ = logits.tolist() return {"label": label, "score": score, "logits": logits}
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : int , A_ : float ) -> float: """simple docstring""" return 0.0 def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : int ): '''simple docstring''' lowerCamelCase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowerCamelCase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _SCREAMING_SNAKE_CASE ( lowercase : FilterType , lowercase : int ): '''simple docstring''' lowerCamelCase_ = 5_12 lowerCamelCase_ = [1] + [0] * (size - 1) lowerCamelCase_ = [filter_type.process(lowercase ) for item in inputs] lowerCamelCase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ = np.abs(np.fft.fft(lowercase ) ) lowerCamelCase_ = 20 * np.logaa(lowercase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds lowerCamelCase_ = get_bounds(lowercase , lowercase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(lowercase ) plt.show() def _SCREAMING_SNAKE_CASE ( lowercase : FilterType , lowercase : int ): '''simple docstring''' lowerCamelCase_ = 5_12 lowerCamelCase_ = [1] + [0] * (size - 1) lowerCamelCase_ = [filter_type.process(lowercase ) for item in inputs] lowerCamelCase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ = np.angle(np.fft.fft(lowercase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(lowercase , -2 * pi ) ) plt.show()
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : int , lowercase : Dict , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = original_name.split('.' )[0] lowerCamelCase_ = key.split('.' ) lowerCamelCase_ = int(key_list[key_list.index(lowercase ) - 2] ) lowerCamelCase_ = int(key_list[key_list.index(lowercase ) - 1] ) lowerCamelCase_ = orig_block_num - offset lowerCamelCase_ = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = OrderedDict() lowerCamelCase_ , lowerCamelCase_ = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): lowerCamelCase_ = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 lowerCamelCase_ = key[: key.find('proj' )] lowerCamelCase_ = key.replace(lowercase , f"""patch_embeddings.{total_embed_found}.""" ) lowerCamelCase_ = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: lowerCamelCase_ = 'poolformer.encoder.' + key if "mlp.fc1" in key: lowerCamelCase_ = replace_key_with_offset(lowercase , lowercase , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: lowerCamelCase_ = replace_key_with_offset(lowercase , lowercase , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: lowerCamelCase_ = replace_key_with_offset(lowercase , lowercase , 'norm1' , 'before_norm' ) if "norm2" in key: lowerCamelCase_ = replace_key_with_offset(lowercase , lowercase , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: lowerCamelCase_ = replace_key_with_offset(lowercase , lowercase , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: lowerCamelCase_ = replace_key_with_offset(lowercase , lowercase , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: lowerCamelCase_ = key.replace('head' , 'classifier' ) lowerCamelCase_ = value return new_state_dict def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return image @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : str , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = PoolFormerConfig() # set attributes based on model_name lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = model_name[-3:] lowerCamelCase_ = 10_00 lowerCamelCase_ = 'imagenet-1k-id2label.json' lowerCamelCase_ = (1, 10_00) # set config attributes lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} if size == "s12": lowerCamelCase_ = [2, 2, 6, 2] lowerCamelCase_ = [64, 1_28, 3_20, 5_12] lowerCamelCase_ = 4.0 lowerCamelCase_ = 0.9 elif size == "s24": lowerCamelCase_ = [4, 4, 12, 4] lowerCamelCase_ = [64, 1_28, 3_20, 5_12] lowerCamelCase_ = 4.0 lowerCamelCase_ = 0.9 elif size == "s36": lowerCamelCase_ = [6, 6, 18, 6] lowerCamelCase_ = [64, 1_28, 3_20, 5_12] lowerCamelCase_ = 4.0 lowerCamelCase_ = 1e-6 lowerCamelCase_ = 0.9 elif size == "m36": lowerCamelCase_ = [6, 6, 18, 6] lowerCamelCase_ = [96, 1_92, 3_84, 7_68] lowerCamelCase_ = 4.0 lowerCamelCase_ = 1e-6 lowerCamelCase_ = 0.95 elif size == "m48": lowerCamelCase_ = [8, 8, 24, 8] lowerCamelCase_ = [96, 1_92, 3_84, 7_68] lowerCamelCase_ = 4.0 lowerCamelCase_ = 1e-6 lowerCamelCase_ = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor lowerCamelCase_ = PoolFormerImageProcessor(crop_pct=lowercase ) # Prepare image lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowercase , return_tensors='pt' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict lowerCamelCase_ = torch.load(lowercase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase_ = rename_keys(lowercase ) # create HuggingFace model and load state dict lowerCamelCase_ = PoolFormerForImageClassification(lowercase ) model.load_state_dict(lowercase ) model.eval() # Define image processor lowerCamelCase_ = PoolFormerImageProcessor(crop_pct=lowercase ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = outputs.logits # define expected logit slices for different models if size == "s12": lowerCamelCase_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": lowerCamelCase_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": lowerCamelCase_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": lowerCamelCase_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": lowerCamelCase_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , lowercase , atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = ort.SessionOptions() lowerCamelCase_ = False return options def a__ ( self : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default lowerCamelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A red cat sitting on a park bench' lowerCamelCase_ = np.random.RandomState(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , mask_image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
import string from math import logaa def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) lowerCamelCase_ = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase_ = corpus_without_punctuation.split('\n' ) lowerCamelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return round(tf * idf , 3 )
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : str , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = parent def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" return {} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' lowerCamelCase_ = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MarkupLMFeatureExtractor if is_bsa_available() else None def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = MarkupLMFeatureExtractionTester(self ) @property def a__ ( self : Dict ) -> int: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class() # Test not batched input lowerCamelCase_ = get_html_strings()[0] lowerCamelCase_ = feature_extractor(A_ ) # fmt: off lowerCamelCase_ = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] lowerCamelCase_ = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ ) # Test batched lowerCamelCase_ = get_html_strings() lowerCamelCase_ = feature_extractor(A_ ) # fmt: off lowerCamelCase_ = expected_nodes + [['My First Heading', 'My first paragraph.']] lowerCamelCase_ = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ )
651
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
1
import qiskit def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(lowercase , lowercase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowerCamelCase_ = qiskit.execute(lowercase , lowercase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": lowerCamelCase : str = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Union[str, Any] , lowercase : Optional[int] ): '''simple docstring''' if isinstance(lowercase , torch.Tensor ): return image elif isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(lowercase , axis=0 ) lowerCamelCase_ = np.array(lowercase ).astype(np.floataa ) / 255.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(lowercase ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowercase , dim=0 ) return image def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Dict , lowercase : Union[str, Any] , lowercase : Optional[int]=0.9995 ): '''simple docstring''' if not isinstance(lowercase , np.ndarray ): lowerCamelCase_ = True lowerCamelCase_ = va.device lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = np.sum(va * va / (np.linalg.norm(lowercase ) * np.linalg.norm(lowercase )) ) if np.abs(lowercase ) > DOT_THRESHOLD: lowerCamelCase_ = (1 - t) * va + t * va else: lowerCamelCase_ = np.arccos(lowercase ) lowerCamelCase_ = np.sin(lowercase ) lowerCamelCase_ = theta_a * t lowerCamelCase_ = np.sin(lowercase ) lowerCamelCase_ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase_ = sin_theta_t / sin_theta_a lowerCamelCase_ = sa * va + sa * va if inputs_are_torch: lowerCamelCase_ = torch.from_numpy(lowercase ).to(lowercase ) return va def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = F.normalize(lowercase , dim=-1 ) lowerCamelCase_ = F.normalize(lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Union[str, Any] ): '''simple docstring''' for param in model.parameters(): lowerCamelCase_ = value class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , A_ : AutoencoderKL , A_ : CLIPTextModel , A_ : CLIPModel , A_ : CLIPTokenizer , A_ : UNetaDConditionModel , A_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , A_ : CLIPFeatureExtractor , A_ : Optional[int]=None , A_ : Tuple=None , A_ : Any=None , ) -> List[Any]: """simple docstring""" super().__init__() self.register_modules( vae=A_ , text_encoder=A_ , clip_model=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , feature_extractor=A_ , coca_model=A_ , coca_tokenizer=A_ , coca_transform=A_ , ) lowerCamelCase_ = ( feature_extractor.size if isinstance(feature_extractor.size , A_ ) else feature_extractor.size['shortest_edge'] ) lowerCamelCase_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A_ ) set_requires_grad(self.clip_model , A_ ) def a__ ( self : Union[str, Any] , A_ : Optional[Union[str, int]] = "auto" ) -> str: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A_ ) def a__ ( self : List[Any] ) -> str: """simple docstring""" self.enable_attention_slicing(A_ ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae , A_ ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" set_requires_grad(self.vae , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" set_requires_grad(self.unet , A_ ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" set_requires_grad(self.unet , A_ ) def a__ ( self : List[Any] , A_ : Any , A_ : int , A_ : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = min(int(num_inference_steps * strength ) , A_ ) lowerCamelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ ( self : Optional[int] , A_ : Tuple , A_ : Tuple , A_ : Dict , A_ : List[Any] , A_ : Dict , A_ : Dict=None ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(A_ )}""" ) lowerCamelCase_ = image.to(device=A_ , dtype=A_ ) if isinstance(A_ , A_ ): lowerCamelCase_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A_ ) ] lowerCamelCase_ = torch.cat(A_ , dim=0 ) else: lowerCamelCase_ = self.vae.encode(A_ ).latent_dist.sample(A_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 0.18215 * init_latents lowerCamelCase_ = init_latents.repeat_interleave(A_ , dim=0 ) lowerCamelCase_ = randn_tensor(init_latents.shape , generator=A_ , device=A_ , dtype=A_ ) # get latents lowerCamelCase_ = self.scheduler.add_noise(A_ , A_ , A_ ) lowerCamelCase_ = init_latents return latents def a__ ( self : List[str] , A_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.coca_transform(A_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCamelCase_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def a__ ( self : Union[str, Any] , A_ : str , A_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.feature_extractor.preprocess(A_ ) lowerCamelCase_ = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase_ = self.clip_model.get_image_features(A_ ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A_ ) lowerCamelCase_ = image_embeddings_clip.repeat_interleave(A_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ ( self : Optional[Any] , A_ : List[Any] , A_ : Dict , A_ : List[str] , A_ : Tuple , A_ : Dict , A_ : int , A_ : Tuple , ) -> str: """simple docstring""" lowerCamelCase_ = latents.detach().requires_grad_() lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) # predict the noise residual lowerCamelCase_ = self.unet(A_ , A_ , encoder_hidden_states=A_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase_ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase_ = torch.sqrt(A_ ) lowerCamelCase_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A_ ): lowerCamelCase_ = self.scheduler.sigmas[index] lowerCamelCase_ = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18215 * sample lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = transforms.Resize(self.feature_extractor_size )(A_ ) lowerCamelCase_ = self.normalize(A_ ).to(latents.dtype ) lowerCamelCase_ = self.clip_model.get_image_features(A_ ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A_ ) lowerCamelCase_ = spherical_dist_loss(A_ , A_ ).mean() * clip_guidance_scale lowerCamelCase_ = -torch.autograd.grad(A_ , A_ )[0] if isinstance(self.scheduler , A_ ): lowerCamelCase_ = latents.detach() + grads * (sigma**2) lowerCamelCase_ = noise_pred_original else: lowerCamelCase_ = noise_pred_original - torch.sqrt(A_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : int , A_ : Union[torch.FloatTensor, PIL.Image.Image] , A_ : Union[torch.FloatTensor, PIL.Image.Image] , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[int] = 512 , A_ : Optional[int] = 512 , A_ : float = 0.6 , A_ : Optional[int] = 50 , A_ : Optional[float] = 7.5 , A_ : Optional[int] = 1 , A_ : float = 0.0 , A_ : Optional[float] = 100 , A_ : Optional[torch.Generator] = None , A_ : Optional[str] = "pil" , A_ : bool = True , A_ : float = 0.8 , A_ : float = 0.1 , A_ : float = 0.1 , ) -> int: """simple docstring""" if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(A_ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(A_ , torch.Generator ) and batch_size > 1: lowerCamelCase_ = [generator] + [None] * (batch_size - 1) lowerCamelCase_ = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] lowerCamelCase_ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase_ = ', '.join(A_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A_ ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowerCamelCase_ = self.get_image_description(A_ ) if style_prompt is None: if len(A_ ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowerCamelCase_ = self.get_image_description(A_ ) # get prompt text embeddings for content and style lowerCamelCase_ = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=A_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=A_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = slerp(A_ , A_ , A_ ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ = text_embeddings.repeat_interleave(A_ , dim=0 ) # set timesteps lowerCamelCase_ = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase_ = {} if accepts_offset: lowerCamelCase_ = 1 self.scheduler.set_timesteps(A_ , **A_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase_ , lowerCamelCase_ = self.get_timesteps(A_ , A_ , self.device ) lowerCamelCase_ = timesteps[:1].repeat(A_ ) # Preprocess image lowerCamelCase_ = preprocess(A_ , A_ , A_ ) lowerCamelCase_ = self.prepare_latents( A_ , A_ , A_ , text_embeddings.dtype , self.device , A_ ) lowerCamelCase_ = preprocess(A_ , A_ , A_ ) lowerCamelCase_ = self.prepare_latents( A_ , A_ , A_ , text_embeddings.dtype , self.device , A_ ) lowerCamelCase_ = slerp(A_ , A_ , A_ ) if clip_guidance_scale > 0: lowerCamelCase_ = self.get_clip_image_embeddings(A_ , A_ ) lowerCamelCase_ = self.get_clip_image_embeddings(A_ , A_ ) lowerCamelCase_ = slerp( A_ , A_ , A_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = content_text_input.input_ids.shape[-1] lowerCamelCase_ = self.tokenizer([''] , padding='max_length' , max_length=A_ , return_tensors='pt' ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase_ = uncond_embeddings.repeat_interleave(A_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase_ = torch.randn(A_ , generator=A_ , device='cpu' , dtype=A_ ).to( self.device ) else: lowerCamelCase_ = torch.randn(A_ , generator=A_ , device=self.device , dtype=A_ ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowerCamelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta # check if the scheduler accepts generator lowerCamelCase_ = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase_ = generator with self.progress_bar(total=A_ ): for i, t in enumerate(A_ ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) # predict the noise residual lowerCamelCase_ = self.unet(A_ , A_ , encoder_hidden_states=A_ ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase_ , lowerCamelCase_ = self.cond_fn( A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18215 * latents lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A_ , nsfw_content_detected=A_ )
651
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''audio''': Audio()} ) UpperCamelCase = Features({'''labels''': ClassLabel} ) UpperCamelCase = "audio" UpperCamelCase = "labels" def a__ ( self : Optional[int] , A_ : int ) -> List[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , A_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCamelCase_ = copy.deepcopy(self ) lowerCamelCase_ = self.label_schema.copy() lowerCamelCase_ = features[self.label_column] lowerCamelCase_ = label_schema return task_template @property def a__ ( self : Any ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
651
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : bool = False ): '''simple docstring''' if not isinstance(lowercase , lowercase ): lowerCamelCase_ = f"""Expected string as input, found {type(lowercase )}""" raise ValueError(lowercase ) if not isinstance(lowercase , lowercase ): lowerCamelCase_ = f"""Expected boolean as use_pascal parameter, found {type(lowercase )}""" raise ValueError(lowercase ) lowerCamelCase_ = input_str.split('_' ) lowerCamelCase_ = 0 if use_pascal else 1 lowerCamelCase_ = words[start_index:] lowerCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCamelCase_ = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A: '''simple docstring''' def __init__( self : List[str] , A_ : int , A_ : int=13 , A_ : List[Any]=7 , A_ : List[Any]=True , A_ : Union[str, Any]=True , A_ : Optional[Any]=True , A_ : str=True , A_ : Optional[int]=99 , A_ : List[Any]=64 , A_ : int=32 , A_ : List[str]=5 , A_ : Union[str, Any]=4 , A_ : List[Any]=37 , A_ : List[str]="gelu" , A_ : Dict=0.1 , A_ : List[Any]=0.1 , A_ : int=512 , A_ : Dict=16 , A_ : List[Any]=2 , A_ : Optional[Any]=0.02 , A_ : Dict=3 , A_ : Optional[int]=4 , A_ : str=None , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = embedding_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any ) -> Tuple: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def a__ ( self : List[Any] , A_ : int , A_ : str , A_ : Union[str, Any] , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : str ) -> int: """simple docstring""" lowerCamelCase_ = MegatronBertModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ ) lowerCamelCase_ = model(A_ , token_type_ids=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Optional[Any] , A_ : List[str] , A_ : List[Any] , A_ : Optional[Any] , A_ : List[str] , A_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = MegatronBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Tuple , A_ : Dict , A_ : str , A_ : Optional[int] , A_ : Optional[int] , A_ : Optional[int] , A_ : Optional[Any] , A_ : str ) -> Any: """simple docstring""" lowerCamelCase_ = MegatronBertForCausalLM(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Tuple , A_ : str , A_ : Any , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = MegatronBertForNextSentencePrediction(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a__ ( self : Tuple , A_ : Tuple , A_ : int , A_ : Optional[int] , A_ : List[Any] , A_ : List[str] , A_ : str , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = MegatronBertForPreTraining(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , next_sentence_label=A_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a__ ( self : List[Any] , A_ : str , A_ : Tuple , A_ : Union[str, Any] , A_ : int , A_ : Any , A_ : Dict , A_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ = MegatronBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : List[str] , A_ : List[str] , A_ : Dict , A_ : str , A_ : Optional[int] , A_ : Dict , A_ : Dict , A_ : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MegatronBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Dict , A_ : Union[str, Any] , A_ : List[Any] , A_ : Dict , A_ : Dict , A_ : Any , A_ : Optional[int] , A_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MegatronBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , A_ : Optional[int] , A_ : str , A_ : Any , A_ : Tuple , A_ : Optional[int] , A_ : List[str] , A_ : int ) -> int: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = MegatronBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True # test_resize_embeddings = False UpperCamelCase = False def a__ ( self : Any , A_ : List[Any] , A_ : Any , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class in get_values(A_ ): lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A_ ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = MegatronBertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A_ ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A_ ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A_ ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A_ ) def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A_ ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A_ ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A_ ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' return torch.tensor( lowercase , dtype=torch.long , device=lowercase , ) lowerCamelCase : Union[str, Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('Model is not available.' ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: lowerCamelCase_ = os.path.join(os.environ['MYDIR'] , A_ ) lowerCamelCase_ = MegatronBertModel.from_pretrained(A_ ) model.to(A_ ) model.half() lowerCamelCase_ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , A_ ) lowerCamelCase_ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase_ = output[0, ii, jj] lowerCamelCase_ = expected[3 * ii + jj] lowerCamelCase_ = 'ii={} jj={} a={} b={}'.format(A_ , A_ , A_ , A_ ) self.assertTrue(math.isclose(A_ , A_ , rel_tol=A_ , abs_tol=A_ ) , msg=A_ )
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : list ): '''simple docstring''' lowerCamelCase_ = False while is_sorted is False: # Until all the indices are traversed keep looping lowerCamelCase_ = True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowerCamelCase_ , lowerCamelCase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase_ = False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowerCamelCase_ , lowerCamelCase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase_ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") lowerCamelCase : Optional[int] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : Tuple = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
from __future__ import annotations lowerCamelCase : Dict = "Muhammad Umer Farooq" lowerCamelCase : Any = "MIT" lowerCamelCase : List[Any] = "1.0.0" lowerCamelCase : Dict = "Muhammad Umer Farooq" lowerCamelCase : Tuple = "contact@muhammadumerfarooq.me" lowerCamelCase : Any = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , A_ : str ) -> None: """simple docstring""" super().__init__() lowerCamelCase_ = [] lowerCamelCase_ = domain def a__ ( self : Dict , A_ : str , A_ : list[tuple[str, str | None]] ) -> None: """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCamelCase_ = parse.urljoin(self.domain , A_ ) self.urls.append(A_ ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' return ".".join(get_sub_domain_name(lowercase ).split('.' )[-2:] ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' return parse.urlparse(lowercase ).netloc def _SCREAMING_SNAKE_CASE ( lowercase : str = "https://github.com" ): '''simple docstring''' lowerCamelCase_ = get_domain_name(lowercase ) # Initialize the parser lowerCamelCase_ = Parser(lowercase ) try: # Open URL lowerCamelCase_ = requests.get(lowercase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCamelCase_ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCamelCase_ = requests.get(lowercase ) # Get the valid email. lowerCamelCase_ = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase ) if __name__ == "__main__": lowerCamelCase : str = emails_from_url("https://github.com") print(F"""{len(emails)} emails found:""") print("\n".join(sorted(emails)))
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' _enforce_args(lowercase , lowercase ) if n == 0: return 0 lowerCamelCase_ = float('-inf' ) for i in range(1 , n + 1 ): lowerCamelCase_ = max( lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) ) return max_revue def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' _enforce_args(lowercase , lowercase ) lowerCamelCase_ = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list , lowercase : list ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCamelCase_ = float('-inf' ) for i in range(1 , n + 1 ): lowerCamelCase_ = max( lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , ) lowerCamelCase_ = max_revenue return max_rev[n] def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' _enforce_args(lowercase , lowercase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCamelCase_ = [float('-inf' ) for _ in range(n + 1 )] lowerCamelCase_ = 0 for i in range(1 , n + 1 ): lowerCamelCase_ = max_rev[i] for j in range(1 , i + 1 ): lowerCamelCase_ = max(lowercase , prices[j - 1] + max_rev[i - j] ) lowerCamelCase_ = max_revenue_i return max_rev[n] def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list ): '''simple docstring''' if n < 0: lowerCamelCase_ = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(lowercase ) if n > len(lowercase ): lowerCamelCase_ = ( 'Each integral piece of rod must have a corresponding price. ' f"""Got n = {n} but length of prices = {len(lowercase )}""" ) raise ValueError(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = [6, 10, 12, 15, 20, 23] lowerCamelCase_ = len(lowercase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCamelCase_ = 36 lowerCamelCase_ = top_down_cut_rod(lowercase , lowercase ) lowerCamelCase_ = bottom_up_cut_rod(lowercase , lowercase ) lowerCamelCase_ = naive_cut_rod_recursive(lowercase , lowercase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : Distribution , A_ : Any=None , A_ : str=None , A_ : Optional[int]=0 ) -> List[str]: """simple docstring""" lowerCamelCase_ = 1.0 if scale is None else scale lowerCamelCase_ = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def a__ ( self : str ) -> int: """simple docstring""" return self.variance.sqrt() class A( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , A_ : int , A_ : Dict[str, int] , A_ : Callable[..., Tuple[torch.Tensor]] , **A_ : Any ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = args_dim lowerCamelCase_ = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) lowerCamelCase_ = domain_map def a__ ( self : Any , A_ : torch.Tensor ) -> Tuple[torch.Tensor]: """simple docstring""" lowerCamelCase_ = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class A( nn.Module ): '''simple docstring''' def __init__( self : List[str] , A_ : int ) -> Dict: """simple docstring""" super().__init__() lowerCamelCase_ = function def a__ ( self : Dict , A_ : Dict , *A_ : str ) -> Any: """simple docstring""" return self.function(A_ , *A_ ) class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : List[Any] , A_ : int = 1 ) -> None: """simple docstring""" lowerCamelCase_ = dim lowerCamelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self : Any , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def a__ ( self : List[Any] , A_ : Tuple , A_ : Optional[torch.Tensor] = None , A_ : Optional[torch.Tensor] = None , ) -> Distribution: """simple docstring""" lowerCamelCase_ = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def a__ ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.event_shape ) @property def a__ ( self : Tuple ) -> float: """simple docstring""" return 0.0 def a__ ( self : int , A_ : int ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a__ ( self : Any , *A_ : torch.Tensor ) -> Optional[Any]: """simple docstring""" raise NotImplementedError() @staticmethod def a__ ( A_ : torch.Tensor ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = {"df": 1, "loc": 1, "scale": 1} UpperCamelCase = StudentT @classmethod def a__ ( cls : Dict , A_ : torch.Tensor , A_ : torch.Tensor , A_ : torch.Tensor ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase_ = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = {"loc": 1, "scale": 1} UpperCamelCase = Normal @classmethod def a__ ( cls : Any , A_ : torch.Tensor , A_ : torch.Tensor ) -> str: """simple docstring""" lowerCamelCase_ = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = {"total_count": 1, "logits": 1} UpperCamelCase = NegativeBinomial @classmethod def a__ ( cls : Optional[int] , A_ : torch.Tensor , A_ : torch.Tensor ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self : List[Any] , A_ : Union[str, Any] ) -> Distribution: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def a__ ( self : Optional[Any] , A_ : Optional[int] , A_ : Optional[torch.Tensor] = None , A_ : Optional[torch.Tensor] = None ) -> Distribution: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = r'\w+[.]\d+' lowerCamelCase_ = re.findall(lowercase , lowercase ) for pat in pats: lowerCamelCase_ = key.replace(lowercase , '_'.join(pat.split('.' ) ) ) return key def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase_ = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase_ = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase_ = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase_ = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase_ = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": lowerCamelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase_ = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase_ = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Dict , lowercase : Optional[int]=42 ): '''simple docstring''' lowerCamelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase_ = flax_model.init_weights(PRNGKey(lowercase ) ) lowerCamelCase_ = flatten_dict(lowercase ) lowerCamelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase_ = rename_key(lowercase ) lowerCamelCase_ = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters lowerCamelCase_ , lowerCamelCase_ = rename_key_and_reshape_tensor(lowercase , lowercase , lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown lowerCamelCase_ = jnp.asarray(lowercase ) return unflatten_dict(lowercase )
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Optional[int] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Tuple = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : Any = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) lowerCamelCase : str = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) lowerCamelCase : str = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : str = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = "Normal" if result[0][0] == 1: lowerCamelCase : str = "Abnormality detected"
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : Union[str, Any] , A_ : Optional[Any] ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : Optional[Any] , A_ : int = 1 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : float = 0.0 , A_ : int = 50 , A_ : Optional[bool] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , A_ ): lowerCamelCase_ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCamelCase_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowerCamelCase_ = randn_tensor(A_ , generator=A_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase_ = self.unet(A_ , A_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step( A_ , A_ , A_ , eta=A_ , use_clipped_model_output=A_ , generator=A_ ).prev_sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
lowerCamelCase : List[str] = [0, 2, 4, 6, 8] lowerCamelCase : List[str] = [1, 3, 5, 7, 9] def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : list[int] , lowercase : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCamelCase_ = 0 for digit in range(10 ): lowerCamelCase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowercase , lowercase ) return result lowerCamelCase_ = 0 for digita in range(10 ): lowerCamelCase_ = digita if (remainder + digita) % 2 == 0: lowerCamelCase_ = ODD_DIGITS else: lowerCamelCase_ = EVEN_DIGITS for digita in other_parity_digits: lowerCamelCase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowercase , lowercase , ) return result def _SCREAMING_SNAKE_CASE ( lowercase : int = 9 ): '''simple docstring''' lowerCamelCase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowercase , 0 , [0] * length , lowercase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name def _SCREAMING_SNAKE_CASE ( lowercase : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , lowercase , ) if isinstance(lowercase , torch.Tensor ): return image elif isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image[0].size lowerCamelCase_ , lowerCamelCase_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(lowercase , axis=0 ) lowerCamelCase_ = np.array(lowercase ).astype(np.floataa ) / 255.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(lowercase ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowercase , dim=0 ) return image def _SCREAMING_SNAKE_CASE ( lowercase : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' if isinstance(lowercase , torch.Tensor ): return mask elif isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCamelCase_ , lowerCamelCase_ = mask[0].size lowerCamelCase_ , lowerCamelCase_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCamelCase_ = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] lowerCamelCase_ = np.concatenate(lowercase , axis=0 ) lowerCamelCase_ = mask.astype(np.floataa ) / 255.0 lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = torch.from_numpy(lowercase ) elif isinstance(mask[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowercase , dim=0 ) return mask class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : Tuple , A_ : Any , A_ : List[Any] ) -> Any: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple , A_ : Union[torch.Tensor, PIL.Image.Image] , A_ : Union[torch.Tensor, PIL.Image.Image] , A_ : int = 250 , A_ : float = 0.0 , A_ : int = 10 , A_ : int = 10 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = image lowerCamelCase_ = _preprocess_image(A_ ) lowerCamelCase_ = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCamelCase_ = _preprocess_mask(A_ ) lowerCamelCase_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCamelCase_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowerCamelCase_ = original_image.shape lowerCamelCase_ = randn_tensor(A_ , generator=A_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A_ , A_ , A_ , self.device ) lowerCamelCase_ = eta lowerCamelCase_ = self.scheduler.timesteps[0] + 1 lowerCamelCase_ = generator[0] if isinstance(A_ , A_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCamelCase_ = self.unet(A_ , A_ ).sample # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ , A_ , A_ , A_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCamelCase_ = self.scheduler.undo_step(A_ , A_ , A_ ) lowerCamelCase_ = t lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = WavaVecaPhonemeCTCTokenizer UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" super().setUp() lowerCamelCase_ = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def a__ ( self : Optional[int] , A_ : int , A_ : Union[str, Any]=False , A_ : List[Any]=20 , A_ : List[Any]=5 ) -> Tuple[str, list]: """simple docstring""" lowerCamelCase_ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=A_ )) for i in range(len(A_ ) )] lowerCamelCase_ = list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=A_ ) , A_ ) ) if max_length is not None and len(A_ ) > max_length: lowerCamelCase_ = toks[:max_length] if min_length is not None and len(A_ ) < min_length and len(A_ ) > 0: while len(A_ ) < min_length: lowerCamelCase_ = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase_ = [t[0] for t in toks] # Ensure consistency lowerCamelCase_ = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) if " " not in output_txt and len(A_ ) > 1: lowerCamelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A_ ) ) if with_prefix_space: lowerCamelCase_ = ' ' + output_txt lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) return output_txt, output_ids def a__ ( self : str , **A_ : str ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) lowerCamelCase_ = tokenizer('m xxx ɪ' , do_phonemize=A_ ).input_ids self.assertEqual(A_ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) lowerCamelCase_ = tokenizer('m aaa ɪ ccc' , do_phonemize=A_ ).input_ids self.assertEqual(A_ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCamelCase_ = tokenizer('maɪ c' , do_phonemize=A_ ).input_ids self.assertEqual(A_ , [3, 200] ) # mai should be <unk> (=3) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(A_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(A_ ).input_ids , tokenizer(A_ , do_phonemize=A_ ).input_ids ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) lowerCamelCase_ = tokenizer.decode(tokenizer(A_ ).input_ids ) self.assertEqual(A_ , A_ ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCamelCase_ = tokenizer.decode(sample_ids[0] ) lowerCamelCase_ = tokenizer.batch_decode(A_ ) self.assertEqual(A_ , batch_tokens[0] ) self.assertEqual(A_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(A_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(A_ ).input_ids , tokenizer(A_ , do_phonemize=A_ ).input_ids ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off lowerCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCamelCase_ = tokenizer.decode(sample_ids[0] ) lowerCamelCase_ = tokenizer.batch_decode(A_ ) self.assertEqual(A_ , batch_tokens[0] ) self.assertEqual(A_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter lowerCamelCase_ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=A_ ) lowerCamelCase_ = tokenizer.batch_decode(A_ , filter_word_delimiter_token=A_ ) self.assertEqual(A_ , batch_tokens[0] ) self.assertEqual(A_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) lowerCamelCase_ = tokenizer.decode(tokenizer(A_ ).input_ids , filter_word_delimiter_token=A_ ) self.assertEqual(A_ , A_ ) def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) lowerCamelCase_ = tokenizer.decode(tokenizer(A_ ).input_ids , filter_word_delimiter_token=A_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , A_ ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=A_ ) lowerCamelCase_ = 'Hello how are you' lowerCamelCase_ = tokenizer(A_ , phonemizer_lang='en-us' ).input_ids lowerCamelCase_ = tokenizer(A_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.decode(A_ ) lowerCamelCase_ = tokenizer.decode(A_ ) self.assertEqual(A_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(A_ , 'ɛ l o h aʊ a ʁ j u' ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCamelCase_ = 'Hello how Are you' lowerCamelCase_ = 'hello how are you' lowerCamelCase_ = tokenizer(A_ ).input_ids lowerCamelCase_ = tokenizer(A_ ).input_ids self.assertEqual(A_ , A_ ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off lowerCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCamelCase_ = tokenizer.batch_decode(A_ ) self.assertEqual(A_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def a__ ( A_ : str , A_ : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [d[key] for d in offsets] return retrieved_list def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCamelCase_ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCamelCase_ = tokenizer.decode(A_ , output_char_offsets=A_ , filter_word_delimiter_token=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(A_ : Optional[int] , A_ : int ): self.assertTrue(isinstance(A_ , A_ ) ) self.assertTrue(isinstance(outputs_list[0] , A_ ) ) # transform list to ModelOutput lowerCamelCase_ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(A_ : List[str] , A_ : Optional[int] ): if isinstance(A_ , A_ ): [recursive_check(A_ , A_ ) for la, la in zip(A_ , A_ )] self.assertEqual(A_ , A_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off lowerCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCamelCase_ = tokenizer.batch_decode(A_ , output_char_offsets=A_ ) lowerCamelCase_ = [tokenizer.decode(A_ , output_char_offsets=A_ ) for ids in sample_ids] check_list_tuples_equal(A_ , A_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def a__ ( self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def a__ ( self : Any ) -> List[str]: """simple docstring""" pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ = tokenizer.vocab_size lowerCamelCase_ = len(A_ ) self.assertNotEqual(A_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCamelCase_ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowerCamelCase_ = tokenizer.add_tokens(A_ ) lowerCamelCase_ = tokenizer.vocab_size lowerCamelCase_ = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size + len(A_ ) ) lowerCamelCase_ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCamelCase_ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowerCamelCase_ = tokenizer.add_special_tokens(A_ ) lowerCamelCase_ = tokenizer.vocab_size lowerCamelCase_ = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size_a + len(A_ ) ) lowerCamelCase_ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def a__ ( self : List[str] ) -> Any: """simple docstring""" pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def a__ ( self : str ) -> Any: """simple docstring""" pass def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_tokenizers(fast=A_ , do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] lowerCamelCase_ = tokenizer.convert_tokens_to_string(A_ ) self.assertIsInstance(output['text'] , A_ )
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase : Dict = get_tests_dir("fixtures/dummy-config.json") class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = 0 def a__ ( self : Any ) -> int: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def a__ ( self : Any ) -> str: """simple docstring""" lowerCamelCase_ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(A_ , A_ ) def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = AutoConfig.for_model('roberta' ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCamelCase_ = os.path.join(A_ , 'fake-roberta' ) os.makedirs(A_ , exist_ok=A_ ) with open(os.path.join(A_ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertEqual(type(A_ ) , A_ ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , A_ ) # Wrong model type will raise an error with self.assertRaises(A_ ): AutoConfig.register('model' , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoConfig.register('bert' , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def a__ ( self : str ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = AutoConfig.from_pretrained('bert-base' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = AutoConfig.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : int ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaises(A_ ): lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) lowerCamelCase_ = AutoConfig.from_pretrained(A_ , trust_remote_code=A_ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def a__ ( self : List[str] ) -> str: """simple docstring""" class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' try: AutoConfig.register('new-model' , A_ ) # If remote code is not set, the default is to use local lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCamelCase : Tuple = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[Any]=None ): '''simple docstring''' if rng is None: lowerCamelCase_ = random.Random() lowerCamelCase_ = 1 for dim in shape: total_dims *= dim lowerCamelCase_ = [] for _ in range(lowercase ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCamelCase_ = np.array(lowercase , dtype=jnp.intaa ).reshape(lowercase ) return output def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple=None ): '''simple docstring''' lowerCamelCase_ = ids_tensor(lowercase , vocab_size=2 , rng=lowercase ) # make sure that at least one token is attended to for each batch lowerCamelCase_ = 1 return attn_mask @require_flax class A: '''simple docstring''' UpperCamelCase = None UpperCamelCase = () def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCamelCase_ = 2 lowerCamelCase_ = inputs['input_ids'].shape[-1] // 2 lowerCamelCase_ = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCamelCase_ = jnp.ones_like(A_ ) lowerCamelCase_ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCamelCase_ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCamelCase_ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = False lowerCamelCase_ = max_length lowerCamelCase_ = 0 for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase_ = getattr(A_ , A_ ) lowerCamelCase_ = pt_model_class(A_ ).eval() lowerCamelCase_ = load_flax_weights_in_pytorch_model(A_ , flax_model.params ) lowerCamelCase_ = flax_model.generate(A_ ).sequences lowerCamelCase_ = pt_model.generate(torch.tensor(A_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCamelCase_ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = False lowerCamelCase_ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = True lowerCamelCase_ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = False lowerCamelCase_ = max_length lowerCamelCase_ = 2 for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = False lowerCamelCase_ = max_length lowerCamelCase_ = 2 lowerCamelCase_ = 2 for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def a__ ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = True lowerCamelCase_ = max_length lowerCamelCase_ = 0.8 lowerCamelCase_ = 10 lowerCamelCase_ = 0.3 lowerCamelCase_ = 1 lowerCamelCase_ = 8 lowerCamelCase_ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = max_length lowerCamelCase_ = 1 lowerCamelCase_ = 8 lowerCamelCase_ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() lowerCamelCase_ = max_length lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 8 lowerCamelCase_ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : Any ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase_ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase_ = False lowerCamelCase_ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ , attention_mask=A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ , attention_mask=A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase_ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase_ = True lowerCamelCase_ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ , attention_mask=A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ , attention_mask=A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase_ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase_ = 2 lowerCamelCase_ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model.generate(A_ , attention_mask=A_ ).sequences self.assertEqual(generation_outputs.shape[-1] , A_ ) lowerCamelCase_ = jit(model.generate ) lowerCamelCase_ = jit_generate(A_ , attention_mask=A_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCamelCase_ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCamelCase_ = 'Hello world' lowerCamelCase_ = tokenizer(A_ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(A_ , 'do_samples' ): model.generate(A_ , do_samples=A_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(A_ , 'foo' ): lowerCamelCase_ = {'foo': 'bar'} model.generate(A_ , **A_ )
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float ): '''simple docstring''' if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
651
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Any = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''levit''' def __init__( self : int , A_ : Optional[int]=224 , A_ : Union[str, Any]=3 , A_ : Dict=3 , A_ : Optional[Any]=2 , A_ : List[Any]=1 , A_ : Optional[Any]=16 , A_ : str=[128, 256, 384] , A_ : str=[4, 8, 12] , A_ : Optional[Any]=[4, 4, 4] , A_ : int=[16, 16, 16] , A_ : Union[str, Any]=0 , A_ : int=[2, 2, 2] , A_ : int=[2, 2, 2] , A_ : Optional[Any]=0.02 , **A_ : Optional[int] , ) -> int: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = kernel_size lowerCamelCase_ = stride lowerCamelCase_ = padding lowerCamelCase_ = hidden_sizes lowerCamelCase_ = num_attention_heads lowerCamelCase_ = depths lowerCamelCase_ = key_dim lowerCamelCase_ = drop_path_rate lowerCamelCase_ = patch_size lowerCamelCase_ = attention_ratio lowerCamelCase_ = mlp_ratio lowerCamelCase_ = initializer_range lowerCamelCase_ = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def a__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ ( self : str ) -> float: """simple docstring""" return 1E-4
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> Tuple: """simple docstring""" debug_launcher(test_script.main ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" debug_launcher(test_ops.main )
651
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : list[float] ): '''simple docstring''' if len(lowercase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowerCamelCase_ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
651
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
from jiwer import compute_measures import datasets lowerCamelCase : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowerCamelCase : Union[str, Any] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowerCamelCase : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def a__ ( self : int , A_ : List[str]=None , A_ : Union[str, Any]=None , A_ : Dict=False ) -> Any: """simple docstring""" if concatenate_texts: return compute_measures(A_ , A_ )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(A_ , A_ ): lowerCamelCase_ = compute_measures(A_ , A_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
from __future__ import annotations import bisect def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : int , lowercase : int = 0 , lowercase : int = -1 ): '''simple docstring''' if hi < 0: lowerCamelCase_ = len(lowercase ) while lo < hi: lowerCamelCase_ = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCamelCase_ = mid + 1 else: lowerCamelCase_ = mid return lo def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : int , lowercase : int = 0 , lowercase : int = -1 ): '''simple docstring''' if hi < 0: lowerCamelCase_ = len(lowercase ) while lo < hi: lowerCamelCase_ = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCamelCase_ = mid + 1 else: lowerCamelCase_ = mid return lo def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : int , lowercase : int = 0 , lowercase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : int , lowercase : int = 0 , lowercase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = len(lowercase ) - 1 while left <= right: lowerCamelCase_ = left + (right - left) // 2 lowerCamelCase_ = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCamelCase_ = midpoint - 1 else: lowerCamelCase_ = midpoint + 1 return None def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = bisect.bisect_left(lowercase , lowercase ) if index != len(lowercase ) and sorted_collection[index] == item: return index return None def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' if right < left: return None lowerCamelCase_ = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase , lowercase , lowercase , midpoint - 1 ) else: return binary_search_by_recursion(lowercase , lowercase , midpoint + 1 , lowercase ) if __name__ == "__main__": lowerCamelCase : Dict = input("Enter numbers separated by comma:\n").strip() lowerCamelCase : Tuple = sorted(int(item) for item in user_input.split(",")) lowerCamelCase : int = int(input("Enter a single number to be found in the list:\n")) lowerCamelCase : List[str] = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Any ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = 1 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def a__ ( self : Optional[Any] ) -> str: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def a__ ( self : List[str] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def a__ ( self : str ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(A_ ) @property def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" def extract(*A_ : List[Any] , **A_ : Optional[int] ): class A: '''simple docstring''' def __init__( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = torch.ones([0] ) def a__ ( self : int , A_ : List[Any] ) -> Tuple: """simple docstring""" self.pixel_values.to(A_ ) return self return Out() return extract def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet lowerCamelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe([prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) lowerCamelCase_ = output.images lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=A_ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet lowerCamelCase_ = PNDMScheduler(skip_prk_steps=A_ ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe([prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) lowerCamelCase_ = output.images lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=A_ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=A_ ) assert isinstance(A_ , A_ ) assert isinstance(pipe.scheduler , A_ ) assert pipe.safety_checker is None lowerCamelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A_ ) lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(A_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.dummy_cond_unet lowerCamelCase_ = PNDMScheduler(skip_prk_steps=A_ ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 lowerCamelCase_ = unet.half() lowerCamelCase_ = vae.half() lowerCamelCase_ = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=A_ ) lowerCamelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) lowerCamelCase_ = 4003660346 lowerCamelCase_ = 7 # without safety guidance (sld_guidance_scale = 0) lowerCamelCase_ = torch.manual_seed(A_ ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowerCamelCase_ = torch.manual_seed(A_ ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=A_ ) lowerCamelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'padme amidala taking a bath artwork, safe for work, no nudity' lowerCamelCase_ = 2734971755 lowerCamelCase_ = 7 lowerCamelCase_ = torch.manual_seed(A_ ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowerCamelCase_ = torch.manual_seed(A_ ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Any ) -> List[str]: """simple docstring""" lowerCamelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) lowerCamelCase_ = 1044355234 lowerCamelCase_ = 12 lowerCamelCase_ = torch.manual_seed(A_ ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowerCamelCase_ = torch.manual_seed(A_ ) lowerCamelCase_ = sd_pipe( [prompt] , generator=A_ , guidance_scale=A_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = sd_pipe.prepare_inputs(A_ ) lowerCamelCase_ = replicate(A_ ) lowerCamelCase_ = shard(A_ ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.split(A_ , jax.device_count() ) lowerCamelCase_ = sd_pipe(A_ , A_ , A_ , num_inference_steps=25 , jit=A_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase_ = images[0, 253:256, 253:256, -1] lowerCamelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase_ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = 'stabilityai/stable-diffusion-2' lowerCamelCase_ , lowerCamelCase_ = FlaxDPMSolverMultistepScheduler.from_pretrained(A_ , subfolder='scheduler' ) lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( A_ , scheduler=A_ , revision='bf16' , dtype=jnp.bfloataa , ) lowerCamelCase_ = scheduler_params lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = sd_pipe.prepare_inputs(A_ ) lowerCamelCase_ = replicate(A_ ) lowerCamelCase_ = shard(A_ ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.split(A_ , jax.device_count() ) lowerCamelCase_ = sd_pipe(A_ , A_ , A_ , num_inference_steps=25 , jit=A_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCamelCase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase_ = images[0, 253:256, 253:256, -1] lowerCamelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase_ = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class A: '''simple docstring''' def __init__( self : int , A_ : str , A_ : Optional[Any]=13 , A_ : List[Any]=7 , A_ : int=True , A_ : Union[str, Any]=True , A_ : int=False , A_ : Optional[Any]=True , A_ : List[Any]=99 , A_ : str=32 , A_ : Union[str, Any]=5 , A_ : Optional[Any]=4 , A_ : str=37 , A_ : str="gelu" , A_ : Dict=0.1 , A_ : str=0.1 , A_ : Optional[int]=512 , A_ : Optional[int]=16 , A_ : List[Any]=2 , A_ : Dict=0.02 , A_ : Dict=3 , A_ : Union[str, Any]=4 , A_ : List[str]=None , ) -> int: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def a__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : Tuple , A_ : Dict , A_ : List[str] , A_ : Union[str, Any] , A_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = BioGptModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Optional[Any] , A_ : int , A_ : List[str] , A_ : Optional[Any] , A_ : Tuple , A_ : List[str] , A_ : List[Any] , A_ : Any , A_ : Dict , A_ : Optional[Any] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = BioGptForCausalLM(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Union[str, Any] , A_ : Optional[int] , A_ : Tuple , A_ : List[Any] , A_ : str , A_ : str , *A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = BioGptModel(config=A_ ) model.to(A_ ) model.eval() # create attention mask lowerCamelCase_ = torch.ones(input_ids.shape , dtype=torch.long , device=A_ ) lowerCamelCase_ = self.seq_length // 2 lowerCamelCase_ = 0 # first forward pass lowerCamelCase_ , lowerCamelCase_ = model(A_ , attention_mask=A_ ).to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids lowerCamelCase_ = ids_tensor((1,) , A_ ).item() + 1 lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) lowerCamelCase_ = random_other_next_tokens # append to next input_ids and attn_mask lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=A_ )] , dim=1 , ) # get two different outputs lowerCamelCase_ = model(A_ , attention_mask=A_ )['last_hidden_state'] lowerCamelCase_ = model(A_ , past_key_values=A_ , attention_mask=A_ )['last_hidden_state'] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def a__ ( self : Dict , A_ : List[str] , A_ : Any , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Tuple , *A_ : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ = BioGptModel(config=A_ ).to(A_ ).eval() lowerCamelCase_ = torch.ones(input_ids.shape , dtype=torch.long , device=A_ ) # first forward pass lowerCamelCase_ = model(A_ , attention_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCamelCase_ = model(A_ , attention_mask=A_ )['last_hidden_state'] lowerCamelCase_ = model(A_ , attention_mask=A_ , past_key_values=A_ )[ 'last_hidden_state' ] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def a__ ( self : Union[str, Any] , A_ : List[Any] , A_ : Tuple , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : List[str] , *A_ : Tuple , A_ : Tuple=False ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BioGptForCausalLM(A_ ) model.to(A_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def a__ ( self : Union[str, Any] , A_ : Tuple , *A_ : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = BioGptModel(A_ ) lowerCamelCase_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def a__ ( self : int , A_ : List[Any] , A_ : Optional[int] , A_ : Any , A_ : Tuple , A_ : Tuple , *A_ : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = BioGptForTokenClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase = (BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = False def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = BioGptModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A_ ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*A_ , gradient_checkpointing=A_ ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A_ ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*A_ ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*A_ ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(A_ ) lowerCamelCase_ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowerCamelCase_ = 'left' # Define PAD Token = EOS Token = 50256 lowerCamelCase_ = tokenizer.eos_token lowerCamelCase_ = model.config.eos_token_id # use different length sentences to test batching lowerCamelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCamelCase_ = tokenizer(A_ , return_tensors='pt' , padding=A_ ) lowerCamelCase_ = inputs['input_ids'].to(A_ ) lowerCamelCase_ = model.generate( input_ids=A_ , attention_mask=inputs['attention_mask'].to(A_ ) , ) lowerCamelCase_ = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(A_ ) lowerCamelCase_ = model.generate(input_ids=A_ ) lowerCamelCase_ = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() lowerCamelCase_ = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(A_ ) lowerCamelCase_ = model.generate(input_ids=A_ , max_length=model.config.max_length - num_paddings ) lowerCamelCase_ = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) lowerCamelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_ = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = BioGptModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = input_dict['input_ids'] lowerCamelCase_ = input_ids.ne(1 ).to(A_ ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = BioGptForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = 'multi_label_classification' lowerCamelCase_ = input_dict['input_ids'] lowerCamelCase_ = input_ids.ne(1 ).to(A_ ) lowerCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ = BioGptForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) lowerCamelCase_ = torch.tensor([[2, 4805, 9, 656, 21]] ) lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = 42384 lowerCamelCase_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , A_ ) lowerCamelCase_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) ) @slow def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowerCamelCase_ = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(A_ ) torch.manual_seed(0 ) lowerCamelCase_ = tokenizer('COVID-19 is' , return_tensors='pt' ).to(A_ ) lowerCamelCase_ = model.generate( **A_ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=A_ , ) lowerCamelCase_ = tokenizer.decode(output_ids[0] , skip_special_tokens=A_ ) lowerCamelCase_ = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(A_ , A_ )
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } lowerCamelCase : str = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } lowerCamelCase : List[Any] = "</w>" lowerCamelCase : Union[str, Any] = "@@ " def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs # Speech2Text2 has no max input length lowerCamelCase : Tuple = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , A_ : Union[str, Any] , A_ : List[Any]="<s>" , A_ : Union[str, Any]="<pad>" , A_ : str="</s>" , A_ : Optional[int]="<unk>" , A_ : Optional[int]=False , A_ : Any=None , **A_ : Tuple , ) -> int: """simple docstring""" super().__init__( unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , do_lower_case=A_ , **A_ , ) lowerCamelCase_ = do_lower_case with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) lowerCamelCase_ = None lowerCamelCase_ = None else: with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[:-1] lowerCamelCase_ = [tuple(merge.split()[:2] ) for merge in merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} @property def a__ ( self : Dict ) -> int: """simple docstring""" return len(self.decoder ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) if word == "\n " + BPE_TOKEN_MERGES: lowerCamelCase_ = '\n' + BPE_TOKEN_MERGES if word.endswith(A_ ): lowerCamelCase_ = word.replace(A_ , '' ) lowerCamelCase_ = word.replace(' ' , A_ ) lowerCamelCase_ = word return word def a__ ( self : Dict , A_ : Any ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: lowerCamelCase_ = text.lower() lowerCamelCase_ = text.split() lowerCamelCase_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def a__ ( self : List[Any] , A_ : str ) -> int: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : int ) -> str: """simple docstring""" lowerCamelCase_ = self.decoder.get(A_ , self.unk_token ) return result def a__ ( self : Tuple , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = ' '.join(A_ ) # make sure @@ tokens are concatenated lowerCamelCase_ = ''.join(string.split(A_ ) ) return string def a__ ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(A_ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [int(lowercase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(lowercase ) == 4 and all(0 <= int(lowercase ) <= 2_54 for octet in octets ) if __name__ == "__main__": lowerCamelCase : str = input().strip() lowerCamelCase : List[str] = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : List[str] , A_ : int = 16 , A_ : int = 88 , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : int = 1 , A_ : float = 0.0 , A_ : int = 32 , A_ : Optional[int] = None , A_ : bool = False , A_ : Optional[int] = None , A_ : str = "geglu" , A_ : bool = True , A_ : bool = True , ) -> Optional[Any]: """simple docstring""" super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = in_channels lowerCamelCase_ = torch.nn.GroupNorm(num_groups=A_ , num_channels=A_ , eps=1E-6 , affine=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) # 3. Define transformers blocks lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , cross_attention_dim=A_ , activation_fn=A_ , attention_bias=A_ , double_self_attention=A_ , norm_elementwise_affine=A_ , ) for d in range(A_ ) ] ) lowerCamelCase_ = nn.Linear(A_ , A_ ) def a__ ( self : Union[str, Any] , A_ : int , A_ : Union[str, Any]=None , A_ : str=None , A_ : Optional[Any]=None , A_ : str=1 , A_ : List[str]=None , A_ : bool = True , ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = hidden_states.shape lowerCamelCase_ = batch_frames // num_frames lowerCamelCase_ = hidden_states lowerCamelCase_ = hidden_states[None, :].reshape(A_ , A_ , A_ , A_ , A_ ) lowerCamelCase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase_ = self.norm(A_ ) lowerCamelCase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A_ , A_ ) lowerCamelCase_ = self.proj_in(A_ ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase_ = block( A_ , encoder_hidden_states=A_ , timestep=A_ , cross_attention_kwargs=A_ , class_labels=A_ , ) # 3. Output lowerCamelCase_ = self.proj_out(A_ ) lowerCamelCase_ = ( hidden_states[None, None, :] .reshape(A_ , A_ , A_ , A_ , A_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase_ = hidden_states.reshape(A_ , A_ , A_ , A_ ) lowerCamelCase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A_ )
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = "Hello, World!" lowerCamelCase : Union[str, Any] = "en_XX" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : bool ): '''simple docstring''' lowerCamelCase_ = Path('data_bin' ) lowerCamelCase_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowercase ).parent ) , checkpoint_file=Path(lowercase ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(lowercase ) , bpe='sentencepiece' , sentencepiece_model=str(Path(lowercase ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(lowercase ) lowerCamelCase_ = xmod.model.encoder.sentence_encoder lowerCamelCase_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , lowercase ) lowerCamelCase_ = XmodForSequenceClassification(lowercase ) if classification_head else XmodForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ = model.roberta.encoder.layer[i] lowerCamelCase_ = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) lowerCamelCase_ = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) lowerCamelCase_ = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) lowerCamelCase_ = xmod_layer.fca.weight lowerCamelCase_ = xmod_layer.fca.bias # output lowerCamelCase_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) lowerCamelCase_ = xmod_layer.fca.weight lowerCamelCase_ = xmod_layer.fca.bias lowerCamelCase_ = xmod_layer.final_layer_norm.weight lowerCamelCase_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ = bert_output.adapter_modules[lang_code] lowerCamelCase_ = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ = from_adapter.fca.weight lowerCamelCase_ = from_adapter.fca.bias lowerCamelCase_ = from_adapter.fca.weight lowerCamelCase_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ = xmod.model.classification_heads['mnli'].dense.weight lowerCamelCase_ = xmod.model.classification_heads['mnli'].dense.bias lowerCamelCase_ = xmod.model.classification_heads['mnli'].out_proj.weight lowerCamelCase_ = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCamelCase_ = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ = xmod.model.encoder.lm_head.weight lowerCamelCase_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ = xmod.encode(lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowercase ) lowerCamelCase_ = model(lowercase )[0] if classification_head: lowerCamelCase_ = xmod.model.classification_heads['mnli'](xmod.extract_features(lowercase ) ) else: lowerCamelCase_ = xmod.model(lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ = torch.allclose(lowercase , lowercase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) lowerCamelCase : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
from functools import reduce lowerCamelCase : List[str] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _SCREAMING_SNAKE_CASE ( lowercase : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
from typing import Union import fire import torch from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str = "cpu" , lowercase : Union[str, None] = None ): '''simple docstring''' lowerCamelCase_ = torch.load(lowercase , map_location=lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowercase , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCamelCase_ = v.half() if save_path is None: # overwrite src_path lowerCamelCase_ = src_path torch.save(lowercase , lowercase ) if __name__ == "__main__": fire.Fire(convert)
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1