code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): return x if y == 0 else greatest_common_divisor(UpperCAmelCase__ , x % y ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): return (x * y) // greatest_common_divisor(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ = 2_0 ): lowercase_ = 1 for i in range(1 , n + 1 ): lowercase_ = lcm(UpperCAmelCase__ , UpperCAmelCase__ ) return g if __name__ == "__main__": print(F'''{solution() = }''')
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [1] for i in range(2 , UpperCAmelCase__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowercase_ = [] lowercase_ = list(range(UpperCAmelCase__ ) ) # Find permutation while factorials: lowercase_ = factorials.pop() lowercase_ , lowercase_ = divmod(UpperCAmelCase__ , UpperCAmelCase__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
from __future__ import annotations class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=None ): '''simple docstring''' lowercase_ = data lowercase_ = None def __repr__( self : Any ): '''simple docstring''' lowercase_ = [] lowercase_ = self while temp: string_rep.append(F'''{temp.data}''' ) lowercase_ = temp.next return "->".join(UpperCamelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): if not elements_list: raise Exception("""The Elements List is empty""" ) lowercase_ = lowercase_ = Node(elements_list[0] ) for i in range(1 , len(UpperCAmelCase__ ) ): lowercase_ = Node(elements_list[i] ) lowercase_ = current.next return head def UpperCAmelCase_ ( UpperCAmelCase__ ): if head_node is not None and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCAmelCase_ ( ): from doctest import testmod testmod() lowercase_ = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print("""Linked List:""" ) print(UpperCAmelCase__ ) print("""Elements in Reverse:""" ) print_reverse(UpperCAmelCase__ ) if __name__ == "__main__": main()
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = MgpstrTokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' super().setUp() # fmt: off lowercase_ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowercase_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = """tester""" lowercase_ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase_ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowercase_ = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) lowercase_ = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase_ , lowercase_ = self.get_input_output_texts(UpperCamelCase__ ) lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) lowercase_ = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , UpperCamelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' pass
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' def UpperCAmelCase_ ( UpperCAmelCase__ ): if edge <= 0 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase_ ( UpperCAmelCase__ ): if edge <= 0 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
a = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a = logging.getLogger(__name__) a = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The input training data file (a text file).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __SCREAMING_SNAKE_CASE : bool = field(default=__magic_name__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.1_5 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __SCREAMING_SNAKE_CASE : float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __SCREAMING_SNAKE_CASE : int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __SCREAMING_SNAKE_CASE : int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False , UpperCAmelCase__ = None , ): def _dataset(UpperCAmelCase__ , UpperCAmelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size , ref_path=UpperCAmelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCAmelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCAmelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase_ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowercase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowercase_ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelWithLMHead.from_config(UpperCAmelCase__ ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowercase_ = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase_ = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowercase_ = ( get_dataset(UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase_ = ( get_dataset(UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , evaluate=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase_ = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCAmelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowercase_ = DataCollatorForWholeWordMask( tokenizer=UpperCAmelCase__ , mlm_probability=data_args.mlm_probability ) else: lowercase_ = DataCollatorForLanguageModeling( tokenizer=UpperCAmelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , prediction_loss_only=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCAmelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase_ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase_ = trainer.evaluate() lowercase_ = math.exp(eval_output["""eval_loss"""] ) lowercase_ = {"""perplexity""": perplexity} lowercase_ = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCAmelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCAmelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCAmelCase__ ) return results def UpperCAmelCase_ ( UpperCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = 'speech_to_text_2' __SCREAMING_SNAKE_CASE : str = ['past_key_values'] __SCREAMING_SNAKE_CASE : Dict = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any]=10_000 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Optional[int]=2_048 , UpperCamelCase__ : int=4 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : int=True , UpperCamelCase__ : str="relu" , UpperCamelCase__ : int=256 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=1_024 , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = vocab_size lowercase_ = d_model lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = decoder_layerdrop lowercase_ = use_cache lowercase_ = decoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = max_target_positions super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase a = logging.get_logger(__name__) a = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Any = 'longformer' def __init__( self : Union[str, Any] , UpperCamelCase__ : Union[List[int], int] = 512 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 0 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 30_522 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 3_072 , UpperCamelCase__ : str = "gelu" , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : int = 512 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 1e-12 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = attention_window lowercase_ = sep_token_id lowercase_ = bos_token_id lowercase_ = eos_token_id lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = onnx_export class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Optional[Any] , UpperCamelCase__ : "PretrainedConfig" , UpperCamelCase__ : str = "default" , UpperCamelCase__ : "List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = True @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = super().outputs if self.task == "default": lowercase_ = {0: """batch"""} return outputs @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return 1e-4 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : "PreTrainedTokenizerBase" , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): '''simple docstring''' lowercase_ = super().generate_dummy_inputs( preprocessor=UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase_ = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global lowercase_ = 1 return inputs
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a = logging.get_logger('transformers.models.speecht5') def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): hf_model.apply_weight_norm() lowercase_ = checkpoint["""input_conv.weight_g"""] lowercase_ = checkpoint["""input_conv.weight_v"""] lowercase_ = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowercase_ = checkpoint[F'''upsamples.{i}.1.weight_g'''] lowercase_ = checkpoint[F'''upsamples.{i}.1.weight_v'''] lowercase_ = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase_ = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] lowercase_ = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] lowercase_ = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] lowercase_ = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] lowercase_ = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] lowercase_ = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] lowercase_ = checkpoint["""output_conv.1.weight_g"""] lowercase_ = checkpoint["""output_conv.1.weight_v"""] lowercase_ = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , ): if config_path is not None: lowercase_ = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase__ ) else: lowercase_ = SpeechTaHifiGanConfig() lowercase_ = SpeechTaHifiGan(UpperCAmelCase__ ) lowercase_ = torch.load(UpperCAmelCase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = np.load(UpperCAmelCase__ ) lowercase_ = stats[0].reshape(-1 ) lowercase_ = stats[1].reshape(-1 ) lowercase_ = torch.from_numpy(UpperCAmelCase__ ).float() lowercase_ = torch.from_numpy(UpperCAmelCase__ ).float() model.save_pretrained(UpperCAmelCase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) a = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig a = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = 'maskformer' __SCREAMING_SNAKE_CASE : Union[str, Any] = {'hidden_size': 'mask_feature_size'} __SCREAMING_SNAKE_CASE : str = ['resnet', 'swin'] __SCREAMING_SNAKE_CASE : Dict = ['detr'] def __init__( self : Dict , UpperCamelCase__ : int = 256 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[Dict] = None , UpperCamelCase__ : Optional[Dict] = None , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : float = 20.0 , UpperCamelCase__ : Optional[bool] = None , **UpperCamelCase__ : Dict , ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase_ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = backbone_config.pop("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(UpperCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase_ = DetrConfig() else: # verify that the decoder is supported lowercase_ = ( decoder_config.pop("""model_type""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {",".join(self.decoders_supported )}''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = CONFIG_MAPPING[decoder_type] lowercase_ = config_class.from_dict(UpperCamelCase__ ) lowercase_ = backbone_config lowercase_ = decoder_config # main feature dimension for the model lowercase_ = fpn_feature_size lowercase_ = mask_feature_size # initializer lowercase_ = init_std lowercase_ = init_xavier_std # Hungarian matcher && loss lowercase_ = cross_entropy_weight lowercase_ = dice_weight lowercase_ = mask_weight lowercase_ = use_auxiliary_loss lowercase_ = no_object_weight lowercase_ = output_auxiliary_logits lowercase_ = self.decoder_config.encoder_attention_heads lowercase_ = self.decoder_config.num_hidden_layers super().__init__(**UpperCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , UpperCamelCase__ : PretrainedConfig , UpperCamelCase__ : PretrainedConfig , **UpperCamelCase__ : Any ): '''simple docstring''' return cls( backbone_config=UpperCamelCase__ , decoder_config=UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.decoder_config.to_dict() lowercase_ = self.__class__.model_type return output
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase_ ( UpperCAmelCase__ ): if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(UpperCAmelCase__ , """_dynamo""" ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = True ): lowercase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase_ = is_compiled_module(UpperCAmelCase__ ) if is_compiled: lowercase_ = model lowercase_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = model.module if not keep_fpaa_wrapper: lowercase_ = getattr(UpperCAmelCase__ , """forward""" ) lowercase_ = model.__dict__.pop("""_original_forward""" , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , """__wrapped__""" ): lowercase_ = forward.__wrapped__ if forward == original_forward: break lowercase_ = forward if getattr(UpperCAmelCase__ , """_converted_to_transformer_engine""" , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: lowercase_ = model lowercase_ = compiled_model return model def UpperCAmelCase_ ( ): PartialState().wait_for_everyone() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def UpperCAmelCase_ ( **UpperCAmelCase__ ): for key, value in kwargs.items(): lowercase_ = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase_ ( UpperCAmelCase__ ): if not hasattr(UpperCAmelCase__ , """__qualname__""" ) and not hasattr(UpperCAmelCase__ , """__name__""" ): lowercase_ = getattr(UpperCAmelCase__ , """__class__""" , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , """__qualname__""" ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , """__name__""" ): return obj.__name__ return str(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: lowercase_ = value return destination def UpperCAmelCase_ ( UpperCAmelCase__ = None ): if port is None: lowercase_ = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Any = ['pixel_values'] def __init__( self : Optional[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = do_rescale lowercase_ = do_normalize lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = size lowercase_ = resample lowercase_ = rescale_factor lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "shortest_edge" in size: lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase__ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase_ = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" , default_to_square=UpperCamelCase__ ) lowercase_ = resample if resample is not None else self.resample lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ ) if not is_batched(UpperCamelCase__ ): lowercase_ = [images] if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase__ : def __init__( self : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=2 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : int=36 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : str=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : str=16 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : List[Any]=6 , UpperCamelCase__ : Tuple=6 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=1_000 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = image_size lowercase_ = patch_size lowercase_ = text_seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = coordinate_size lowercase_ = shape_size lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase_ = text_seq_length lowercase_ = (image_size // patch_size) ** 2 + 1 lowercase_ = self.text_seq_length + self.image_seq_length def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase_ = bbox[i, j, 3] lowercase_ = bbox[i, j, 1] lowercase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase_ = bbox[i, j, 2] lowercase_ = bbox[i, j, 0] lowercase_ = t lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image lowercase_ = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) lowercase_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase_ = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Dict ): '''simple docstring''' return True def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = LayoutLMvaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' lowercase_ = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): lowercase_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): lowercase_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) lowercase_ = torch.tensor([[1, 2]] ) lowercase_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowercase_ = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits lowercase_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) lowercase_ = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase_ = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase__ ) , torch_builtin(UpperCamelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase__ ) , gelu_new(UpperCamelCase__ ) ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase_ = get_activation("""gelu""" ) lowercase_ = get_activation("""gelu_10""" ) lowercase_ = torch_builtin(UpperCamelCase__ ) lowercase_ = geluaa(UpperCamelCase__ ) lowercase_ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(UpperCamelCase__ ): get_activation("""bogus""" ) with self.assertRaises(UpperCamelCase__ ): get_activation(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = get_activation("""gelu""" ) lowercase_ = 1 lowercase_ = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase__ ): lowercase_ = acta.a
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
# Algorithm for the pigeonhole sorting def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = min(UpperCAmelCase__ ) # min() finds the minimum value lowercase_ = max(UpperCAmelCase__ ) # max() finds the maximum value lowercase_ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase_ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase_ = 0 for count in range(UpperCAmelCase__ ): while holes[count] > 0: holes[count] -= 1 lowercase_ = count + min_val i += 1 def UpperCAmelCase_ ( ): lowercase_ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCAmelCase__ ) print("""Sorted order is:""" , """ """.join(UpperCAmelCase__ ) ) if __name__ == "__main__": main()
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch a = random.Random() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=1.0 , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Dict: if rng is None: lowercase_ = global_rng lowercase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCamelCase__ ( unittest.TestCase ): def __init__( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=7 , UpperCamelCase__ : str=400 , UpperCamelCase__ : Union[str, Any]=2_000 , UpperCamelCase__ : Dict=10 , UpperCamelCase__ : Optional[Any]=160 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : List[Any]=4_000 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=True , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = min_seq_length lowercase_ = max_seq_length lowercase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ = padding_value lowercase_ = sampling_rate lowercase_ = return_attention_mask lowercase_ = do_normalize lowercase_ = feature_size lowercase_ = chunk_length lowercase_ = hop_length def UpperCAmelCase__ ( self : str ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=False ): '''simple docstring''' def _flatten(UpperCamelCase__ : Optional[Any] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: lowercase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase_ = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowercase_ = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) lowercase_ = feat_extract_first.to_dict() lowercase_ = feat_extract_second.to_dict() lowercase_ = feat_extract_first.mel_filters lowercase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowercase_ = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) lowercase_ = feat_extract_first.to_dict() lowercase_ = feat_extract_second.to_dict() lowercase_ = feat_extract_first.mel_filters lowercase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowercase_ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size lowercase_ = feature_extractor(UpperCamelCase__ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowercase_ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowercase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase_ = np.asarray(UpperCamelCase__ ) lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test truncation required lowercase_ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowercase_ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] lowercase_ = [x[: feature_extractor.n_samples] for x in speech_inputs] lowercase_ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs_truncated] lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' import torch lowercase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ = np.random.rand(100 , 32 ).astype(np.floataa ) lowercase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase_ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase_ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowercase_ = ds.sort("""id""" ).select(range(UpperCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on lowercase_ = self._load_datasamples(1 ) lowercase_ = WhisperFeatureExtractor() lowercase_ = feature_extractor(UpperCamelCase__ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ = self._load_datasamples(1 )[0] lowercase_ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowercase_ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase__ )[0] self.assertTrue(np.all(np.mean(UpperCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ ) - 1 ) < 1e-3 ) )
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Optional[int] = 'deta' __SCREAMING_SNAKE_CASE : str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Union[str, Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : str=900 , UpperCamelCase__ : int=2_048 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Dict=2_048 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : str=6 , UpperCamelCase__ : Optional[Any]=1_024 , UpperCamelCase__ : Tuple=8 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : str="relu" , UpperCamelCase__ : Any=256 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : int=1.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Any="sine" , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=300 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=1 , UpperCamelCase__ : int=5 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : int=0.25 , **UpperCamelCase__ : Tuple , ): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = backbone_config.pop("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(UpperCamelCase__ ) lowercase_ = backbone_config lowercase_ = num_queries lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = encoder_layerdrop lowercase_ = auxiliary_loss lowercase_ = position_embedding_type # deformable attributes lowercase_ = num_feature_levels lowercase_ = encoder_n_points lowercase_ = decoder_n_points lowercase_ = two_stage lowercase_ = two_stage_num_proposals lowercase_ = with_box_refine lowercase_ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowercase_ = class_cost lowercase_ = bbox_cost lowercase_ = giou_cost # Loss coefficients lowercase_ = mask_loss_coefficient lowercase_ = dice_loss_coefficient lowercase_ = bbox_loss_coefficient lowercase_ = giou_loss_coefficient lowercase_ = eos_coefficient lowercase_ = focal_alpha super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCAmelCase_ ( ): lowercase_ = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase__ , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase__ , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase__ , default=5e-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase__ , default=1_0 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase__ , default="""./results""" ) return parser.parse_args() a = load('accuracy') def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = eval_pred lowercase_ = np.argmax(UpperCAmelCase__ , axis=1 ) return metric.compute(predictions=UpperCAmelCase__ , references=UpperCAmelCase__ ) class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Tuple , UpperCamelCase__ : int ): '''simple docstring''' super().__init__() lowercase_ = trainer def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , **UpperCamelCase__ : str ): '''simple docstring''' if control.should_evaluate: lowercase_ = deepcopy(UpperCamelCase__ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def UpperCAmelCase_ ( ): lowercase_ = get_args() set_seed(args.seed ) lowercase_ = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) lowercase_ = dataset.train_test_split(test_size=0.2 ) lowercase_ = train_test["""test"""].train_test_split(test_size=0.5 ) lowercase_ = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) lowercase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase_ = tokenizer.eos_token lowercase_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowercase_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowercase_ = False lowercase_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase__ ): lowercase_ = tokenizer(example["""src"""] , truncation=UpperCAmelCase__ , max_length=1_0_2_4 ) lowercase_ = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowercase_ = train_test_validation.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=train_test_validation["""train"""].column_names , ) lowercase_ = DataCollatorWithPadding(tokenizer=UpperCAmelCase__ ) lowercase_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase__ ) ) trainer.train() if __name__ == "__main__": main()
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
from __future__ import annotations def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [True] * limit lowercase_ = False lowercase_ = False lowercase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase_ = i * 2 while index < limit: lowercase_ = False lowercase_ = index + i lowercase_ = [2] for i in range(3 , UpperCAmelCase__ , 2 ): if is_prime[i]: primes.append(UpperCAmelCase__ ) return primes def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0_0_0_0_0 ): lowercase_ = prime_sieve(UpperCAmelCase__ ) lowercase_ = 0 lowercase_ = 0 for i in range(len(UpperCAmelCase__ ) ): for j in range(i + length , len(UpperCAmelCase__ ) ): lowercase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase_ = j - i lowercase_ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['PoolFormerFeatureExtractor'] a = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure)
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : int = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str]=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) lowercase_ = sag_pipe.to(UpperCamelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """.""" lowercase_ = torch.manual_seed(0 ) lowercase_ = sag_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowercase_ = sag_pipe.to(UpperCamelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """.""" lowercase_ = torch.manual_seed(0 ) lowercase_ = sag_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowercase_ = sag_pipe.to(UpperCamelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """.""" lowercase_ = torch.manual_seed(0 ) lowercase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) lowercase_ = output.images assert image.shape == (1, 512, 768, 3)
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a = logging.get_logger(__name__) # pylint: disable=invalid-name a = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=8 ): lowercase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Union[str, Any] , UpperCamelCase__ : UNetaDConditionModel , UpperCamelCase__ : DDPMScheduler , UpperCamelCase__ : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , movq=UpperCamelCase__ , ) lowercase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if latents is None: lowercase_ = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowercase_ = latents.to(UpperCamelCase__ ) lowercase_ = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Dict=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase_ = torch.device(F'''cuda:{gpu_id}''' ) lowercase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowercase_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ = cpu_offload_with_hook(UpperCamelCase__ , UpperCamelCase__ , prev_module_hook=UpperCamelCase__ ) # We'll offload the last model manually. lowercase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase__ ) def __call__( self : Union[str, Any] , UpperCamelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : int = 512 , UpperCamelCase__ : int = 512 , UpperCamelCase__ : int = 100 , UpperCamelCase__ : float = 4.0 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , ): '''simple docstring''' lowercase_ = self._execution_device lowercase_ = guidance_scale > 1.0 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = torch.cat(UpperCamelCase__ , dim=0 ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = torch.cat(UpperCamelCase__ , dim=0 ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = torch.cat(UpperCamelCase__ , dim=0 ) lowercase_ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowercase_ = image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowercase_ = negative_image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowercase_ = hint.repeat_interleave(UpperCamelCase__ , dim=0 ) lowercase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase__ ) lowercase_ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase__ ) self.scheduler.set_timesteps(UpperCamelCase__ , device=UpperCamelCase__ ) lowercase_ = self.scheduler.timesteps lowercase_ = self.movq.config.latent_channels lowercase_ , lowercase_ = downscale_height_and_width(UpperCamelCase__ , UpperCamelCase__ , self.movq_scale_factor ) # create initial latent lowercase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance lowercase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ = {"""image_embeds""": image_embeds, """hint""": hint} lowercase_ = self.unet( sample=UpperCamelCase__ , timestep=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , added_cond_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ = noise_pred.chunk(2 ) lowercase_ , lowercase_ = variance_pred.chunk(2 ) lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ , )[0] # post-processing lowercase_ = self.movq.decode(UpperCamelCase__ , force_not_quantize=UpperCamelCase__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase_ = image * 0.5 + 0.5 lowercase_ = image.clamp(0 , 1 ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' import numpy as np import datasets a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ), } ) , ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = np.array(UpperCamelCase__ ) lowercase_ = np.array(UpperCamelCase__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction lowercase_ = X - np.mean(UpperCamelCase__ ) lowercase_ = np.cov(reference_distribution.T ) try: lowercase_ = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: lowercase_ = np.linalg.pinv(UpperCamelCase__ ) lowercase_ = np.dot(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = np.dot(UpperCamelCase__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if 'large' in model_name or 'huge' in model_name else False lowerCamelCase_ = True if 'large' in model_name or 'huge' in model_name else False lowerCamelCase_ = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 1_28 elif "large" in model_name: lowerCamelCase_ = 1_92 elif "xlarge" in model_name: lowerCamelCase_ = 2_56 elif "huge" in model_name: lowerCamelCase_ = 3_52 # set label information lowerCamelCase_ = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = 'imagenet-22k-id2label.json' else: lowerCamelCase_ = 'imagenet-1k-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowercase , depths=lowercase , focal_levels=lowercase , focal_windows=lowercase , use_conv_embed=lowercase , idalabel=lowercase , labelaid=lowercase , use_post_layernorm=lowercase , use_layerscale=lowercase , ) return config def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: lowerCamelCase_ = 'encoder.' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": lowerCamelCase_ = 'layernorm.weight' if name == "norm.bias": lowerCamelCase_ = 'layernorm.bias' if "head" in name: lowerCamelCase_ = name.replace('head' , 'classifier' ) else: lowerCamelCase_ = 'focalnet.' + name return name def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple , lowercase : List[str]=False ): '''simple docstring''' lowerCamelCase_ = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('Checkpoint URL: ' , lowercase ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowercase ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowercase ) lowerCamelCase_ = FocalNetForImageClassification(lowercase ) model.eval() # load state dict model.load_state_dict(lowercase ) # verify conversion lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = BitImageProcessor( do_resize=lowercase , size={'shortest_edge': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase , crop_size=2_24 , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , ) lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) lowerCamelCase_ = processor(images=lowercase , return_tensors='pt' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowercase , atol=1e-4 ) lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = LxmertTokenizer UpperCamelCase = LxmertTokenizerFast UpperCamelCase = True UpperCamelCase = True def a__ ( self : Any ) -> List[Any]: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Any , A_ : str ) -> Any: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [7, 4, 5, 10, 8, 9] ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'I was born in 92000, and this is falsé.' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ )
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowerCamelCase : Union[str, Any] = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : str , lowercase : Tuple , lowercase : Any , lowercase : str , lowercase : Optional[Any] ): '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(lowercase ) , version.parse(lowercase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' lowerCamelCase_ = f"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , lowercase ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = requirement, None, None else: lowerCamelCase_ = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , lowercase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f""" got {requirement}""" ) lowerCamelCase_ , lowerCamelCase_ = match[0] lowerCamelCase_ = want_full.split(',' ) # there could be multiple requirements lowerCamelCase_ = {} for w in want_range: lowerCamelCase_ = re.findall(r'^([\s!=<>]{1,2})(.+)' , lowercase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f""" but got {requirement}""" ) lowerCamelCase_ , lowerCamelCase_ = match[0] lowerCamelCase_ = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowerCamelCase_ = '.'.join([str(lowercase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) return # check if any version is installed try: lowerCamelCase_ = importlib.metadata.version(lowercase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(lowercase , lowercase )
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neo''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , A_ : List[str]=50257 , A_ : List[str]=2048 , A_ : Dict=2048 , A_ : str=24 , A_ : Tuple=[[["global", "local"], 12]] , A_ : List[str]=16 , A_ : Tuple=None , A_ : str=256 , A_ : int="gelu_new" , A_ : List[Any]=0.0 , A_ : int=0.0 , A_ : Union[str, Any]=0.0 , A_ : int=0.1 , A_ : Optional[int]=1E-5 , A_ : List[Any]=0.02 , A_ : Any=True , A_ : Tuple=50256 , A_ : Optional[Any]=50256 , **A_ : Dict , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_layers lowerCamelCase_ = num_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = window_size lowerCamelCase_ = activation_function lowerCamelCase_ = resid_dropout lowerCamelCase_ = embed_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = classifier_dropout lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = use_cache lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id lowerCamelCase_ = attention_types lowerCamelCase_ = self.expand_attention_types_params(A_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) @staticmethod def a__ ( A_ : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Any , lowercase : Dict , lowercase : Union[str, Any] ): '''simple docstring''' import torch lowerCamelCase_ = input.size() lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = shape[dimension] lowerCamelCase_ = torch.arange(0 , lowercase , lowercase ) lowerCamelCase_ = torch.div(sizedim - size , lowercase , rounding_mode='floor' ) + 1 lowerCamelCase_ = torch.arange(lowercase ) + low_indices[:min_length][:, None] lowerCamelCase_ = [slice(lowercase )] * rank lowerCamelCase_ = indices lowerCamelCase_ = input[s] lowerCamelCase_ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Dict ): '''simple docstring''' import torch lowerCamelCase_ = torch.arange(1 , lowercase ) lowerCamelCase_ = torch.remainder(lowercase , lowercase ) lowerCamelCase_ = remainders == 0 lowerCamelCase_ = candidates[divisor_indices] lowerCamelCase_ = torch.max(lowercase ) return largest_divisor, torch.div(lowercase , lowercase , rounding_mode='floor' ) class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCamelCase_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) lowerCamelCase_ = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return common_inputs @property def a__ ( self : int ) -> int: """simple docstring""" return self._config.num_heads def a__ ( self : str , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCamelCase_ = super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() lowerCamelCase_ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase_ = seqlen + 2 lowerCamelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase_ = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] lowerCamelCase_ = common_inputs['attention_mask'] if self.use_past: lowerCamelCase_ = ordered_inputs['attention_mask'].dtype lowerCamelCase_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def a__ ( self : Optional[int] ) -> int: """simple docstring""" return 13
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCamelCase : Dict = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } lowerCamelCase : Dict = { "RUCAIBox/mvp": 1_024, } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = MvpTokenizer def __init__( self : List[str] , A_ : Optional[Any]=None , A_ : str=None , A_ : Dict=None , A_ : Optional[int]="replace" , A_ : str="<s>" , A_ : Any="</s>" , A_ : Optional[Any]="</s>" , A_ : int="<s>" , A_ : Optional[Any]="<unk>" , A_ : Tuple="<pad>" , A_ : List[Any]="<mask>" , A_ : Optional[Any]=False , A_ : Union[str, Any]=True , **A_ : Any , ) -> List[Any]: """simple docstring""" super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , A_ ) != add_prefix_space: lowerCamelCase_ = getattr(A_ , pre_tok_state.pop('type' ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**A_ ) lowerCamelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCamelCase_ = 'post_processor' lowerCamelCase_ = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: lowerCamelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase_ = tuple(state['sep'] ) if "cls" in state: lowerCamelCase_ = tuple(state['cls'] ) lowerCamelCase_ = False if state.get('add_prefix_space' , A_ ) != add_prefix_space: lowerCamelCase_ = add_prefix_space lowerCamelCase_ = True if state.get('trim_offsets' , A_ ) != trim_offsets: lowerCamelCase_ = trim_offsets lowerCamelCase_ = True if changes_to_apply: lowerCamelCase_ = getattr(A_ , state.pop('type' ) ) lowerCamelCase_ = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def a__ ( self : int ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self : List[str] , A_ : Any ) -> int: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value lowerCamelCase_ = value def a__ ( self : Optional[int] , *A_ : Optional[int] , **A_ : int ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ = kwargs.get('is_split_into_words' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*A_ , **A_ ) def a__ ( self : str , *A_ : List[Any] , **A_ : Tuple ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ = kwargs.get('is_split_into_words' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*A_ , **A_ ) def a__ ( self : Union[str, Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def a__ ( self : List[str] , A_ : int , A_ : List[Any]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , A_ : str , A_ : int=7 , A_ : Optional[Any]=3 , A_ : Tuple=18 , A_ : List[Any]=30 , A_ : Optional[int]=400 , A_ : List[str]=True , A_ : str=32 , A_ : Union[str, Any]=True , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size_divisor lowerCamelCase_ = do_rescale def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = GLPNImageProcessor if is_vision_available() else None def a__ ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = GLPNImageProcessingTester(self ) @property def a__ ( self : str ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size_divisor' ) ) self.assertTrue(hasattr(A_ , 'resample' ) ) self.assertTrue(hasattr(A_ , 'do_rescale' ) ) def a__ ( self : str ) -> Tuple: """simple docstring""" pass def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1
import sys import turtle def _SCREAMING_SNAKE_CASE ( lowercase : tuple[float, float] , lowercase : tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _SCREAMING_SNAKE_CASE ( lowercase : tuple[float, float] , lowercase : tuple[float, float] , lowercase : tuple[float, float] , lowercase : int , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowercase , get_mid(lowercase , lowercase ) , get_mid(lowercase , lowercase ) , depth - 1 ) triangle(lowercase , get_mid(lowercase , lowercase ) , get_mid(lowercase , lowercase ) , depth - 1 ) triangle(lowercase , get_mid(lowercase , lowercase ) , get_mid(lowercase , lowercase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) lowerCamelCase : Optional[Any] = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") lowerCamelCase : str = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''image''': Image()} ) UpperCamelCase = Features({'''labels''': ClassLabel} ) UpperCamelCase = "image" UpperCamelCase = "labels" def a__ ( self : Optional[int] , A_ : Any ) -> str: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , A_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCamelCase_ = copy.deepcopy(self ) lowerCamelCase_ = self.label_schema.copy() lowerCamelCase_ = features[self.label_column] lowerCamelCase_ = label_schema return task_template @property def a__ ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCamelCase : int = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): lowerCamelCase_ = v.to_dict() return d
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(UpperCamelCase )} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) UpperCamelCase = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) UpperCamelCase = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) UpperCamelCase = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) UpperCamelCase = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''train''' UpperCamelCase = '''dev''' class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : Optional[int] , A_ : SquadDataTrainingArguments , A_ : PreTrainedTokenizer , A_ : Optional[int] = None , A_ : Union[str, Split] = Split.train , A_ : Optional[bool] = False , A_ : Optional[str] = None , A_ : Optional[str] = "pt" , ) -> Dict: """simple docstring""" lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(A_ , A_ ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = 'v2' if args.version_2_with_negative else 'v1' lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + '.lock' with FileLock(A_ ): if os.path.exists(A_ ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(A_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features['features'] lowerCamelCase_ = self.old_features.get('dataset' , A_ ) lowerCamelCase_ = self.old_features.get('examples' , A_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=A_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=A_ , ) lowerCamelCase_ = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , A_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Any , A_ : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
import math def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00 ): '''simple docstring''' lowerCamelCase_ = sum(i * i for i in range(1 , n + 1 ) ) lowerCamelCase_ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''xlm''' UpperCamelCase = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : Dict , A_ : int=30145 , A_ : Optional[Any]=2048 , A_ : Dict=12 , A_ : List[str]=16 , A_ : Union[str, Any]=0.1 , A_ : Optional[int]=0.1 , A_ : Optional[int]=True , A_ : Dict=False , A_ : Optional[Any]=False , A_ : List[Any]=False , A_ : Dict=1 , A_ : int=True , A_ : List[str]=512 , A_ : int=2048**-0.5 , A_ : str=1E-12 , A_ : List[Any]=0.02 , A_ : Union[str, Any]=0 , A_ : str=1 , A_ : Dict=2 , A_ : Optional[int]=3 , A_ : int=5 , A_ : Optional[Any]=True , A_ : List[str]="first" , A_ : Tuple=True , A_ : Optional[int]=None , A_ : str=True , A_ : Optional[int]=0.1 , A_ : List[str]=5 , A_ : Any=5 , A_ : List[Any]=0 , A_ : Dict=0 , A_ : List[str]=2 , A_ : List[str]=0 , **A_ : Optional[Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = emb_dim lowerCamelCase_ = n_layers lowerCamelCase_ = n_heads lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = gelu_activation lowerCamelCase_ = sinusoidal_embeddings lowerCamelCase_ = causal lowerCamelCase_ = asm lowerCamelCase_ = n_langs lowerCamelCase_ = use_lang_emb lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = bos_index lowerCamelCase_ = eos_index lowerCamelCase_ = pad_index lowerCamelCase_ = unk_index lowerCamelCase_ = mask_index lowerCamelCase_ = is_encoder lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = embed_init_std lowerCamelCase_ = init_std lowerCamelCase_ = summary_type lowerCamelCase_ = summary_use_proj lowerCamelCase_ = summary_activation lowerCamelCase_ = summary_proj_to_labels lowerCamelCase_ = summary_first_dropout lowerCamelCase_ = start_n_top lowerCamelCase_ = end_n_top lowerCamelCase_ = mask_token_id lowerCamelCase_ = lang_id if "n_words" in kwargs: lowerCamelCase_ = kwargs['n_words'] super().__init__(pad_token_id=A_ , bos_token_id=A_ , **A_ ) class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] def a__ ( self : Any , A_ : Optional[int] , A_ : Any , A_ : Tuple , **A_ : List[str] ) -> List[Any]: """simple docstring""" self.events.append('on_init_end' ) def a__ ( self : Dict , A_ : List[Any] , A_ : List[Any] , A_ : List[Any] , **A_ : Tuple ) -> Optional[int]: """simple docstring""" self.events.append('on_train_begin' ) def a__ ( self : str , A_ : Dict , A_ : Optional[int] , A_ : Optional[Any] , **A_ : List[str] ) -> Optional[Any]: """simple docstring""" self.events.append('on_train_end' ) def a__ ( self : List[str] , A_ : List[Any] , A_ : Dict , A_ : Optional[int] , **A_ : Optional[Any] ) -> Any: """simple docstring""" self.events.append('on_epoch_begin' ) def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : List[str] , A_ : Dict , **A_ : Dict ) -> Union[str, Any]: """simple docstring""" self.events.append('on_epoch_end' ) def a__ ( self : int , A_ : Dict , A_ : str , A_ : List[str] , **A_ : Optional[Any] ) -> Optional[int]: """simple docstring""" self.events.append('on_step_begin' ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , **A_ : Dict ) -> Optional[int]: """simple docstring""" self.events.append('on_step_end' ) def a__ ( self : Union[str, Any] , A_ : int , A_ : Dict , A_ : Union[str, Any] , **A_ : Dict ) -> List[str]: """simple docstring""" self.events.append('on_evaluate' ) def a__ ( self : Union[str, Any] , A_ : Tuple , A_ : int , A_ : Optional[Any] , **A_ : Any ) -> Optional[int]: """simple docstring""" self.events.append('on_predict' ) def a__ ( self : List[Any] , A_ : Dict , A_ : Optional[Any] , A_ : int , **A_ : int ) -> str: """simple docstring""" self.events.append('on_save' ) def a__ ( self : int , A_ : str , A_ : Dict , A_ : Tuple , **A_ : List[str] ) -> List[Any]: """simple docstring""" self.events.append('on_log' ) def a__ ( self : Optional[int] , A_ : Dict , A_ : Any , A_ : Optional[Any] , **A_ : Dict ) -> List[str]: """simple docstring""" self.events.append('on_prediction_step' ) @require_torch class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" shutil.rmtree(self.output_dir ) def a__ ( self : Dict , A_ : Optional[int]=0 , A_ : Any=0 , A_ : Any=64 , A_ : Optional[int]=64 , A_ : Tuple=None , A_ : Dict=False , **A_ : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = RegressionDataset(length=A_ ) lowerCamelCase_ = RegressionDataset(length=A_ ) lowerCamelCase_ = RegressionModelConfig(a=A_ , b=A_ ) lowerCamelCase_ = RegressionPreTrainedModel(A_ ) lowerCamelCase_ = TrainingArguments(self.output_dir , disable_tqdm=A_ , report_to=[] , **A_ ) return Trainer( A_ , A_ , train_dataset=A_ , eval_dataset=A_ , callbacks=A_ , ) def a__ ( self : Tuple , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) # Order doesn't matter lowerCamelCase_ = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) lowerCamelCase_ = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) for cba, cba in zip(A_ , A_ ): if isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(A_ , A_ ) elif isinstance(A_ , A_ ) and not isinstance(A_ , A_ ): self.assertEqual(A_ , cba.__class__ ) elif not isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(cba.__class__ , A_ ) else: self.assertEqual(A_ , A_ ) def a__ ( self : Optional[int] , A_ : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = ['on_init_end', 'on_train_begin'] lowerCamelCase_ = 0 lowerCamelCase_ = len(trainer.get_eval_dataloader() ) lowerCamelCase_ = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(A_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # Callbacks passed at init are added to the default callbacks lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCamelCase_ = self.get_trainer(disable_tqdm=A_ ) lowerCamelCase_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCamelCase_ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = trainer.pop_callback(A_ ) self.assertEqual(cb.__class__ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # We can also add, pop, or remove by instance lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = trainer.callback_handler.callbacks[0] trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = trainer.callback_handler.callbacks[0] lowerCamelCase_ = trainer.pop_callback(A_ ) self.assertEqual(A_ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=A_ ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # Independent log/save/eval lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # A bit of everything lowerCamelCase_ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowerCamelCase_ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A_ ) in warn_mock.call_args[0][0]
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : int = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Optional[int]=False ): '''simple docstring''' try: lowerCamelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCamelCase_ = default else: # KEY is set, convert it to True or False. try: lowerCamelCase_ = strtobool(lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value lowerCamelCase : List[str] = parse_flag_from_env("RUN_SLOW", default=False) lowerCamelCase : Optional[Any] = parse_flag_from_env("RUN_REMOTE", default=False) lowerCamelCase : List[str] = parse_flag_from_env("RUN_LOCAL", default=True) lowerCamelCase : Any = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression lowerCamelCase : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") lowerCamelCase : List[str] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") lowerCamelCase : Any = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio lowerCamelCase : str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam lowerCamelCase : Optional[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility lowerCamelCase : List[Any] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows lowerCamelCase : str = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' try: import faiss # noqa except ImportError: lowerCamelCase_ = unittest.skip('test requires faiss' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' try: import regex # noqa except ImportError: lowerCamelCase_ = unittest.skip('test requires regex' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: lowerCamelCase_ = unittest.skip('test requires elasticsearch' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: lowerCamelCase_ = unittest.skip('test requires sqlalchemy' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' if not config.TORCH_AVAILABLE: lowerCamelCase_ = unittest.skip('test requires PyTorch' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' if not config.TF_AVAILABLE: lowerCamelCase_ = unittest.skip('test requires TensorFlow' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if not config.JAX_AVAILABLE: lowerCamelCase_ = unittest.skip('test requires JAX' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if not config.PIL_AVAILABLE: lowerCamelCase_ = unittest.skip('test requires Pillow' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(lowercase ) else: return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(lowercase ) else: return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(lowercase ) else: return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' def _require_spacy_model(lowercase : int ): try: import spacy # noqa F401 spacy.load(lowercase ) except ImportError: return unittest.skip('test requires spacy' )(lowercase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(lowercase ) )(lowercase ) else: return test_case return _require_spacy_model def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(lowercase ) else: return test_case def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(lowercase ) else: return test_case def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: lowerCamelCase_ = unittest.skip('test is slow' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: lowerCamelCase_ = unittest.skip('test is local' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: lowerCamelCase_ = unittest.skip('test is packaged' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: lowerCamelCase_ = unittest.skip('test requires remote' )(lowercase ) return test_case def _SCREAMING_SNAKE_CASE ( *lowercase : Dict ): '''simple docstring''' def decorate(cls : Optional[int] ): for name, fn in cls.__dict__.items(): if callable(lowercase ) and name.startswith('test' ): for decorator in decorators: lowerCamelCase_ = decorator(lowercase ) setattr(cls , lowercase , lowercase ) return cls return decorate class A( UpperCamelCase ): '''simple docstring''' pass class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 2 @contextmanager def _SCREAMING_SNAKE_CASE ( lowercase : Dict=OfflineSimulationMode.CONNECTION_FAILS , lowercase : Optional[Any]=1e-1_6 ): '''simple docstring''' lowerCamelCase_ = requests.Session().request def timeout_request(lowercase : Tuple , lowercase : List[Any] , lowercase : Dict , **lowercase : Optional[Any] ): # Change the url to an invalid url so that the connection hangs lowerCamelCase_ = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) lowerCamelCase_ = timeout try: return online_request(lowercase , lowercase , **lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCamelCase_ = url lowerCamelCase_ = e.args[0] lowerCamelCase_ = (max_retry_error.args[0].replace('10.255.255.1' , f"""OfflineMock[{url}]""" ),) lowerCamelCase_ = (max_retry_error,) raise def raise_connection_error(lowercase : Any , lowercase : Union[str, Any] , **lowercase : List[Any] ): raise requests.ConnectionError('Offline mode is enabled.' , request=lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , lowercase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def _SCREAMING_SNAKE_CASE ( *lowercase : int , **lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowercase , **lowercase ) as tmp_dir: try: os.chdir(lowercase ) yield finally: os.chdir(lowercase ) @contextmanager def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' import gc gc.collect() lowerCamelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' import gc gc.collect() lowerCamelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' return deepcopy(lowercase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(lowercase ).integers(0 , 1_00 , 10 ).tolist() def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(lowercase : Any , *lowercase : Optional[int] , **lowercase : Optional[int] ): try: return func(*lowercase , **lowercase ) except HTTPError as err: if str(lowercase ).startswith('500' ) or str(lowercase ).startswith('502' ): pytest.xfail(str(lowercase ) ) raise err return decorator.decorator(_wrapper , lowercase ) class A: '''simple docstring''' def __init__( self : str , A_ : Tuple , A_ : Optional[Any] , A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = returncode lowerCamelCase_ = stdout lowerCamelCase_ = stderr async def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : List[Any] ): '''simple docstring''' while True: lowerCamelCase_ = await stream.readline() if line: callback(lowercase ) else: break async def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : List[Any]=None , lowercase : Dict=None , lowercase : List[str]=None , lowercase : int=False , lowercase : Union[str, Any]=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(lowercase ) ) lowerCamelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCamelCase_ = [] lowerCamelCase_ = [] def tee(lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[str]="" ): lowerCamelCase_ = line.decode('utf-8' ).rstrip() sink.append(lowercase ) if not quiet: print(lowercase , lowercase , file=lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowercase : tee(lowercase , lowercase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda lowercase : tee(lowercase , lowercase , sys.stderr , label='stderr:' ) ), ] , timeout=lowercase , ) return _RunOutput(await p.wait() , lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Optional[Any]=None , lowercase : Dict=None , lowercase : int=1_80 , lowercase : int=False , lowercase : int=True ): '''simple docstring''' lowerCamelCase_ = asyncio.get_event_loop() lowerCamelCase_ = loop.run_until_complete( _stream_subprocess(lowercase , env=lowercase , stdin=lowercase , timeout=lowercase , quiet=lowercase , echo=lowercase ) ) lowerCamelCase_ = ' '.join(lowercase ) if result.returncode > 0: lowerCamelCase_ = '\n'.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) lowerCamelCase_ = re.sub(r'^gw' , '' , lowercase , 0 , re.M ) return int(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 2_95_00 lowerCamelCase_ = pytest_xdist_worker_id() return port + uniq_delta
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCamelCase : List[str] = get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Dict , lowercase : Any , lowercase : int , lowercase : Any=0 ): '''simple docstring''' os.makedirs(lowercase , exist_ok=lowercase ) with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase_ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowerCamelCase_ = os.path.join(lowercase , lowercase ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(lowercase , lowercase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase_ = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(lowercase , lowercase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase_ = os.path.join(lowercase , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(lowercase , exist_ok=lowercase ) logger.info(f"""Saving model to {ckpt_dir}""" ) lowerCamelCase_ = {'model': state_dict} dist_cp.save_state_dict( state_dict=lowercase , storage_writer=dist_cp.FileSystemWriter(lowercase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : str , lowercase : int , lowercase : List[Any] , lowercase : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowercase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowerCamelCase_ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowerCamelCase_ = os.path.join(lowercase , lowercase ) logger.info(f"""Loading model from {input_model_file}""" ) lowerCamelCase_ = torch.load(lowercase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase_ = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) logger.info(f"""Loading model from {input_model_file}""" ) lowerCamelCase_ = torch.load(lowercase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase_ = ( os.path.join(lowercase , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) lowerCamelCase_ = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=lowercase , storage_reader=dist_cp.FileSystemReader(lowercase ) , planner=DefaultLoadPlanner() , ) lowerCamelCase_ = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : int , lowercase : Dict , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[Any]=0 ): '''simple docstring''' os.makedirs(lowercase , exist_ok=lowercase ) with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase_ = FSDP.optim_state_dict(lowercase , lowercase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowerCamelCase_ = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(lowercase , lowercase ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: lowerCamelCase_ = os.path.join(lowercase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(lowercase , exist_ok=lowercase ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(lowercase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowerCamelCase_ = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) lowerCamelCase_ = torch.load(lowercase ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: lowerCamelCase_ = ( os.path.join(lowercase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) lowerCamelCase_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(lowercase ) , ) lowerCamelCase_ = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) lowerCamelCase_ = FSDP.optim_state_dict_to_load(lowercase , lowercase , lowercase ) optimizer.load_state_dict(lowercase )
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : float , lowercase : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (volume) ) ) def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
import math def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 , lowercase , 2 ): if is_prime[i]: primes.append(lowercase ) return primes def _SCREAMING_SNAKE_CASE ( lowercase : int = 99_99_66_66_33_33 ): '''simple docstring''' lowerCamelCase_ = math.floor(math.sqrt(lowercase ) ) + 1_00 lowerCamelCase_ = prime_sieve(lowercase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Tuple = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCamelCase : str = None lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Optional[Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Union[str, Any] = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off lowerCamelCase : List[Any] = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = NllbTokenizer UpperCamelCase = [] UpperCamelCase = [] def __init__( self : Optional[int] , A_ : str=None , A_ : Any=None , A_ : List[str]="<s>" , A_ : List[Any]="</s>" , A_ : List[str]="</s>" , A_ : Optional[int]="<s>" , A_ : Dict="<unk>" , A_ : Dict="<pad>" , A_ : Any="<mask>" , A_ : List[str]=None , A_ : List[Any]=None , A_ : List[Any]=None , A_ : str=False , **A_ : int , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token lowerCamelCase_ = legacy_behaviour super().__init__( vocab_file=A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , src_lang=A_ , tgt_lang=A_ , additional_special_tokens=A_ , legacy_behaviour=A_ , **A_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(A_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__ ( self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a__ ( self : Dict , A_ : str ) -> None: """simple docstring""" lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ ( self : Any , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ ( self : Optional[int] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : int , A_ : str , A_ : Optional[str] , A_ : Optional[str] , **A_ : int ) -> int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(A_ , add_special_tokens=A_ , return_tensors=A_ , **A_ ) lowerCamelCase_ = self.convert_tokens_to_ids(A_ ) lowerCamelCase_ = tgt_lang_id return inputs def a__ ( self : Tuple , A_ : List[str] , A_ : str = "eng_Latn" , A_ : Optional[List[str]] = None , A_ : str = "fra_Latn" , **A_ : Tuple , ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__ ( self : str ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ ( self : Optional[int] , A_ : Dict ) -> None: """simple docstring""" lowerCamelCase_ = self.convert_tokens_to_ids(A_ ) if self.legacy_behaviour: lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase_ = [self.cur_lang_code] lowerCamelCase_ = [self.eos_token_id] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a__ ( self : str , A_ : str ) -> None: """simple docstring""" lowerCamelCase_ = self.convert_tokens_to_ids(A_ ) if self.legacy_behaviour: lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase_ = [self.cur_lang_code] lowerCamelCase_ = [self.eos_token_id] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a__ ( self : List[str] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
from __future__ import annotations lowerCamelCase : List[str] = 1.6021e-19 # units = C def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
651
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[Any] ): '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : int , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_json_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_json_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} lowerCamelCase_ = features.copy() lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_json_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : List[str] , lowercase : List[str] ): '''simple docstring''' if issubclass(lowercase , lowercase ): lowerCamelCase_ = jsonl_path elif issubclass(lowercase , lowercase ): lowerCamelCase_ = [jsonl_path] lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase ).read() _check_json_dataset(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : int , lowercase : int=("train",) ): '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: lowerCamelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Any , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_json_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : List[str] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} , features=lowercase , cache_dir=lowercase ).read() _check_json_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' if split: lowerCamelCase_ = {split: jsonl_path} else: lowerCamelCase_ = 'train' lowerCamelCase_ = {'train': jsonl_path, 'test': jsonl_path} lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase ).read() _check_json_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' return json.load(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return [json.loads(lowercase ) for line in buffer] class A: '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : Optional[Any] , A_ : Dict , A_ : List[Any] , A_ : List[str] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(A_ ) assert isinstance(A_ , A_ ) assert isinstance(exported_content[0] , A_ ) assert len(A_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : List[Any] , A_ : List[str] , A_ : Dict , A_ : List[str] ) -> List[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ , orient=A_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(A_ ) assert isinstance(A_ , A_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(A_ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : str , A_ : Tuple , A_ : List[Any] , A_ : List[str] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(A_ ) assert isinstance(A_ , A_ ) assert isinstance(exported_content[0] , A_ ) assert len(A_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : str , A_ : int , A_ : Union[str, Any] , A_ : Tuple , A_ : int , A_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ , orient=A_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(A_ ) assert isinstance(A_ , A_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(A_ ) == 10 def a__ ( self : Dict , A_ : str ) -> List[str]: """simple docstring""" with pytest.raises(A_ ): with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def a__ ( self : Any , A_ : Union[str, Any] , A_ : int , A_ : Tuple , A_ : Union[str, Any] , A_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" lowerCamelCase_ = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(A_ , A_ , compression=A_ ).write() with fsspec.open(A_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() with fsspec.open(A_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() assert exported_content == original_content
651
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class A: '''simple docstring''' def __init__( self : int , A_ : Tuple , A_ : List[str]=13 , A_ : int=7 , A_ : List[str]=False , A_ : Tuple=True , A_ : Dict=False , A_ : Any=False , A_ : int=19 , A_ : List[str]=32 , A_ : Union[str, Any]=5 , A_ : List[Any]=4 , A_ : str=37 , A_ : Optional[int]="gelu" , A_ : List[str]=0.1 , A_ : Dict=0.1 , A_ : Dict=512 , A_ : Optional[int]=16 , A_ : Optional[Any]=2 , A_ : Union[str, Any]=0.02 , A_ : str=3 , A_ : str=4 , A_ : Tuple=None , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=A_ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def a__ ( self : Union[str, Any] , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : Tuple , A_ : int , A_ : Any , A_ : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = EsmForProteinFolding(config=A_ ).float() model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ ) lowerCamelCase_ = model(A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = False UpperCamelCase = (EsmForProteinFolding,) if is_torch_available() else () UpperCamelCase = () UpperCamelCase = {} if is_torch_available() else {} UpperCamelCase = False def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = EsmFoldModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : Dict ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @unittest.skip('Does not support attention outputs' ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" pass @unittest.skip def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip('Esm does not support embedding resizing' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip('Esm does not support embedding resizing' ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" pass @unittest.skip('ESMFold does not support passing input embeds!' ) def a__ ( self : List[str] ) -> Any: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def a__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def a__ ( self : str ) -> str: """simple docstring""" pass @unittest.skip('ESMFold only has one output format.' ) def a__ ( self : int ) -> Any: """simple docstring""" pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def a__ ( self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip('ESMFold does not support input chunking.' ) def a__ ( self : str ) -> Any: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ ( self : List[str] ) -> str: """simple docstring""" pass @require_torch class A( UpperCamelCase ): '''simple docstring''' @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(A_ )['positions'] lowerCamelCase_ = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , A_ , atol=1E-4 ) )
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase : Optional[int] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = len([g for position, g in enumerate(lowercase ) if g == main_target[position]] ) return (item, float(lowercase )) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = random.randint(0 , len(lowercase ) - 1 ) lowerCamelCase_ = parent_a[:random_slice] + parent_a[random_slice:] lowerCamelCase_ = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : list[str] ): '''simple docstring''' lowerCamelCase_ = list(lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCamelCase_ = random.choice(lowercase ) return "".join(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : tuple[str, float] , lowercase : list[tuple[str, float]] , lowercase : list[str] , ): '''simple docstring''' lowerCamelCase_ = [] # Generate more children proportionally to the fitness score. lowerCamelCase_ = int(parent_a[1] * 1_00 ) + 1 lowerCamelCase_ = 10 if child_n >= 10 else child_n for _ in range(lowercase ): lowerCamelCase_ = population_score[random.randint(0 , lowercase )][0] lowerCamelCase_ , lowerCamelCase_ = crossover(parent_a[0] , lowercase ) # Append new string to the population list. pop.append(mutate(lowercase , lowercase ) ) pop.append(mutate(lowercase , lowercase ) ) return pop def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : list[str] , lowercase : bool = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: lowerCamelCase_ = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCamelCase_ = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCamelCase_ = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowercase ) # Generate random starting population. lowerCamelCase_ = [] for _ in range(lowercase ): population.append(''.join([random.choice(lowercase ) for i in range(len(lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCamelCase_ , lowerCamelCase_ = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCamelCase_ = [evaluate(lowercase , lowercase ) for item in population] # Check if there is a matching evolution. lowerCamelCase_ = sorted(lowercase , key=lambda lowercase : x[1] , reverse=lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCamelCase_ = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase ) # Normalize population score to be between 0 and 1. lowerCamelCase_ = [ (item, score / len(lowercase )) for item, score in population_score ] # This is selection for i in range(lowercase ): population.extend(select(population_score[int(lowercase )] , lowercase , lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase : Union[str, Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Any = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A: '''simple docstring''' def __init__( self : Tuple , A_ : Optional[int] , A_ : Union[str, Any]=2 , A_ : Optional[Any]=3 , A_ : List[str]=4 , A_ : Any=2 , A_ : List[Any]=7 , A_ : Optional[int]=True , A_ : Union[str, Any]=True , A_ : Dict=True , A_ : Optional[int]=True , A_ : Dict=99 , A_ : Any=36 , A_ : str=3 , A_ : str=4 , A_ : Optional[int]=37 , A_ : Tuple="gelu" , A_ : Union[str, Any]=0.1 , A_ : List[str]=0.1 , A_ : str=512 , A_ : Union[str, Any]=16 , A_ : int=2 , A_ : Dict=0.02 , A_ : Optional[int]=6 , A_ : List[str]=6 , A_ : List[Any]=3 , A_ : Any=4 , A_ : List[str]=None , A_ : Optional[Any]=1000 , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = text_seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = coordinate_size lowerCamelCase_ = shape_size lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase_ = text_seq_length lowerCamelCase_ = (image_size // patch_size) ** 2 + 1 lowerCamelCase_ = self.text_seq_length + self.image_seq_length def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase_ = bbox[i, j, 3] lowerCamelCase_ = bbox[i, j, 1] lowerCamelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase_ = bbox[i, j, 2] lowerCamelCase_ = bbox[i, j, 0] lowerCamelCase_ = t lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCamelCase_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a__ ( self : Union[str, Any] , A_ : Tuple , A_ : Optional[Any] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Tuple , A_ : List[Any] , A_ : List[str] , A_ : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = LayoutLMvaModel(config=A_ ) model.to(A_ ) model.eval() # text + image lowerCamelCase_ = model(A_ , pixel_values=A_ ) lowerCamelCase_ = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ ) lowerCamelCase_ = model(A_ , bbox=A_ , pixel_values=A_ , token_type_ids=A_ ) lowerCamelCase_ = model(A_ , bbox=A_ , pixel_values=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase_ = model(pixel_values=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def a__ ( self : Optional[int] , A_ : Union[str, Any] , A_ : List[Any] , A_ : Any , A_ : List[Any] , A_ : int , A_ : List[str] , A_ : List[Any] , A_ : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = LayoutLMvaForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Dict , A_ : List[Any] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : List[Any] , A_ : Union[str, Any] , A_ : Tuple , A_ : Dict , A_ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = LayoutLMvaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def a__ ( self : Dict , A_ : str , A_ : Any , A_ : int , A_ : Optional[Any] , A_ : List[str] , A_ : Tuple , A_ : str , A_ : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = LayoutLMvaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def a__ ( self : Dict , A_ : str , A_ : int , A_ : Tuple , A_ : Tuple , A_ : Optional[int] ) -> Tuple: """simple docstring""" return True def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = LayoutLMvaModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : Dict , A_ : int , A_ : Dict , A_ : Union[str, Any]=False ) -> str: """simple docstring""" lowerCamelCase_ = copy.deepcopy(A_ ) if model_class in get_values(A_ ): lowerCamelCase_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): lowerCamelCase_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in get_values(A_ ): lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A_ , ) return inputs_dict def a__ ( self : int ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*A_ ) def a__ ( self : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = LayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : Optional[Any] ) -> str: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) lowerCamelCase_ = torch.tensor([[1, 2]] ) lowerCamelCase_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCamelCase_ = model( input_ids=input_ids.to(A_ ) , bbox=bbox.to(A_ ) , pixel_values=pixel_values.to(A_ ) , ) # verify the logits lowerCamelCase_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A_ ) lowerCamelCase_ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1E-4 ) )
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCamelCase : List[str] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[Any] ): '''simple docstring''' inspect_dataset(lowercase , lowercase ) lowerCamelCase_ = path + '.py' assert script_name in os.listdir(lowercase ) assert "__pycache__" not in os.listdir(lowercase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' inspect_metric(lowercase , lowercase ) lowerCamelCase_ = path + '.py' assert script_name in os.listdir(lowercase ) assert "__pycache__" not in os.listdir(lowercase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Any , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_dataset_config_info(lowercase , config_name=lowercase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Any , lowercase : Any ): '''simple docstring''' with pytest.raises(lowercase ): get_dataset_config_info(lowercase , config_name=lowercase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = get_dataset_config_names(lowercase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Any , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = get_dataset_infos(lowercase ) assert list(infos.keys() ) == expected_configs lowerCamelCase_ = expected_configs[0] assert expected_config in infos lowerCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Dict , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = get_dataset_infos(lowercase ) assert expected_config in infos lowerCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : str , lowercase : List[str] ): '''simple docstring''' with pytest.raises(lowercase ): get_dataset_split_names(lowercase , config_name=lowercase )
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1
lowerCamelCase : Union[str, Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def _SCREAMING_SNAKE_CASE ( lowercase : bytes ): '''simple docstring''' if not isinstance(lowercase , lowercase ): lowerCamelCase_ = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(lowercase ) lowerCamelCase_ = ''.join(bin(lowercase )[2:].zfill(8 ) for byte in data ) lowerCamelCase_ = len(lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCamelCase_ = b'=' * ((6 - len(lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase ) % 6) else: lowerCamelCase_ = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase ) , 6 ) ).encode() + padding ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if not isinstance(lowercase , lowercase ) and not isinstance(lowercase , lowercase ): lowerCamelCase_ = ( 'argument should be a bytes-like object or ASCII string, ' f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) lowerCamelCase_ = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCamelCase_ = encoded_data[:-padding] lowerCamelCase_ = ''.join( bin(B64_CHARSET.index(lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCamelCase_ = ''.join( bin(B64_CHARSET.index(lowercase ) )[2:].zfill(6 ) for char in encoded_data ) lowerCamelCase_ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase ) , 8 ) ] return bytes(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A_ , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A_ , 'num_attention_heads' ) ) class A: '''simple docstring''' def __init__( self : List[Any] , A_ : Any , A_ : Dict=13 , A_ : int=32 , A_ : str=2 , A_ : Dict=3 , A_ : Optional[Any]=640 , A_ : List[Any]=4 , A_ : Optional[int]="silu" , A_ : Dict=3 , A_ : Optional[int]=32 , A_ : Optional[Any]=0.1 , A_ : List[Any]=0.1 , A_ : List[str]=0.1 , A_ : List[Any]=0.02 , A_ : Union[str, Any]=True , A_ : Tuple=True , A_ : Dict=10 , A_ : Optional[int]=None , ) -> Tuple: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = last_hidden_size lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = conv_kernel_size lowerCamelCase_ = output_stride lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = classifier_dropout_prob lowerCamelCase_ = use_labels lowerCamelCase_ = is_training lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = scope def a__ ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self : Dict , A_ : Tuple , A_ : str , A_ : List[str] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = MobileViTModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__ ( self : Tuple , A_ : Tuple , A_ : Optional[int] , A_ : int , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MobileViTForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : List[Any] , A_ : List[Any] , A_ : Dict , A_ : Any , A_ : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MobileViTForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = MobileViTModelTester(self ) lowerCamelCase_ = MobileViTConfigTester(self , config_class=A_ , has_text_modality=A_ ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions' ) def a__ ( self : str ) -> str: """simple docstring""" pass def a__ ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" pass def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(A_ : Any , A_ : Optional[Any] , A_ : str ): lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = 5 self.assertEqual(len(A_ ) , A_ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase_ = 2 for i in range(len(A_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) def a__ ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def a__ ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = MobileViTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Any: """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = model.to(A_ ) lowerCamelCase_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) lowerCamelCase_ = outputs.logits # verify the logits lowerCamelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A_ ) lowerCamelCase_ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1E-4 ) ) @slow def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = model.to(A_ ) lowerCamelCase_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) lowerCamelCase_ = outputs.logits.detach().cpu() lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(50, 60)] ) lowerCamelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A_ ) lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=A_ ) lowerCamelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A_ )
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") lowerCamelCase : Union[str, Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCamelCase = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) UpperCamelCase = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def a__ ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ = {} if self.train_dir is not None: lowerCamelCase_ = self.train_dir if self.validation_dir is not None: lowerCamelCase_ = self.validation_dir lowerCamelCase_ = data_files if data_files else None @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase )} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class A: '''simple docstring''' def __init__( self : Any , A_ : List[str]=192 , A_ : Optional[Any]=32 , A_ : Tuple=4 , A_ : str=0.6 ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = input_size lowerCamelCase_ = mask_patch_size lowerCamelCase_ = model_patch_size lowerCamelCase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) lowerCamelCase_ = self.input_size // self.mask_patch_size lowerCamelCase_ = self.mask_patch_size // self.model_patch_size lowerCamelCase_ = self.rand_size**2 lowerCamelCase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = np.random.permutation(self.token_count )[: self.mask_count] lowerCamelCase_ = np.zeros(self.token_count , dtype=A_ ) lowerCamelCase_ = 1 lowerCamelCase_ = mask.reshape((self.rand_size, self.rand_size) ) lowerCamelCase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = torch.stack([example['pixel_values'] for example in examples] ) lowerCamelCase_ = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , lowercase , lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCamelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase_ = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: lowerCamelCase_ = ds['train'].train_test_split(data_args.train_val_split ) lowerCamelCase_ = split['train'] lowerCamelCase_ = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: lowerCamelCase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase , 'decoder_type' ): lowerCamelCase_ = 'simmim' # adapt config lowerCamelCase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowerCamelCase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowerCamelCase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowerCamelCase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase ) else: lowerCamelCase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowerCamelCase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowerCamelCase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase_ = AutoModelForMaskedImageModeling.from_config(lowercase ) if training_args.do_train: lowerCamelCase_ = ds['train'].column_names else: lowerCamelCase_ = ds['validation'].column_names if data_args.image_column_name is not None: lowerCamelCase_ = data_args.image_column_name elif "image" in column_names: lowerCamelCase_ = 'image' elif "img" in column_names: lowerCamelCase_ = 'img' else: lowerCamelCase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowerCamelCase_ = Compose( [ Lambda(lambda lowercase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowerCamelCase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowercase : Any ): lowerCamelCase_ = [transforms(lowercase ) for image in examples[image_column_name]] lowerCamelCase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCamelCase_ = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCamelCase_ = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Initialize our trainer lowerCamelCase_ = Trainer( model=lowercase , args=lowercase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase_ = trainer.evaluate() trainer.log_metrics('eval' , lowercase ) trainer.save_metrics('eval' , lowercase ) # Write model card and (optionally) push to hub lowerCamelCase_ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : tuple , lowercase : Path , lowercase : int , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : str , lowercase : List[Any]=False , ): '''simple docstring''' output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' lowerCamelCase_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase_ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowerCamelCase_ = 'cpu' lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=lowercase ).to(lowercase ) lowerCamelCase_ = Path(lowercase ) # TEXT ENCODER lowerCamelCase_ = pipeline.text_encoder.config.max_position_embeddings lowerCamelCase_ = pipeline.text_encoder.config.hidden_size lowerCamelCase_ = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=lowercase , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowercase , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=lowercase , ) del pipeline.text_encoder # UNET lowerCamelCase_ = pipeline.unet.config.in_channels lowerCamelCase_ = pipeline.unet.config.sample_size lowerCamelCase_ = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), torch.randn(2 ).to(device=lowercase , dtype=lowercase ), torch.randn(2 , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=lowercase , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=lowercase , use_external_data_format=lowercase , ) lowerCamelCase_ = str(unet_path.absolute().as_posix() ) lowerCamelCase_ = os.path.dirname(lowercase ) lowerCamelCase_ = onnx.load(lowercase ) # clean up existing tensor files shutil.rmtree(lowercase ) os.mkdir(lowercase ) # collate external tensor files into one onnx.save_model( lowercase , lowercase , save_as_external_data=lowercase , all_tensors_to_one_file=lowercase , location='weights.pb' , convert_attribute=lowercase , ) del pipeline.unet # VAE ENCODER lowerCamelCase_ = pipeline.vae lowerCamelCase_ = vae_encoder.config.in_channels lowerCamelCase_ = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase_ = lambda lowercase , lowercase : vae_encoder.encode(lowercase , lowercase )[0].sample() onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase , ) # VAE DECODER lowerCamelCase_ = pipeline.vae lowerCamelCase_ = vae_decoder.config.latent_channels lowerCamelCase_ = vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase_ = vae_encoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase_ = pipeline.safety_checker lowerCamelCase_ = safety_checker.config.vision_config.num_channels lowerCamelCase_ = safety_checker.config.vision_config.image_size lowerCamelCase_ = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowercase , lowercase , lowercase , ).to(device=lowercase , dtype=lowercase ), torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=lowercase , ) del pipeline.safety_checker lowerCamelCase_ = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) lowerCamelCase_ = pipeline.feature_extractor else: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=lowercase , feature_extractor=lowercase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowercase ) print('ONNX pipeline saved to' , lowercase ) del pipeline del onnx_pipeline lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(lowercase , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCamelCase : Union[str, Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Union[str, Any] = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } lowerCamelCase : str = { "google/fnet-base": 512, "google/fnet-large": 512, } lowerCamelCase : Optional[Any] = "▁" class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''token_type_ids'''] UpperCamelCase = FNetTokenizer def __init__( self : Tuple , A_ : List[Any]=None , A_ : Tuple=None , A_ : Optional[int]=False , A_ : Tuple=True , A_ : Optional[int]=True , A_ : Any="<unk>" , A_ : Union[str, Any]="[SEP]" , A_ : str="<pad>" , A_ : Optional[int]="[CLS]" , A_ : int="[MASK]" , **A_ : List[Any] , ) -> Any: """simple docstring""" lowerCamelCase_ = ( AddedToken(A_ , lstrip=A_ , rstrip=A_ , normalized=A_ ) if isinstance(A_ , A_ ) else mask_token ) super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def a__ ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Dict , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''vit''' def __init__( self : Union[str, Any] , A_ : Tuple=768 , A_ : Any=12 , A_ : Optional[int]=12 , A_ : Dict=3072 , A_ : Union[str, Any]="gelu" , A_ : Tuple=0.0 , A_ : List[str]=0.0 , A_ : List[str]=0.02 , A_ : List[Any]=1E-12 , A_ : Dict=224 , A_ : List[Any]=16 , A_ : Union[str, Any]=3 , A_ : int=True , A_ : Any=16 , **A_ : int , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias lowerCamelCase_ = encoder_stride class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def a__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ ( self : List[Any] ) -> float: """simple docstring""" return 1E-4
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = int(lowercase ) # Initialize Result lowerCamelCase_ = [] # Traverse through all denomination for denomination in reversed(lowercase ): # Find denominations while int(lowercase ) >= int(lowercase ): total_value -= int(lowercase ) answer.append(lowercase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCamelCase : str = [] lowerCamelCase : Dict = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): lowerCamelCase : Optional[int] = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) lowerCamelCase : Optional[int] = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter lowerCamelCase : Any = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] lowerCamelCase : Optional[Any] = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) lowerCamelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
import math def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( lowercase : float = 0.1 ): '''simple docstring''' lowerCamelCase_ = 3 lowerCamelCase_ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
from math import sqrt def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00_00_00 ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(A_ , 'depth_multiplier' ) ) class A: '''simple docstring''' def __init__( self : List[str] , A_ : str , A_ : Optional[int]=13 , A_ : Optional[Any]=3 , A_ : Any=32 , A_ : Dict=0.25 , A_ : Optional[int]=8 , A_ : Any=True , A_ : Dict=1024 , A_ : Optional[Any]=32 , A_ : Optional[int]="relu6" , A_ : Optional[Any]=0.1 , A_ : Tuple=0.02 , A_ : Optional[Any]=True , A_ : List[Any]=True , A_ : Any=10 , A_ : str=None , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = depth_multiplier lowerCamelCase_ = min_depth lowerCamelCase_ = tf_padding lowerCamelCase_ = int(last_hidden_size * depth_multiplier ) lowerCamelCase_ = output_stride lowerCamelCase_ = hidden_act lowerCamelCase_ = classifier_dropout_prob lowerCamelCase_ = use_labels lowerCamelCase_ = is_training lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = scope def a__ ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def a__ ( self : str ) -> str: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self : List[Any] , A_ : str , A_ : Dict , A_ : Union[str, Any] , A_ : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = MobileNetVaModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__ ( self : Union[str, Any] , A_ : Optional[Any] , A_ : str , A_ : str , A_ : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MobileNetVaForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = MobileNetVaModelTester(self ) lowerCamelCase_ = MobileNetVaConfigTester(self , config_class=A_ , has_text_modality=A_ ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def a__ ( self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" def check_hidden_states_output(A_ : str , A_ : Optional[Any] , A_ : List[str] ): lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = 26 self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) def a__ ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def a__ ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = MobileNetVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : List[str] , A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : str ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''nat''' UpperCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , A_ : Dict=4 , A_ : int=3 , A_ : Any=64 , A_ : Any=[3, 4, 6, 5] , A_ : Any=[2, 4, 8, 16] , A_ : Optional[Any]=7 , A_ : List[Any]=3.0 , A_ : Tuple=True , A_ : int=0.0 , A_ : int=0.0 , A_ : Optional[Any]=0.1 , A_ : str="gelu" , A_ : Tuple=0.02 , A_ : Tuple=1E-5 , A_ : List[Any]=0.0 , A_ : Any=None , A_ : Any=None , **A_ : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = depths lowerCamelCase_ = len(A_ ) lowerCamelCase_ = num_heads lowerCamelCase_ = kernel_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ = int(embed_dim * 2 ** (len(A_ ) - 1) ) lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
651
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Any ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self : str ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def a__ ( self : Tuple ) -> int: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=A_ , unet=self.dummy_unet , mel=A_ , scheduler=A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=A_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=A_ , steps=4 , return_dict=A_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=A_ , scheduler=A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=A_ , generator=A_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=A_ , mel=A_ , scheduler=A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=A_ , encoding=A_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : str ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=A_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) class A: '''simple docstring''' UpperCamelCase = None @experimental def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) return _map_with_joblib(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : str , lowercase : List[Any] , lowercase : List[str] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = num_proc if num_proc <= len(lowercase ) else len(lowercase ) lowerCamelCase_ = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): lowerCamelCase_ = len(lowercase ) // num_proc lowerCamelCase_ = len(lowercase ) % num_proc lowerCamelCase_ = div * index + min(lowercase , lowercase ) lowerCamelCase_ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(lowercase )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) lowerCamelCase_ , lowerCamelCase_ = None, None if not disable_tqdm: lowerCamelCase_ , lowerCamelCase_ = (RLock(),), tqdm.set_lock with Pool(lowercase , initargs=lowercase , initializer=lowercase ) as pool: lowerCamelCase_ = pool.map(lowercase , lowercase ) logger.info(f"""Finished {num_proc} processes""" ) lowerCamelCase_ = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(lowercase )} objects""" ) return mapped def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any] , lowercase : int , lowercase : List[str] , lowercase : Any , lowercase : str , lowercase : List[str] ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase_ = None
651
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Tuple = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''openai-gpt''' UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , A_ : Any=40478 , A_ : Optional[Any]=512 , A_ : List[str]=768 , A_ : Any=12 , A_ : Dict=12 , A_ : Optional[Any]="gelu" , A_ : List[str]=0.1 , A_ : int=0.1 , A_ : List[Any]=0.1 , A_ : List[Any]=1E-5 , A_ : str=0.02 , A_ : Optional[Any]="cls_index" , A_ : Any=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : int=0.1 , **A_ : List[Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = n_positions lowerCamelCase_ = n_embd lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = afn lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = attn_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = summary_type lowerCamelCase_ = summary_use_proj lowerCamelCase_ = summary_activation lowerCamelCase_ = summary_first_dropout lowerCamelCase_ = summary_proj_to_labels super().__init__(**A_ )
651
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCamelCase : Optional[int] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , *A_ : Dict , **A_ : Union[str, Any] ) -> None: """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return 1 def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int = 2_00 ): '''simple docstring''' return two_pound(lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('google/mt5-small' ) lowerCamelCase_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids lowerCamelCase_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids lowerCamelCase_ = model(A_ , labels=A_ ).loss lowerCamelCase_ = -tf.math.reduce_mean(A_ ).numpy() lowerCamelCase_ = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Tuple = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''vit_msn''' def __init__( self : int , A_ : str=768 , A_ : Optional[int]=12 , A_ : Optional[int]=12 , A_ : List[Any]=3072 , A_ : Dict="gelu" , A_ : Tuple=0.0 , A_ : Tuple=0.0 , A_ : int=0.02 , A_ : Optional[Any]=1E-06 , A_ : int=224 , A_ : Union[str, Any]=16 , A_ : Union[str, Any]=3 , A_ : List[str]=True , **A_ : Tuple , ) -> int: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = FlaxAutoencoderKL @property def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.uniform(A_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE ( lowercase : dict ): '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : np.ndarray ): '''simple docstring''' lowerCamelCase_ = XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = load_iris() lowerCamelCase_ , lowerCamelCase_ = data_handling(lowercase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split( lowercase , lowercase , test_size=0.25 ) lowerCamelCase_ = iris['target_names'] # Create an XGBoost Classifier from the training data lowerCamelCase_ = xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
651
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCamelCase : List[str] = threading.Lock() lowerCamelCase : Optional[logging.Handler] = None lowerCamelCase : int = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCamelCase : str = logging.WARNING lowerCamelCase : List[str] = True def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = os.getenv('TRANSFORMERS_VERBOSITY' , lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return __name__.split('.' )[0] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCamelCase_ = logging.StreamHandler() # Set sys.stderr as stream. lowerCamelCase_ = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCamelCase_ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowerCamelCase_ = False def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return lowerCamelCase_ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowerCamelCase_ = None def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return log_levels def _SCREAMING_SNAKE_CASE ( lowercase : Optional[str] = None ): '''simple docstring''' if name is None: lowerCamelCase_ = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _SCREAMING_SNAKE_CASE ( lowercase : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() lowerCamelCase_ = False def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() lowerCamelCase_ = True def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger().handlers for handler in handlers: lowerCamelCase_ = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowercase ) def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase : List[str] , **lowercase : str ): '''simple docstring''' lowerCamelCase_ = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , lowercase ) if no_advisory_warnings: return self.warning(*lowercase , **lowercase ) lowerCamelCase : Optional[Any] = warning_advice @functools.lru_cache(lowercase ) def _SCREAMING_SNAKE_CASE ( self : Any , *lowercase : Any , **lowercase : Union[str, Any] ): '''simple docstring''' self.warning(*lowercase , **lowercase ) lowerCamelCase : Optional[int] = warning_once class A: '''simple docstring''' def __init__( self : List[str] , *A_ : Tuple , **A_ : Any ) -> List[str]: # pylint: disable=unused-argument """simple docstring""" lowerCamelCase_ = args[0] if args else None def __iter__( self : str ) -> List[Any]: """simple docstring""" return iter(self._iterator ) def __getattr__( self : Tuple , A_ : str ) -> List[Any]: """simple docstring""" def empty_fn(*A_ : List[Any] , **A_ : Optional[int] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ) -> int: """simple docstring""" return self def __exit__( self : Optional[int] , A_ : str , A_ : int , A_ : str ) -> Tuple: """simple docstring""" return class A: '''simple docstring''' def __call__( self : Tuple , *A_ : Union[str, Any] , **A_ : int ) -> List[str]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*A_ , **A_ ) else: return EmptyTqdm(*A_ , **A_ ) def a__ ( self : Tuple , *A_ : Dict , **A_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A_ , **A_ ) def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase : List[Any] = _tqdm_cls() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = True hf_hub_utils.enable_progress_bars() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = False hf_hub_utils.disable_progress_bars()
651
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : int = 50 ): '''simple docstring''' lowerCamelCase_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A: '''simple docstring''' def __init__( self : int , A_ : Optional[int] , A_ : Union[str, Any]=13 , A_ : str=30 , A_ : Optional[int]=2 , A_ : Dict=3 , A_ : Any=True , A_ : Optional[Any]=True , A_ : int=32 , A_ : Optional[int]=2 , A_ : Tuple=4 , A_ : Optional[Any]=37 , A_ : Dict="gelu" , A_ : List[Any]=0.1 , A_ : Optional[Any]=0.1 , A_ : Dict=10 , A_ : Dict=0.02 , A_ : str=3 , A_ : Union[str, Any]=None , ) -> Dict: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = num_patches + 1 def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) def a__ ( self : int , A_ : Optional[Any] , A_ : Tuple , A_ : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = TFViTModel(config=A_ ) lowerCamelCase_ = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowerCamelCase_ = self.image_size // 2 lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCamelCase_ = model(A_ , interpolate_pos_encoding=A_ , training=A_ ) lowerCamelCase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def a__ ( self : List[str] , A_ : int , A_ : Any , A_ : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFViTForImageClassification(A_ ) lowerCamelCase_ = model(A_ , labels=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowerCamelCase_ = self.image_size // 2 lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCamelCase_ = model(A_ , interpolate_pos_encoding=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFViTForImageClassification(A_ ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFViTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def a__ ( self : List[str] ) -> str: """simple docstring""" pass def a__ ( self : str ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Layer ) ) def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='tf' ) # forward pass lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , A_ , atol=1E-4 )
651
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
1
import math from collections.abc import Callable def _SCREAMING_SNAKE_CASE ( lowercase : Callable[[float], float] , lowercase : float , lowercase : float ): '''simple docstring''' lowerCamelCase_ = xa lowerCamelCase_ = xa while True: if x_n == x_na or function(lowercase ) == function(lowercase ): raise ZeroDivisionError('float division by zero, could not find root' ) lowerCamelCase_ = x_na - ( function(lowercase ) / ((function(lowercase ) - function(lowercase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowerCamelCase_ = x_na lowerCamelCase_ = x_na def _SCREAMING_SNAKE_CASE ( lowercase : float ): '''simple docstring''' return math.pow(lowercase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
651
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) lowerCamelCase_ = transform(lowercase ).unsqueeze(0 ).to(lowercase ) return image def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if "visual_encoder" in key: lowerCamelCase_ = re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase ) if "blocks" in key: lowerCamelCase_ = re.sub(r'blocks' , 'layers' , lowercase ) if "attn" in key: lowerCamelCase_ = re.sub(r'attn' , 'self_attn' , lowercase ) if "norm1" in key: lowerCamelCase_ = re.sub(r'norm1' , 'layer_norm1' , lowercase ) if "norm2" in key: lowerCamelCase_ = re.sub(r'norm2' , 'layer_norm2' , lowercase ) if "encoder.norm" in key: lowerCamelCase_ = re.sub(r'encoder.norm' , 'post_layernorm' , lowercase ) if "encoder.patch_embed.proj" in key: lowerCamelCase_ = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase ) if "encoder.pos_embed" in key: lowerCamelCase_ = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase ) if "encoder.cls_token" in key: lowerCamelCase_ = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , lowercase ) if "self_attn" in key: lowerCamelCase_ = re.sub(r'self_attn.proj' , 'self_attn.projection' , lowercase ) return key @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any]=None ): '''simple docstring''' if config_path is not None: lowerCamelCase_ = BlipConfig.from_pretrained(lowercase ) else: lowerCamelCase_ = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) lowerCamelCase_ = BlipForConditionalGeneration(lowercase ).eval() lowerCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' lowerCamelCase_ = blip_decoder(pretrained=lowercase , image_size=3_84 , vit='base' ) lowerCamelCase_ = pt_model.eval() lowerCamelCase_ = pt_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase_ = modified_state_dict.pop(lowercase ) lowerCamelCase_ = rename_key(lowercase ) lowerCamelCase_ = value hf_model.load_state_dict(lowercase ) lowerCamelCase_ = 3_84 lowerCamelCase_ = load_demo_image(image_size=lowercase , device='cpu' ) lowerCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer(['a picture of'] ).input_ids lowerCamelCase_ = hf_model.generate(lowercase , lowercase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] lowerCamelCase_ = hf_model.generate(lowercase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowerCamelCase_ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) lowerCamelCase_ = blip_vqa(pretrained=lowercase , image_size=lowercase , vit='base' ) vqa_model.eval() lowerCamelCase_ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase_ = modified_state_dict.pop(lowercase ) lowerCamelCase_ = rename_key(lowercase ) lowerCamelCase_ = value lowerCamelCase_ = BlipForQuestionAnswering(lowercase ) hf_vqa_model.load_state_dict(lowercase ) lowerCamelCase_ = ['How many dogs are in this image?'] lowerCamelCase_ = tokenizer(lowercase , return_tensors='pt' ).input_ids lowerCamelCase_ = hf_vqa_model.generate(lowercase , lowercase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) lowerCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' lowerCamelCase_ = blip_itm(pretrained=lowercase , image_size=lowercase , vit='base' ) itm_model.eval() lowerCamelCase_ = itm_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase_ = modified_state_dict.pop(lowercase ) lowerCamelCase_ = rename_key(lowercase ) lowerCamelCase_ = value lowerCamelCase_ = BlipForImageTextRetrieval(lowercase ) lowerCamelCase_ = ['A picture of a woman with a dog sitting in a beach'] lowerCamelCase_ = tokenizer( lowercase , return_tensors='pt' , padding='max_length' , truncation=lowercase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowercase ) hf_itm_model.eval() lowerCamelCase_ = hf_itm_model(lowercase , lowercase , use_itm_head=lowercase ) lowerCamelCase_ = hf_itm_model(lowercase , lowercase , use_itm_head=lowercase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
651
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int ): '''simple docstring''' lowerCamelCase_ = [[] for _ in range(lowercase )] lowerCamelCase_ = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(lowercase ) <= key: return input_string for position, character in enumerate(lowercase ): lowerCamelCase_ = position % (lowest * 2) # puts it in bounds lowerCamelCase_ = min(lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowercase ) lowerCamelCase_ = [''.join(lowercase ) for row in temp_grid] lowerCamelCase_ = ''.join(lowercase ) return output_string def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string lowerCamelCase_ = [[] for _ in range(lowercase )] # generates template for position in range(len(lowercase ) ): lowerCamelCase_ = position % (lowest * 2) # puts it in bounds lowerCamelCase_ = min(lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) lowerCamelCase_ = 0 for row in temp_grid: # fills in the characters lowerCamelCase_ = input_string[counter : counter + len(lowercase )] grid.append(list(lowercase ) ) counter += len(lowercase ) lowerCamelCase_ = '' # reads as zigzag for position in range(len(lowercase ) ): lowerCamelCase_ = position % (lowest * 2) # puts it in bounds lowerCamelCase_ = min(lowercase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {} for key_guess in range(1 , len(lowercase ) ): # tries every key lowerCamelCase_ = decrypt(lowercase , lowercase ) return results if __name__ == "__main__": import doctest doctest.testmod()
651
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
1
import numpy as np def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray ): '''simple docstring''' return vector * sigmoid(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
651
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , A_ : Dict , A_ : Optional[int] ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : int , A_ : int = 1 , A_ : int = 100 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[float] = None , A_ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: lowerCamelCase_ = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase_ = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) lowerCamelCase_ = int(A_ ) if sample_size % down_scale_factor != 0: lowerCamelCase_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) lowerCamelCase_ = int(A_ ) lowerCamelCase_ = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowerCamelCase_ = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_ ) # set step values self.scheduler.set_timesteps(A_ , device=audio.device ) lowerCamelCase_ = self.scheduler.timesteps.to(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase_ = self.unet(A_ , A_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample lowerCamelCase_ = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCamelCase_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=A_ )
651
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
651
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : str = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''ibert''' def __init__( self : List[str] , A_ : Optional[Any]=30522 , A_ : str=768 , A_ : List[str]=12 , A_ : int=12 , A_ : List[str]=3072 , A_ : Tuple="gelu" , A_ : Optional[int]=0.1 , A_ : Union[str, Any]=0.1 , A_ : Any=512 , A_ : int=2 , A_ : Optional[Any]=0.02 , A_ : Optional[Any]=1E-12 , A_ : List[Any]=1 , A_ : Optional[Any]=0 , A_ : List[Any]=2 , A_ : Dict="absolute" , A_ : Any=False , A_ : List[str]="none" , **A_ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = quant_mode lowerCamelCase_ = force_dequant class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
651
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : Any ): '''simple docstring''' lowerCamelCase_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCamelCase_ = 1_28 elif "12-12" in model_name: lowerCamelCase_ = 12 lowerCamelCase_ = 12 elif "14-14" in model_name: lowerCamelCase_ = 14 lowerCamelCase_ = 14 elif "16-16" in model_name: lowerCamelCase_ = 16 lowerCamelCase_ = 16 else: raise ValueError('Model not supported' ) lowerCamelCase_ = 'huggingface/label-files' if "speech-commands" in model_name: lowerCamelCase_ = 35 lowerCamelCase_ = 'speech-commands-v2-id2label.json' else: lowerCamelCase_ = 5_27 lowerCamelCase_ = 'audioset-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if "module.v" in name: lowerCamelCase_ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowerCamelCase_ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowerCamelCase_ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowerCamelCase_ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase_ = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCamelCase_ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowerCamelCase_ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowerCamelCase_ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowercase ) if "qkv" in key: lowerCamelCase_ = key.split('.' ) lowerCamelCase_ = int(key_split[3] ) lowerCamelCase_ = config.hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any=False ): '''simple docstring''' lowerCamelCase_ = get_audio_spectrogram_transformer_config(lowercase ) lowerCamelCase_ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowerCamelCase_ = model_name_to_url[model_name] lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' ) # remove some keys remove_keys(lowercase ) # rename some keys lowerCamelCase_ = convert_state_dict(lowercase , lowercase ) # load 🤗 model lowerCamelCase_ = ASTForAudioClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCamelCase_ = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978 lowerCamelCase_ = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526 lowerCamelCase_ = 10_24 if 'speech-commands' not in model_name else 1_28 lowerCamelCase_ = ASTFeatureExtractor(mean=lowercase , std=lowercase , max_length=lowercase ) if "speech-commands" in model_name: lowerCamelCase_ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowerCamelCase_ = dataset[0]['audio']['array'] else: lowerCamelCase_ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowerCamelCase_ , lowerCamelCase_ = torchaudio.load(lowercase ) lowerCamelCase_ = waveform.squeeze().numpy() lowerCamelCase_ = feature_extractor(lowercase , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCamelCase_ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCamelCase_ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCamelCase_ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCamelCase_ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCamelCase_ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCamelCase_ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCamelCase_ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCamelCase_ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(lowercase ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase : List[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' if "cls_token" in name: lowerCamelCase_ = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: lowerCamelCase_ = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: lowerCamelCase_ = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase_ = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: lowerCamelCase_ = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase_ = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: lowerCamelCase_ = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCamelCase_ = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCamelCase_ = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase_ = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase_ = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowercase ) if "qkv" in key: lowerCamelCase_ = key.split('.' ) lowerCamelCase_ = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase_ = config.decoder_hidden_size lowerCamelCase_ = 'decoder.decoder_layers.' if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = config.hidden_size lowerCamelCase_ = 'vit.encoder.layer.' if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase_ = 10_24 lowerCamelCase_ = 40_96 lowerCamelCase_ = 24 lowerCamelCase_ = 16 elif "huge" in checkpoint_url: lowerCamelCase_ = 14 lowerCamelCase_ = 12_80 lowerCamelCase_ = 51_20 lowerCamelCase_ = 32 lowerCamelCase_ = 16 lowerCamelCase_ = ViTMAEForPreTraining(lowercase ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' )['model'] lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() lowerCamelCase_ = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = image_processor(images=lowercase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = outputs.logits if "large" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowerCamelCase_ = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase : List[str] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
651
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
1
from collections.abc import Sequence def _SCREAMING_SNAKE_CASE ( lowercase : Sequence[float] , lowercase : bool = False ): '''simple docstring''' if not arr: return 0 lowerCamelCase_ = 0 if allow_empty_subarrays else float('-inf' ) lowerCamelCase_ = 0.0 for num in arr: lowerCamelCase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCamelCase_ = max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : Dict = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) + 1 lowerCamelCase_ = len(lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCamelCase_ = [[0 for i in range(lowercase )] for j in range(lowercase )] # since string of zero length match pattern of zero length lowerCamelCase_ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowercase ): lowerCamelCase_ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowercase ): lowerCamelCase_ = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowercase ): for j in range(1 , lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCamelCase_ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCamelCase_ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCamelCase_ = dp[i - 1][j] else: lowerCamelCase_ = 0 else: lowerCamelCase_ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCamelCase : Union[str, Any] = "aab" lowerCamelCase : Optional[Any] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
651
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = checkpoints.load_tax_checkpoint(lowercase ) lowerCamelCase_ = flatten_dict(lowercase ) return flax_params def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = {} lowerCamelCase_ = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } lowerCamelCase_ = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCamelCase_ = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCamelCase_ = new_key.replace(lowercase , lowercase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCamelCase_ = new_key.replace(lowercase , lowercase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCamelCase_ = re.sub(r'layers_(\d+)' , r'layer.\1' , lowercase ) lowerCamelCase_ = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCamelCase_ = re.sub(r'layers_(\d+)' , r'layer.\1' , lowercase ) lowerCamelCase_ = flax_dict[key] lowerCamelCase_ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCamelCase_ = torch.from_numpy(converted_dict[key].T ) else: lowerCamelCase_ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[int] , lowercase : Dict=False , lowercase : Tuple=False ): '''simple docstring''' lowerCamelCase_ = get_flax_param(lowercase ) if not use_large: lowerCamelCase_ = PixaStructVisionConfig() lowerCamelCase_ = PixaStructTextConfig() else: lowerCamelCase_ = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCamelCase_ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) lowerCamelCase_ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowercase ) lowerCamelCase_ = PixaStructForConditionalGeneration(lowercase ) lowerCamelCase_ = rename_and_convert_flax_params(lowercase ) model.load_state_dict(lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) lowerCamelCase_ = PixaStructImageProcessor() lowerCamelCase_ = PixaStructProcessor(image_processor=lowercase , tokenizer=lowercase ) if use_large: lowerCamelCase_ = 40_96 lowerCamelCase_ = True # mkdir if needed os.makedirs(lowercase , exist_ok=lowercase ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) print('Model saved in {}'.format(lowercase ) ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") lowerCamelCase : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
651
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase : List[Any] = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 48_000, "sample_size": 131_072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, } def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' return torch.atana(lowercase , lowercase ) / math.pi * 2 def _SCREAMING_SNAKE_CASE ( lowercase : Any ): '''simple docstring''' lowerCamelCase_ = torch.sin(t * math.pi / 2 ) ** 2 lowerCamelCase_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowercase , lowercase ) class A( UpperCamelCase ): '''simple docstring''' pass class A( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , A_ : int ) -> List[str]: """simple docstring""" super().__init__() lowerCamelCase_ = DiffusionAttnUnetaD(A_ , n_attn_layers=4 ) lowerCamelCase_ = deepcopy(self.diffusion ) lowerCamelCase_ = torch.quasirandom.SobolEngine(1 , scramble=A_ ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCamelCase : str = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } lowerCamelCase : str = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } lowerCamelCase : List[str] = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } lowerCamelCase : Union[str, Any] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } lowerCamelCase : str = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } lowerCamelCase : Tuple = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowercase ) and not isinstance(lowercase , lowercase ): return name.replace(lowercase , lowercase ) elif name.startswith(lowercase ): return [name.replace(lowercase , lowercase ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Union[str, Any]=13 ): '''simple docstring''' lowerCamelCase_ = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) lowerCamelCase_ = 0 if string.startswith('net.3.' ): depth += 1 lowerCamelCase_ = string[6:] elif string.startswith('net.' ): lowerCamelCase_ = string[4:] while string.startswith('main.7.' ): depth += 1 lowerCamelCase_ = string[7:] if string.startswith('main.' ): lowerCamelCase_ = string[5:] # mid block if string[:2].isdigit(): lowerCamelCase_ = string[:2] lowerCamelCase_ = string[2:] else: lowerCamelCase_ = string[0] lowerCamelCase_ = string[1:] if depth == max_depth: lowerCamelCase_ = MID_NUM_TO_LAYER[layer_num] lowerCamelCase_ = 'mid_block' elif depth > 0 and int(lowercase ) < 7: lowerCamelCase_ = DOWN_NUM_TO_LAYER[layer_num] lowerCamelCase_ = f"""down_blocks.{depth}""" elif depth > 0 and int(lowercase ) > 7: lowerCamelCase_ = UP_NUM_TO_LAYER[layer_num] lowerCamelCase_ = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: lowerCamelCase_ = DEPTH_0_TO_LAYER[layer_num] lowerCamelCase_ = f"""up_blocks.{max_depth - 1}""" if int(lowercase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) lowerCamelCase_ = string_left[1:] if "resnets" in new_layer: lowerCamelCase_ = convert_resconv_naming(lowercase ) elif "attentions" in new_layer: lowerCamelCase_ = convert_attn_naming(lowercase ) lowerCamelCase_ = new_string_left if not isinstance(lowercase , lowercase ): lowerCamelCase_ = prefix + '.' + new_layer + '.' + string_left else: lowerCamelCase_ = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue lowerCamelCase_ = rename(lowercase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowercase , lowercase ): lowerCamelCase_ = transform_conv_attns(lowercase , lowercase , lowercase ) else: lowerCamelCase_ = v return new_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' if len(lowercase ) == 1: if len(v.shape ) == 3: # weight lowerCamelCase_ = v[:, :, 0] else: # bias lowerCamelCase_ = v else: # qkv matrices lowerCamelCase_ = v.shape[0] lowerCamelCase_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCamelCase_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCamelCase_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCamelCase_ = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" lowerCamelCase_ = download(lowercase ) lowerCamelCase_ = MODELS_MAP[model_name]['sample_rate'] lowerCamelCase_ = MODELS_MAP[model_name]['sample_size'] lowerCamelCase_ = Object() lowerCamelCase_ = sample_size lowerCamelCase_ = sample_rate lowerCamelCase_ = 0 lowerCamelCase_ = UNetaDModel(sample_size=lowercase , sample_rate=lowercase ) lowerCamelCase_ = diffusers_model.state_dict() lowerCamelCase_ = DiffusionUncond(lowercase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowercase )['state_dict'] ) lowerCamelCase_ = orig_model.diffusion_ema.eval() lowerCamelCase_ = orig_model.state_dict() lowerCamelCase_ = rename_orig_weights(lowercase ) lowerCamelCase_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCamelCase_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowercase ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(lowercase ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": lowerCamelCase_ = value.squeeze() lowerCamelCase_ = value diffusers_model.load_state_dict(lowercase ) lowerCamelCase_ = 1_00 lowerCamelCase_ = 33 lowerCamelCase_ = IPNDMScheduler(num_train_timesteps=lowercase ) lowerCamelCase_ = torch.manual_seed(lowercase ) lowerCamelCase_ = torch.randn([1, 2, config.sample_size] , generator=lowercase ).to(lowercase ) lowerCamelCase_ = torch.linspace(1 , 0 , steps + 1 , device=lowercase )[:-1] lowerCamelCase_ = get_crash_schedule(lowercase ) lowerCamelCase_ = DanceDiffusionPipeline(unet=lowercase , scheduler=lowercase ) lowerCamelCase_ = torch.manual_seed(33 ) lowerCamelCase_ = pipe(num_inference_steps=lowercase , generator=lowercase ).audios lowerCamelCase_ = sampling.iplms_sample(lowercase , lowercase , lowercase , {} ) lowerCamelCase_ = generated.clamp(-1 , 1 ) lowerCamelCase_ = (generated - audio).abs().sum() lowerCamelCase_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , lowercase ) print('Diff max' , lowercase ) assert diff_max < 1e-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") lowerCamelCase : Dict = parser.parse_args() main(args)
651
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A: '''simple docstring''' def __init__( self : List[Any] , A_ : Tuple , A_ : str=13 , A_ : str=30 , A_ : str=2 , A_ : Optional[int]=3 , A_ : Tuple=True , A_ : int=True , A_ : str=32 , A_ : str=2 , A_ : Optional[Any]=4 , A_ : Union[str, Any]=37 , A_ : str="gelu" , A_ : Optional[int]=0.1 , A_ : Union[str, Any]=0.1 , A_ : int=10 , A_ : Union[str, Any]=0.02 , A_ : List[str]=3 , A_ : List[Any]=None , A_ : List[Any]=2 , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = scope lowerCamelCase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = num_patches + 2 def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : str ) -> Optional[Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a__ ( self : int , A_ : int , A_ : List[str] , A_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = TFDeiTModel(config=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : str , A_ : int , A_ : Union[str, Any] , A_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = TFDeiTForMaskedImageModeling(config=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFDeiTForMaskedImageModeling(A_ ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Optional[int] , A_ : int , A_ : Union[str, Any] , A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFDeiTForImageClassification(A_ ) lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFDeiTForImageClassification(A_ ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFDeiTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Dense ) ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def a__ ( self : Optional[Any] , A_ : Optional[int] , A_ : Optional[int] , A_ : int=False ) -> List[str]: """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDeiTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : Dict ) -> Any: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='tf' ) # forward pass lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = torch.exp(lowercase ) lowerCamelCase_ = torch.sum(lowercase , dim=1 ) # sum of exp(x_i) lowerCamelCase_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowercase ) - B / A class A( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowerCamelCase_ = config.output_attentions lowerCamelCase_ = config.output_hidden_states lowerCamelCase_ = nn.ModuleList([BertLayer(A_ ) for _ in range(config.num_hidden_layers )] ) lowerCamelCase_ = nn.ModuleList([BertHighway(A_ ) for _ in range(config.num_hidden_layers )] ) lowerCamelCase_ = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" if (type(A_ ) is float) or (type(A_ ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCamelCase_ = x else: lowerCamelCase_ = x def a__ ( self : int , A_ : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self : Tuple , A_ : Dict , A_ : List[str]=None , A_ : Union[str, Any]=None , A_ : Optional[int]=None , A_ : Any=None , ) -> Dict: """simple docstring""" lowerCamelCase_ = () lowerCamelCase_ = () lowerCamelCase_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCamelCase_ = all_hidden_states + (hidden_states,) lowerCamelCase_ = layer_module( A_ , A_ , head_mask[i] , A_ , A_ ) lowerCamelCase_ = layer_outputs[0] if self.output_attentions: lowerCamelCase_ = all_attentions + (layer_outputs[1],) lowerCamelCase_ = (hidden_states,) if self.output_hidden_states: lowerCamelCase_ = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase_ = current_outputs + (all_attentions,) lowerCamelCase_ = self.highway[i](A_ ) # logits, pooled_output if not self.training: lowerCamelCase_ = highway_exit[0] lowerCamelCase_ = entropy(A_ ) lowerCamelCase_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCamelCase_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCamelCase_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A_ , i + 1 ) else: lowerCamelCase_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCamelCase_ = all_hidden_states + (hidden_states,) lowerCamelCase_ = (hidden_states,) if self.output_hidden_states: lowerCamelCase_ = outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase_ = outputs + (all_attentions,) lowerCamelCase_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , UpperCamelCase , ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , A_ : List[Any] ) -> str: """simple docstring""" super().__init__(A_ ) lowerCamelCase_ = config lowerCamelCase_ = BertEmbeddings(A_ ) lowerCamelCase_ = DeeBertEncoder(A_ ) lowerCamelCase_ = BertPooler(A_ ) self.init_weights() def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.embeddings.word_embeddings def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = value def a__ ( self : Tuple , A_ : Union[str, Any] ) -> str: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A_ ) @add_start_docstrings_to_model_forward(A_ ) def a__ ( self : Optional[Any] , A_ : Union[str, Any]=None , A_ : List[str]=None , A_ : Tuple=None , A_ : Tuple=None , A_ : Optional[int]=None , A_ : str=None , A_ : Any=None , A_ : Optional[int]=None , ) -> int: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCamelCase_ = input_ids.size() elif inputs_embeds is not None: lowerCamelCase_ = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCamelCase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCamelCase_ = torch.ones(A_ , device=A_ ) if encoder_attention_mask is None: lowerCamelCase_ = torch.ones(A_ , device=A_ ) if token_type_ids is None: lowerCamelCase_ = torch.zeros(A_ , dtype=torch.long , device=A_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCamelCase_ = self.get_extended_attention_mask(A_ , A_ , A_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCamelCase_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCamelCase_ = encoder_attention_mask[:, None, None, :] lowerCamelCase_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCamelCase_ = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCamelCase_ = self.get_head_mask(A_ , self.config.num_hidden_layers ) lowerCamelCase_ = self.embeddings( input_ids=A_ , position_ids=A_ , token_type_ids=A_ , inputs_embeds=A_ ) lowerCamelCase_ = self.encoder( A_ , attention_mask=A_ , head_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) lowerCamelCase_ = encoder_outputs[0] lowerCamelCase_ = self.pooler(A_ ) lowerCamelCase_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , A_ : Tuple , A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = message lowerCamelCase_ = exit_layer # start from 1! class A( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , A_ : str ) -> Union[str, Any]: """simple docstring""" super().__init__() lowerCamelCase_ = BertPooler(A_ ) lowerCamelCase_ = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase_ = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = encoder_outputs[0] lowerCamelCase_ = self.pooler(A_ ) # "return" pooler_output # BertModel lowerCamelCase_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCamelCase_ = bmodel_output[1] lowerCamelCase_ = self.dropout(A_ ) lowerCamelCase_ = self.classifier(A_ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , UpperCamelCase , ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : str ) -> int: """simple docstring""" super().__init__(A_ ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = config.num_hidden_layers lowerCamelCase_ = DeeBertModel(A_ ) lowerCamelCase_ = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(A_ ) def a__ ( self : Union[str, Any] , A_ : int=None , A_ : Dict=None , A_ : List[str]=None , A_ : Dict=None , A_ : int=None , A_ : Dict=None , A_ : Union[str, Any]=None , A_ : List[Any]=-1 , A_ : Optional[Any]=False , ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.num_layers try: lowerCamelCase_ = self.bert( A_ , attention_mask=A_ , token_type_ids=A_ , position_ids=A_ , head_mask=A_ , inputs_embeds=A_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCamelCase_ = outputs[1] lowerCamelCase_ = self.dropout(A_ ) lowerCamelCase_ = self.classifier(A_ ) lowerCamelCase_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCamelCase_ = e.message lowerCamelCase_ = e.exit_layer lowerCamelCase_ = outputs[0] if not self.training: lowerCamelCase_ = entropy(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCamelCase_ = MSELoss() lowerCamelCase_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCamelCase_ = [] for highway_exit in outputs[-1]: lowerCamelCase_ = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCamelCase_ = MSELoss() lowerCamelCase_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: lowerCamelCase_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCamelCase_ = (loss,) + outputs if not self.training: lowerCamelCase_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCamelCase_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
651
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Dict[str, int] , A_ : List[str] , A_ : int = None , A_ : int = None ) -> str: """simple docstring""" super().__init__() lowerCamelCase_ = pad_token_id lowerCamelCase_ = max_length lowerCamelCase_ = vocab lowerCamelCase_ = merges lowerCamelCase_ = BytePairTokenizer(A_ , A_ , sequence_length=A_ ) @classmethod def a__ ( cls : int , A_ : GPTaTokenizer , *A_ : Dict , **A_ : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = [' '.join(A_ ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ = tokenizer.get_vocab() return cls(A_ , A_ , *A_ , **A_ ) @classmethod def a__ ( cls : Any , A_ : Union[str, os.PathLike] , *A_ : Any , **A_ : int ) -> Dict: """simple docstring""" lowerCamelCase_ = GPTaTokenizer.from_pretrained(A_ , *A_ , **A_ ) return cls.from_tokenizer(A_ , *A_ , **A_ ) @classmethod def a__ ( cls : List[str] , A_ : List[str] ) -> Optional[Any]: """simple docstring""" return cls(**A_ ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self : Optional[int] , A_ : List[str] , A_ : int = None ) -> str: """simple docstring""" lowerCamelCase_ = self.tf_tokenizer(A_ ) lowerCamelCase_ = tf.ones_like(A_ ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_ , lowerCamelCase_ = pad_model_inputs( A_ , max_seq_length=A_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
651
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Optional[Any] , A_ : Optional[Any]=7 , A_ : Optional[Any]=3 , A_ : List[Any]=18 , A_ : Dict=30 , A_ : Dict=400 , A_ : List[Any]=True , A_ : int=None , A_ : Any=True , A_ : Optional[int]=None , A_ : str=True , A_ : Any=[0.5, 0.5, 0.5] , A_ : int=[0.5, 0.5, 0.5] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = size if size is not None else {'shortest_edge': 18} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std def a__ ( self : Dict ) -> Dict: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = LevitImageProcessor if is_vision_available() else None def a__ ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = LevitImageProcessingTester(self ) @property def a__ ( self : Optional[int] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" pass def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
651
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''efficientformer''' def __init__( self : List[str] , A_ : List[int] = [3, 2, 6, 4] , A_ : List[int] = [48, 96, 224, 448] , A_ : List[bool] = [True, True, True, True] , A_ : int = 448 , A_ : int = 32 , A_ : int = 4 , A_ : int = 7 , A_ : int = 5 , A_ : int = 8 , A_ : int = 4 , A_ : float = 0.0 , A_ : int = 16 , A_ : int = 3 , A_ : int = 3 , A_ : int = 3 , A_ : int = 2 , A_ : int = 1 , A_ : float = 0.0 , A_ : int = 1 , A_ : bool = True , A_ : bool = True , A_ : float = 1E-5 , A_ : str = "gelu" , A_ : float = 0.02 , A_ : float = 1E-12 , A_ : int = 224 , A_ : float = 1E-05 , **A_ : str , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = hidden_sizes lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = depths lowerCamelCase_ = mlp_expansion_ratio lowerCamelCase_ = downsamples lowerCamelCase_ = dim lowerCamelCase_ = key_dim lowerCamelCase_ = attention_ratio lowerCamelCase_ = resolution lowerCamelCase_ = pool_size lowerCamelCase_ = downsample_patch_size lowerCamelCase_ = downsample_stride lowerCamelCase_ = downsample_pad lowerCamelCase_ = drop_path_rate lowerCamelCase_ = num_metaad_blocks lowerCamelCase_ = distillation lowerCamelCase_ = use_layer_scale lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = image_size lowerCamelCase_ = batch_norm_eps
651
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
1