code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Optional[int]=10 , UpperCamelCase__ : List[str]=[10, 20, 30, 40] , UpperCamelCase__ : Any=[1, 1, 2, 1] , UpperCamelCase__ : int=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str="relu" , UpperCamelCase__ : str=3 , UpperCamelCase__ : Any=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = embeddings_size lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_act lowercase_ = num_labels lowercase_ = scope lowercase_ = len(lowercase_ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = self.get_config() return config, pixel_values def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = FlaxRegNetModel(config=lowercase_ ) lowercase_ = model(lowercase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = FlaxRegNetForImageClassification(config=lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( snake_case__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : str = False def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = FlaxRegNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : int ): '''simple docstring''' return def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowercase_ ) lowercase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): lowercase_ = model_class(lowercase_ ) lowercase_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase_ = model_class(lowercase_ ) @jax.jit def model_jitted(UpperCamelCase__ : str , **UpperCamelCase__ : Optional[int] ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest("""JIT Enabled""" ): lowercase_ = model_jitted(**lowercase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase_ = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowercase_ , return_tensors="""np""" ) lowercase_ = model(**lowercase_ ) # verify the logits lowercase_ = (1, 1_000) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) lowercase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=None ): '''simple docstring''' lowercase_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowercase_ = black.format_str(A_ , mode=A_ ) lowercase_ = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(A_ , """w""" , newline="""\n""" ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , """r""" ) as f: self.assertTrue(f.read() , A_ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(A_ , A_ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , A_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , A_ ) , ) # Copy consistency with a really long name lowercase_ = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , A_ , overwrite_result=re.sub("""DDPM""" , """Test""" , A_ ) , )
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__ ( __lowercase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'naver-clova-ix/donut-base-finetuned-docvqa' __SCREAMING_SNAKE_CASE : Tuple = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __SCREAMING_SNAKE_CASE : List[Any] = 'document_qa' __SCREAMING_SNAKE_CASE : Dict = AutoProcessor __SCREAMING_SNAKE_CASE : Tuple = VisionEncoderDecoderModel __SCREAMING_SNAKE_CASE : Any = ['image', 'text'] __SCREAMING_SNAKE_CASE : List[str] = ['text'] def __init__( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[str] ): '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : "Image" , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" lowercase_ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) lowercase_ = self.pre_processor.tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" ).input_ids lowercase_ = self.pre_processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] ): '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase__ , ).sequences def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = self.pre_processor.batch_decode(UpperCamelCase__ )[0] lowercase_ = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) lowercase_ = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) lowercase_ = re.sub(R"""<.*?>""" , """""" , UpperCamelCase__ , count=1 ).strip() # remove first task start token lowercase_ = self.pre_processor.tokenajson(UpperCamelCase__ ) return sequence["answer"]
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = XGLMTokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : List[Any] = True def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__UpperCamelCase ) , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = XGLMTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCamelCase , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=__UpperCamelCase ) lowercase_ = pickle.dumps(__UpperCamelCase ) pickle.loads(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(__UpperCamelCase ) lowercase_ = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) lowercase_ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) lowercase_ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(__UpperCamelCase ) lowercase_ = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""facebook/xglm-564M""" , padding=__UpperCamelCase , )
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCamelCase__ , unet=self.dummy_unet , mel=UpperCamelCase__ , scheduler=UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCamelCase__ , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCamelCase__ , steps=4 , return_dict=UpperCamelCase__ ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCamelCase__ , scheduler=UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCamelCase__ , generator=UpperCamelCase__ , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCamelCase__ , mel=UpperCamelCase__ , scheduler=UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCamelCase__ , encoding=UpperCamelCase__ ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCamelCase__ ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
from __future__ import annotations a = '#' class UpperCamelCase__ : def __init__( self : List[Any] ): '''simple docstring''' lowercase_ = {} def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = self._trie for char in text: if char not in trie: lowercase_ = {} lowercase_ = trie[char] lowercase_ = True def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self._trie for char in prefix: if char in trie: lowercase_ = trie[char] else: return [] return self._elements(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = [] for c, v in d.items(): lowercase_ = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase__ )] result.extend(UpperCamelCase__ ) return tuple(UpperCamelCase__ ) a = Trie() a = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = trie.find_word(lowerCAmelCase__ ) return tuple(string + word for word in suffixes ) def UpperCAmelCase_ ( ): print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = UnCLIPImageVariationPipeline __SCREAMING_SNAKE_CASE : Tuple = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} __SCREAMING_SNAKE_CASE : Dict = IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Dict = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] __SCREAMING_SNAKE_CASE : Optional[int] = False @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(UpperCamelCase__ ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } lowercase_ = UnCLIPTextProjModel(**UpperCamelCase__ ) return model @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } lowercase_ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(1 ) lowercase_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.dummy_decoder lowercase_ = self.dummy_text_proj lowercase_ = self.dummy_text_encoder lowercase_ = self.dummy_tokenizer lowercase_ = self.dummy_super_res_first lowercase_ = self.dummy_super_res_last lowercase_ = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1_000 , ) lowercase_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1_000 , ) lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) lowercase_ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : str=0 , UpperCamelCase__ : Dict=True ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCamelCase__ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ ) lowercase_ = output.images lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) lowercase_ = pipe( **UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ ) lowercase_ = output.images lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) lowercase_ = pipe( **UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) lowercase_ = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] lowercase_ = pipe(**UpperCamelCase__ ) lowercase_ = output.images lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) lowercase_ = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] lowercase_ = pipe( **UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowercase_ = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = torch.device("""cpu""" ) class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = 1 lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) lowercase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) lowercase_ = pipe.decoder.dtype lowercase_ = 1 lowercase_ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowercase_ = pipe.prepare_latents( UpperCamelCase__ , dtype=UpperCamelCase__ , device=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , scheduler=DummyScheduler() ) lowercase_ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowercase_ = pipe.prepare_latents( UpperCamelCase__ , dtype=UpperCamelCase__ , device=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , scheduler=DummyScheduler() ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) lowercase_ = pipe( **UpperCamelCase__ , decoder_latents=UpperCamelCase__ , super_res_latents=UpperCamelCase__ ).images lowercase_ = self.get_dummy_inputs(UpperCamelCase__ , pil_image=UpperCamelCase__ ) # Don't pass image, instead pass embedding lowercase_ = pipeline_inputs.pop("""image""" ) lowercase_ = pipe.image_encoder(UpperCamelCase__ ).image_embeds lowercase_ = pipe( **UpperCamelCase__ , decoder_latents=UpperCamelCase__ , super_res_latents=UpperCamelCase__ , image_embeddings=UpperCamelCase__ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowercase_ = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , expected_max_diff=UpperCamelCase__ ) @skip_mps def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = torch_device == """cpu""" lowercase_ = True lowercase_ = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , additional_params_copy_to_batched_inputs=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowercase_ = [2, 3] self._test_inference_batch_consistent( batch_sizes=UpperCamelCase__ , additional_params_copy_to_batched_inputs=UpperCamelCase__ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=UpperCamelCase__ ) @skip_mps def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) lowercase_ = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) lowercase_ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase_ = pipeline( UpperCamelCase__ , generator=UpperCamelCase__ , output_type="""np""" , ) lowercase_ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ , 15 )
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a = logging.get_logger(__name__) class UpperCamelCase__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = feature_size lowercase_ = sampling_rate lowercase_ = padding_value lowercase_ = kwargs.pop("""padding_side""" , """right""" ) lowercase_ = kwargs.pop("""return_attention_mask""" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowercase_ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) lowercase_ = processed_features[self.model_input_names[0]] lowercase_ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase_ ) == 0: if return_attention_mask: lowercase_ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase_ = required_input[0] if isinstance(lowerCAmelCase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase_ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase_ ): lowercase_ = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase_ ): lowercase_ = """tf""" elif is_torch_tensor(lowerCAmelCase_ ): lowercase_ = """pt""" elif isinstance(lowerCAmelCase_ , (int, float, list, tuple, np.ndarray) ): lowercase_ = """np""" else: raise ValueError( F'''type of {first_element} unknown: {type(lowerCAmelCase_ )}. ''' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowercase_ = to_numpy(lowerCAmelCase_ ) else: lowercase_ = [to_numpy(lowerCAmelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase_ = self._get_padding_strategies(padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) lowercase_ = processed_features[self.model_input_names[0]] lowercase_ = len(lowerCAmelCase_ ) if not all(len(lowerCAmelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) lowercase_ = [] for i in range(lowerCAmelCase_ ): lowercase_ = {k: v[i] for k, v in processed_features.items()} # truncation lowercase_ = self._truncate( lowerCAmelCase_ , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) truncated_inputs.append(lowerCAmelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase_ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase_ = PaddingStrategy.MAX_LENGTH lowercase_ = {} for i in range(lowerCAmelCase_ ): # padding lowercase_ = self._pad( truncated_inputs[i] , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) for key, value in outputs.items(): if key not in batch_outputs: lowercase_ = [] if value.dtype is np.dtype(np.floataa ): lowercase_ = value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase_ ) return BatchFeature(lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ): '''simple docstring''' lowercase_ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase_ = len(lowerCAmelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase_ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase_ = np.ones(len(lowerCAmelCase_ ) , dtype=np.intaa ) if needs_to_be_padded: lowercase_ = max_length - len(lowerCAmelCase_ ) if self.padding_side == "right": if return_attention_mask: lowercase_ = np.pad( processed_features["""attention_mask"""] , (0, difference) ) lowercase_ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase_ = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase_ = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) lowercase_ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase_ = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) lowercase_ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase_ = len(lowerCAmelCase_ ) > max_length if needs_to_be_truncated: lowercase_ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase_ = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[Any]=None ): '''simple docstring''' if padding is not False: if padding is True: lowercase_ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowercase_ = PaddingStrategy(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowercase_ = padding else: lowercase_ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a = _symbol_database.Default() a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: a = None a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a = 4_5 a = 1_5_8_1 a = 1_5_1_7 a = 1_5_7_0 a = 1_5_8_4 a = 1_7_9_3 a = 1_7_9_5 a = 1_9_1_6 a = 1_8_6_4 a = 1_9_0_5 a = 1_9_1_9 a = 2_4_2_9 a = 2_2_0_8 a = 2_4_1_8 a = 2_3_2_3 a = 2_4_0_7 # @@protoc_insertion_point(module_scope)
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : pass
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : float = 0.1 , ): '''simple docstring''' super().__init__() lowercase_ = nn.Sequential( nn.Linear(__UpperCamelCase , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , ) lowercase_ = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) lowercase_ = False lowercase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase_ = nn.Dropout(p=__UpperCamelCase ) lowercase_ = nn.ModuleList() for lyr_num in range(__UpperCamelCase ): # FiLM conditional T5 decoder lowercase_ = DecoderLayer(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) self.decoders.append(__UpperCamelCase ) lowercase_ = TaLayerNorm(__UpperCamelCase ) lowercase_ = nn.Dropout(p=__UpperCamelCase ) lowercase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase_ = self.conditioning_emb(__UpperCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase_ = torch.broadcast_to( torch.arange(__UpperCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase_ = self.position_encoding(__UpperCamelCase ) lowercase_ = self.continuous_inputs_projection(__UpperCamelCase ) inputs += position_encodings lowercase_ = self.dropout(__UpperCamelCase ) # decoder: No padding present. lowercase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase_ = [(x, self.encoder_decoder_mask(__UpperCamelCase , __UpperCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase_ = lyr( __UpperCamelCase , conditioning_emb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , )[0] lowercase_ = self.decoder_norm(__UpperCamelCase ) lowercase_ = self.post_dropout(__UpperCamelCase ) lowercase_ = self.spec_out(__UpperCamelCase ) return spec_out class UpperCamelCase__ ( nn.Module ): def __init__( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : int=1e-6 ): '''simple docstring''' super().__init__() lowercase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase ) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): '''simple docstring''' lowercase_ = self.layer[0]( __UpperCamelCase , conditioning_emb=__UpperCamelCase , attention_mask=__UpperCamelCase , ) if encoder_hidden_states is not None: lowercase_ = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) lowercase_ = self.layer[1]( __UpperCamelCase , key_value_states=__UpperCamelCase , attention_mask=__UpperCamelCase , ) # Apply Film Conditional Feed Forward layer lowercase_ = self.layer[-1](__UpperCamelCase , __UpperCamelCase ) return (hidden_states,) class UpperCamelCase__ ( nn.Module ): def __init__( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): '''simple docstring''' super().__init__() lowercase_ = TaLayerNorm(__UpperCamelCase ) lowercase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) lowercase_ = Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) lowercase_ = nn.Dropout(__UpperCamelCase ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: lowercase_ = self.FiLMLayer(__UpperCamelCase , __UpperCamelCase ) # Self-attention block lowercase_ = self.attention(__UpperCamelCase ) lowercase_ = hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class UpperCamelCase__ ( nn.Module ): def __init__( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' super().__init__() lowercase_ = Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) lowercase_ = TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) lowercase_ = nn.Dropout(__UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = self.layer_norm(__UpperCamelCase ) lowercase_ = self.attention( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) lowercase_ = hidden_states + self.dropout(__UpperCamelCase ) return layer_output class UpperCamelCase__ ( nn.Module ): def __init__( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' super().__init__() lowercase_ = TaDenseGatedActDense(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) lowercase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) lowercase_ = TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) lowercase_ = nn.Dropout(__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=None ): '''simple docstring''' lowercase_ = self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: lowercase_ = self.film(__UpperCamelCase , __UpperCamelCase ) lowercase_ = self.DenseReluDense(__UpperCamelCase ) lowercase_ = hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class UpperCamelCase__ ( nn.Module ): def __init__( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' super().__init__() lowercase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase_ = nn.Dropout(__UpperCamelCase ) lowercase_ = NewGELUActivation() def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = self.act(self.wi_a(__UpperCamelCase ) ) lowercase_ = self.wi_a(__UpperCamelCase ) lowercase_ = hidden_gelu * hidden_linear lowercase_ = self.dropout(__UpperCamelCase ) lowercase_ = self.wo(__UpperCamelCase ) return hidden_states class UpperCamelCase__ ( nn.Module ): def __init__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any=1e-6 ): '''simple docstring''' super().__init__() lowercase_ = nn.Parameter(torch.ones(__UpperCamelCase ) ) lowercase_ = eps def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__UpperCamelCase ) lowercase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase__ ( nn.Module ): def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__UpperCamelCase , 3.0 )) )) class UpperCamelCase__ ( nn.Module ): def __init__( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__() lowercase_ = nn.Linear(__UpperCamelCase , out_features * 2 , bias=__UpperCamelCase ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.scale_bias(__UpperCamelCase ) lowercase_ , lowercase_ = torch.chunk(__UpperCamelCase , 2 , -1 ) lowercase_ = x * (1 + scale) + shift return x
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] lowercase_ = [] lowercase_ = [] for rt in rc.restypes: lowercase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase_ = {name: i for i, name in enumerate(_UpperCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) lowercase_ = torch.tensor( _UpperCamelCase , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowercase_ = torch.tensor( _UpperCamelCase , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowercase_ = torch.tensor( _UpperCamelCase , dtype=torch.floataa , device=protein["""aatype"""].device , ) lowercase_ = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase_ = restype_atomaa_to_atomaa[protein_aatype] lowercase_ = restype_atomaa_mask[protein_aatype] lowercase_ = residx_atomaa_mask lowercase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase_ = restype_atomaa_to_atomaa[protein_aatype] lowercase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase_ = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase_ = rc.restype_atoa[restype_letter] lowercase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase_ = rc.atom_order[atom_name] lowercase_ = 1 lowercase_ = restype_atomaa_mask[protein_aatype] lowercase_ = residx_atomaa_mask return protein def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = tree_map(lambda UpperCAmelCase__ : torch.tensor(_UpperCamelCase , device=batch["""aatype"""].device ) , _UpperCamelCase , np.ndarray ) lowercase_ = tensor_tree_map(lambda UpperCAmelCase__ : np.array(_UpperCamelCase ) , make_atomaa_masks(_UpperCamelCase ) ) return out
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def UpperCAmelCase_ ( UpperCAmelCase__ ): return (data["data"], data["target"]) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(UpperCAmelCase__ , UpperCAmelCase__ ) # Predict target for test data lowercase_ = xgb.predict(UpperCAmelCase__ ) lowercase_ = predictions.reshape(len(UpperCAmelCase__ ) , 1 ) return predictions def UpperCAmelCase_ ( ): lowercase_ = fetch_california_housing() lowercase_ , lowercase_ = data_handling(UpperCAmelCase__ ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = train_test_split( UpperCAmelCase__ , UpperCAmelCase__ , test_size=0.25 , random_state=1 ) lowercase_ = xgboost(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : @staticmethod def UpperCAmelCase__ ( *UpperCamelCase__ : int , **UpperCamelCase__ : str ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowercase_ = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = object_detector(examples[0] , threshold=0.0 ) lowercase_ = len(lowerCamelCase__ ) self.assertGreater(lowerCamelCase__ , 0 ) self.assertEqual( lowerCamelCase__ , [ { """score""": ANY(lowerCamelCase__ ), """label""": ANY(lowerCamelCase__ ), """box""": {"""xmin""": ANY(lowerCamelCase__ ), """ymin""": ANY(lowerCamelCase__ ), """xmax""": ANY(lowerCamelCase__ ), """ymax""": ANY(lowerCamelCase__ )}, } for i in range(lowerCamelCase__ ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @require_torch def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowercase_ = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) lowercase_ = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = pipeline("""zero-shot-object-detection""" ) lowercase_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) lowercase_ = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass @require_torch @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = 0.2 lowercase_ = pipeline("""zero-shot-object-detection""" ) lowercase_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCamelCase__ , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = 2 lowercase_ = pipeline("""zero-shot-object-detection""" ) lowercase_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCamelCase__ , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a = False class UpperCamelCase__ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowercase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): __SCREAMING_SNAKE_CASE : Any = '''mask2former''' __SCREAMING_SNAKE_CASE : List[Any] = ['''swin'''] __SCREAMING_SNAKE_CASE : Tuple = {'''hidden_size''': '''hidden_dim'''} def __init__( self : List[str] , UpperCamelCase__ : str = None , UpperCamelCase__ : List[Any] = 256 , UpperCamelCase__ : Tuple = 256 , UpperCamelCase__ : Tuple = 256 , UpperCamelCase__ : List[Any] = 1_024 , UpperCamelCase__ : List[Any] = "relu" , UpperCamelCase__ : Union[str, Any] = 6 , UpperCamelCase__ : List[Any] = 10 , UpperCamelCase__ : Tuple = 8 , UpperCamelCase__ : Optional[int] = 0.0 , UpperCamelCase__ : List[Any] = 2_048 , UpperCamelCase__ : Optional[int] = False , UpperCamelCase__ : List[Any] = False , UpperCamelCase__ : Optional[Any] = 4 , UpperCamelCase__ : Optional[int] = 255 , UpperCamelCase__ : Any = 100 , UpperCamelCase__ : Dict = 0.1 , UpperCamelCase__ : Any = 2.0 , UpperCamelCase__ : List[Any] = 5.0 , UpperCamelCase__ : Optional[int] = 5.0 , UpperCamelCase__ : Optional[Any] = 12_544 , UpperCamelCase__ : Optional[int] = 3.0 , UpperCamelCase__ : Optional[int] = 0.75 , UpperCamelCase__ : Tuple = 0.02 , UpperCamelCase__ : Union[str, Any] = 1.0 , UpperCamelCase__ : List[Any] = True , UpperCamelCase__ : Any = [4, 8, 16, 32] , UpperCamelCase__ : int = None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase_ = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = backbone_config.pop("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(UpperCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) lowercase_ = backbone_config lowercase_ = feature_size lowercase_ = mask_feature_size lowercase_ = hidden_dim lowercase_ = encoder_feedforward_dim lowercase_ = activation_function lowercase_ = encoder_layers lowercase_ = decoder_layers lowercase_ = num_attention_heads lowercase_ = dropout lowercase_ = dim_feedforward lowercase_ = pre_norm lowercase_ = enforce_input_projection lowercase_ = common_stride lowercase_ = ignore_value lowercase_ = num_queries lowercase_ = no_object_weight lowercase_ = class_weight lowercase_ = mask_weight lowercase_ = dice_weight lowercase_ = train_num_points lowercase_ = oversample_ratio lowercase_ = importance_sample_ratio lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = use_auxiliary_loss lowercase_ = feature_strides lowercase_ = output_auxiliary_logits lowercase_ = decoder_layers super().__init__(**UpperCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[str] ): '''simple docstring''' return cls( backbone_config=UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' def UpperCAmelCase_ ( UpperCAmelCase__ ): if num <= 0: raise ValueError("""Input must be a positive integer""" ) lowercase_ = [True] * (num + 1) lowercase_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase__ ): lowercase_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() a = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[str] = 'blip_text_model' def __init__( self : str , UpperCamelCase__ : Optional[int]=30_524 , UpperCamelCase__ : Tuple=768 , UpperCamelCase__ : str=768 , UpperCamelCase__ : Optional[Any]=3_072 , UpperCamelCase__ : str=768 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : str=8 , UpperCamelCase__ : List[str]=512 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=1e-12 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : Tuple=30_522 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : Dict=102 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : str=True , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , sep_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = encoder_hidden_size lowercase_ = intermediate_size lowercase_ = projection_dim lowercase_ = hidden_dropout_prob lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = max_position_embeddings lowercase_ = layer_norm_eps lowercase_ = hidden_act lowercase_ = initializer_range lowercase_ = attention_probs_dropout_prob lowercase_ = is_decoder lowercase_ = use_cache @classmethod def UpperCAmelCase__ ( cls : Any , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : int ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) lowercase_ , lowercase_ = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the text config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowercase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'blip_vision_model' def __init__( self : List[Any] , UpperCamelCase__ : Union[str, Any]=768 , UpperCamelCase__ : Union[str, Any]=3_072 , UpperCamelCase__ : int=512 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=384 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Union[str, Any]=1e-5 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=1e-10 , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = hidden_size lowercase_ = intermediate_size lowercase_ = projection_dim lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = patch_size lowercase_ = image_size lowercase_ = initializer_range lowercase_ = attention_dropout lowercase_ = layer_norm_eps lowercase_ = hidden_act @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) lowercase_ , lowercase_ = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowercase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Dict = 'blip' __SCREAMING_SNAKE_CASE : List[str] = True def __init__( self : Any , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : Optional[int]=2.6_592 , UpperCamelCase__ : Tuple=256 , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) if text_config is None: lowercase_ = {} logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" ) if vision_config is None: lowercase_ = {} logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" ) lowercase_ = BlipTextConfig(**UpperCamelCase__ ) lowercase_ = BlipVisionConfig(**UpperCamelCase__ ) lowercase_ = self.vision_config.hidden_size lowercase_ = projection_dim lowercase_ = logit_scale_init_value lowercase_ = 1.0 lowercase_ = 0.02 lowercase_ = image_text_hidden_size @classmethod def UpperCAmelCase__ ( cls : Optional[int] , UpperCamelCase__ : BlipTextConfig , UpperCamelCase__ : BlipVisionConfig , **UpperCamelCase__ : Any ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.text_config.to_dict() lowercase_ = self.vision_config.to_dict() lowercase_ = self.__class__.model_type return output
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() a = logging.get_logger(__name__) a = 'Hello, World!' a = 'en_XX' def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = Path("""data_bin""" ) lowercase_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(UpperCAmelCase__ ).parent ) , checkpoint_file=Path(UpperCAmelCase__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(UpperCAmelCase__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(UpperCAmelCase__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(UpperCAmelCase__ ) lowercase_ = xmod.model.encoder.sentence_encoder lowercase_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , UpperCAmelCase__ ) lowercase_ = XmodForSequenceClassification(UpperCAmelCase__ ) if classification_head else XmodForMaskedLM(UpperCAmelCase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowercase_ = xmod_sent_encoder.embed_tokens.weight lowercase_ = xmod_sent_encoder.embed_positions.weight lowercase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowercase_ = xmod_sent_encoder.layernorm_embedding.weight lowercase_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase_ = model.roberta.encoder.layer[i] lowercase_ = xmod_sent_encoder.layers[i] # self attention lowercase_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) lowercase_ = xmod_layer.self_attn.q_proj.weight lowercase_ = xmod_layer.self_attn.q_proj.bias lowercase_ = xmod_layer.self_attn.k_proj.weight lowercase_ = xmod_layer.self_attn.k_proj.bias lowercase_ = xmod_layer.self_attn.v_proj.weight lowercase_ = xmod_layer.self_attn.v_proj.bias # self-attention output lowercase_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) lowercase_ = xmod_layer.self_attn.out_proj.weight lowercase_ = xmod_layer.self_attn.out_proj.bias lowercase_ = xmod_layer.self_attn_layer_norm.weight lowercase_ = xmod_layer.self_attn_layer_norm.bias # intermediate lowercase_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) lowercase_ = xmod_layer.fca.weight lowercase_ = xmod_layer.fca.bias # output lowercase_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) lowercase_ = xmod_layer.fca.weight lowercase_ = xmod_layer.fca.bias lowercase_ = xmod_layer.final_layer_norm.weight lowercase_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowercase_ = xmod_layer.adapter_layer_norm.weight lowercase_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowercase_ = bert_output.adapter_modules[lang_code] lowercase_ = xmod_layer.adapter_modules[lang_code] lowercase_ = from_adapter.fca.weight lowercase_ = from_adapter.fca.bias lowercase_ = from_adapter.fca.weight lowercase_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowercase_ = xmod_sent_encoder.layer_norm.weight lowercase_ = xmod_sent_encoder.layer_norm.bias if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""].dense.weight lowercase_ = xmod.model.classification_heads["""mnli"""].dense.bias lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.weight lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowercase_ = xmod.model.encoder.lm_head.dense.weight lowercase_ = xmod.model.encoder.lm_head.dense.bias lowercase_ = xmod.model.encoder.lm_head.layer_norm.weight lowercase_ = xmod.model.encoder.lm_head.layer_norm.bias lowercase_ = xmod.model.encoder.lm_head.weight lowercase_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase_ = xmod.encode(UpperCAmelCase__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(UpperCAmelCase__ ) lowercase_ = model(UpperCAmelCase__ )[0] if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(UpperCAmelCase__ ) ) else: lowercase_ = xmod.model(UpperCAmelCase__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowercase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase_ = torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(UpperCAmelCase__ ).mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) a = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCamelCase__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : int , UpperCamelCase__ : float , UpperCamelCase__ : Callable , UpperCamelCase__ : int , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : str = None , ): '''simple docstring''' super().__init__() lowercase_ = initial_learning_rate lowercase_ = warmup_steps lowercase_ = power lowercase_ = decay_schedule_fn lowercase_ = name def __call__( self : Dict , UpperCamelCase__ : str ): '''simple docstring''' with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase_ = tf.cast(UpperCamelCase__ , tf.floataa ) lowercase_ = tf.cast(self.warmup_steps , tf.floataa ) lowercase_ = global_step_float / warmup_steps_float lowercase_ = self.initial_learning_rate * tf.math.pow(UpperCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0.0 , UpperCAmelCase__ = 0.9 , UpperCAmelCase__ = 0.999 , UpperCAmelCase__ = 1e-8 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = 0.0 , UpperCAmelCase__ = 1.0 , UpperCAmelCase__ = None , ): lowercase_ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase__ , ) if num_warmup_steps: lowercase_ = WarmUp( initial_learning_rate=UpperCAmelCase__ , decay_schedule_fn=UpperCAmelCase__ , warmup_steps=UpperCAmelCase__ , ) if weight_decay_rate > 0.0: lowercase_ = AdamWeightDecay( learning_rate=UpperCAmelCase__ , weight_decay_rate=UpperCAmelCase__ , beta_a=UpperCAmelCase__ , beta_a=UpperCAmelCase__ , epsilon=UpperCAmelCase__ , clipnorm=UpperCAmelCase__ , global_clipnorm=UpperCAmelCase__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=UpperCAmelCase__ , ) else: lowercase_ = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase__ , beta_a=UpperCAmelCase__ , beta_a=UpperCAmelCase__ , epsilon=UpperCAmelCase__ , clipnorm=UpperCAmelCase__ , global_clipnorm=UpperCAmelCase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Union[str, Any] , UpperCamelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase__ : float = 0.9 , UpperCamelCase__ : float = 0.999 , UpperCamelCase__ : float = 1e-7 , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "AdamWeightDecay" , **UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = weight_decay_rate lowercase_ = include_in_weight_decay lowercase_ = exclude_from_weight_decay @classmethod def UpperCAmelCase__ ( cls : Tuple , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = {"""WarmUp""": WarmUp} return super(UpperCamelCase__ , cls ).from_config(UpperCamelCase__ , custom_objects=UpperCamelCase__ ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' super(UpperCamelCase__ , self )._prepare_local(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : int=None , **UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ , lowercase_ = list(zip(*UpperCamelCase__ ) ) return super(UpperCamelCase__ , self ).apply_gradients(zip(UpperCamelCase__ , UpperCamelCase__ ) , name=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : str ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase_ = apply_state or {} lowercase_ = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase_ = self._fallback_apply_state(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=None ): '''simple docstring''' lowercase_ , lowercase_ = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) lowercase_ = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_dense(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : int=None ): '''simple docstring''' lowercase_ , lowercase_ = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) lowercase_ = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_sparse(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[str] ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return False return True class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Optional[Any] ): '''simple docstring''' lowercase_ = [] lowercase_ = None @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' if self._accum_steps is None: lowercase_ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[int] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if not self._gradients: lowercase_ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase__ ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase__ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase__ ) self._accum_steps.assign_add(1 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase__ ) )
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['MobileViTFeatureExtractor'] a = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
a = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a = [{'type': 'code', 'content': INSTALL_CONTENT}] a = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCAmelCase_ ( UpperCAmelCase__ ): return EnvironmentCommand() class UpperCamelCase__ ( __magic_name__ ): @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : ArgumentParser ): '''simple docstring''' lowercase_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = huggingface_hub.__version__ lowercase_ = """not installed""" lowercase_ = """NA""" if is_torch_available(): import torch lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = """not installed""" if is_transformers_available(): import transformers lowercase_ = transformers.__version__ lowercase_ = """not installed""" if is_accelerate_available(): import accelerate lowercase_ = accelerate.__version__ lowercase_ = """not installed""" if is_xformers_available(): import xformers lowercase_ = xformers.__version__ lowercase_ = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple ): '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
from sklearn.metrics import recall_score import datasets a = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : str=1 , UpperCamelCase__ : Optional[Any]="binary" , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple="warn" , ): '''simple docstring''' lowercase_ = recall_score( UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ , pos_label=UpperCamelCase__ , average=UpperCamelCase__ , sample_weight=UpperCamelCase__ , zero_division=UpperCamelCase__ , ) return {"recall": float(UpperCamelCase__ ) if score.size == 1 else score}
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } lowercase_ = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , x.transpose() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , transpose(UpperCamelCase__ ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , transpose(UpperCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , transpose(UpperCamelCase__ ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , transpose(UpperCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , np.asarray(transpose(UpperCamelCase__ ) ) ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) ) ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , np.reshape(UpperCamelCase__ , (4, 3) ) ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , np.reshape(UpperCamelCase__ , (12, 5) ) ) ) @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , reshape(UpperCamelCase__ , (4, 3) ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , reshape(UpperCamelCase__ , (12, 5) ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , reshape(UpperCamelCase__ , (4, 3) ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , reshape(UpperCamelCase__ , (12, 5) ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , np.asarray(reshape(UpperCamelCase__ , (4, 3) ) ) ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , np.asarray(reshape(UpperCamelCase__ , (12, 5) ) ) ) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , np.squeeze(UpperCamelCase__ ) ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , np.squeeze(UpperCamelCase__ , axis=2 ) ) ) @require_torch def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) lowercase_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , squeeze(UpperCamelCase__ ).numpy() ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) lowercase_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , squeeze(UpperCamelCase__ , axis=2 ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) lowercase_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , squeeze(UpperCamelCase__ ).numpy() ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) lowercase_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , squeeze(UpperCamelCase__ , axis=2 ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) lowercase_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , np.asarray(squeeze(UpperCamelCase__ ) ) ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) lowercase_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , np.asarray(squeeze(UpperCamelCase__ , axis=2 ) ) ) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , np.expand_dims(UpperCamelCase__ , axis=1 ) ) ) @require_torch def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , expand_dims(UpperCamelCase__ , axis=1 ).numpy() ) ) @require_tf def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , expand_dims(UpperCamelCase__ , axis=1 ).numpy() ) ) @require_flax def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , np.asarray(expand_dims(UpperCamelCase__ , axis=1 ) ) ) )
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a = logging.get_logger(__name__) a = {'vocab_file': 'vocab.txt'} a = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } a = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = ConvBertTokenizer def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]="[UNK]" , UpperCamelCase__ : Dict="[SEP]" , UpperCamelCase__ : Union[str, Any]="[PAD]" , UpperCamelCase__ : Union[str, Any]="[CLS]" , UpperCamelCase__ : Dict="[MASK]" , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase__ ) != tokenize_chinese_chars ): lowercase_ = getattr(UpperCamelCase__ , normalizer_state.pop("""type""" ) ) lowercase_ = do_lower_case lowercase_ = strip_accents lowercase_ = tokenize_chinese_chars lowercase_ = normalizer_class(**UpperCamelCase__ ) lowercase_ = do_lower_case def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=None ): '''simple docstring''' lowercase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging a = logging.get_logger(__name__) a = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class UpperCamelCase__ ( __magic_name__ ): @add_start_docstrings(UpperCamelCase__ ) def __call__( self : Dict , UpperCamelCase__ : torch.LongTensor , UpperCamelCase__ : torch.FloatTensor , **UpperCamelCase__ : int ): '''simple docstring''' raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class UpperCamelCase__ ( __magic_name__ ): def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None ): '''simple docstring''' lowercase_ = max_length lowercase_ = max_position_embeddings @add_start_docstrings(UpperCamelCase__ ) def __call__( self : Union[str, Any] , UpperCamelCase__ : torch.LongTensor , UpperCamelCase__ : torch.FloatTensor , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = input_ids.shape[-1] lowercase_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' """exceptions, performance degradation, or nothing at all.""" ) return is_done class UpperCamelCase__ ( __magic_name__ ): def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' """with `max_length = start_length + max_new_tokens` instead.""" , UpperCamelCase__ , ) lowercase_ = start_length lowercase_ = max_new_tokens lowercase_ = start_length + max_new_tokens @add_start_docstrings(UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : torch.LongTensor , UpperCamelCase__ : torch.FloatTensor , **UpperCamelCase__ : int ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Tuple , UpperCamelCase__ : float , UpperCamelCase__ : Optional[float] = None ): '''simple docstring''' lowercase_ = max_time lowercase_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCamelCase__ ) def __call__( self : List[str] , UpperCamelCase__ : torch.LongTensor , UpperCamelCase__ : torch.FloatTensor , **UpperCamelCase__ : List[str] ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class UpperCamelCase__ ( __magic_name__ ): @add_start_docstrings(UpperCamelCase__ ) def __call__( self : List[Any] , UpperCamelCase__ : torch.LongTensor , UpperCamelCase__ : torch.FloatTensor , **UpperCamelCase__ : int ): '''simple docstring''' return any(criteria(UpperCamelCase__ , UpperCamelCase__ ) for criteria in self ) @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' for stopping_criterium in self: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return stopping_criterium.max_length elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return stopping_criterium.max_length return None def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = stopping_criteria.max_length lowercase_ = deepcopy(UpperCAmelCase__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , UpperCAmelCase__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=UpperCAmelCase__ ) ) return new_stopping_criteria
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () a = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). a = [0, 2_5, 5_0] a = [2_5, 5_0, 7_5] a = fuzz.membership.trimf(X, abca) a = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. a = np.ones(7_5) a = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) a = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) a = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) a = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) a = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] a = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) a = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] a = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] a = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=1_0_2_4 ): lowercase_ , lowercase_ = [], [] lowercase_ = list(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ , lowercase_ = sorted_examples[0] def is_too_big(UpperCAmelCase__ ): return tok(UpperCAmelCase__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowercase_ = new_src + """ """ + src lowercase_ = new_tgt + """ """ + tgt if is_too_big(UpperCAmelCase__ ) or is_too_big(UpperCAmelCase__ ): # cant fit, finalize example finished_src.append(UpperCAmelCase__ ) finished_tgt.append(UpperCAmelCase__ ) lowercase_ , lowercase_ = src, tgt else: # can fit, keep adding lowercase_ , lowercase_ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCAmelCase__ ) finished_tgt.append(UpperCAmelCase__ ) return finished_src, finished_tgt def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = Path(UpperCAmelCase__ ) save_path.mkdir(exist_ok=UpperCAmelCase__ ) for split in ["train"]: lowercase_ , lowercase_ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' lowercase_ = [x.rstrip() for x in Path(UpperCAmelCase__ ).open().readlines()] lowercase_ = [x.rstrip() for x in Path(UpperCAmelCase__ ).open().readlines()] lowercase_ , lowercase_ = pack_examples(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''packed {split} split from {len(UpperCAmelCase__ )} examples -> {len(UpperCAmelCase__ )}.''' ) Path(save_path / F'''{split}.source''' ).open("""w""" ).write("""\n""".join(UpperCAmelCase__ ) ) Path(save_path / F'''{split}.target''' ).open("""w""" ).write("""\n""".join(UpperCAmelCase__ ) ) for split in ["val", "test"]: lowercase_ , lowercase_ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(UpperCAmelCase__ , save_path / F'''{split}.source''' ) shutil.copyfile(UpperCAmelCase__ , save_path / F'''{split}.target''' ) def UpperCAmelCase_ ( ): lowercase_ = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=UpperCAmelCase__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=UpperCAmelCase__ , default=1_2_8 ) parser.add_argument("""--data_dir""" , type=UpperCAmelCase__ ) parser.add_argument("""--save_path""" , type=UpperCAmelCase__ ) lowercase_ = parser.parse_args() lowercase_ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCAmelCase__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[List[PIL.Image.Image], np.ndarray] __SCREAMING_SNAKE_CASE : Optional[List[bool]] __SCREAMING_SNAKE_CASE : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available a = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCAmelCase_ ( UpperCAmelCase__ ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase_ ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase_ ( ): lowercase_ = """mock-s3-bucket""" lowercase_ = F'''s3://{mock_bucket}''' lowercase_ = extract_path_from_uri(UpperCAmelCase__ ) assert dataset_path.startswith("""s3://""" ) is False lowercase_ = """./local/path""" lowercase_ = extract_path_from_uri(UpperCAmelCase__ ) assert dataset_path == new_dataset_path def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = is_remote_filesystem(UpperCAmelCase__ ) assert is_remote is True lowercase_ = fsspec.filesystem("""file""" ) lowercase_ = is_remote_filesystem(UpperCAmelCase__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} lowercase_ = input_paths[compression_fs_class.protocol] if input_path is None: lowercase_ = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) lowercase_ = fsspec.filesystem(compression_fs_class.protocol , fo=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = os.path.basename(UpperCAmelCase__ ) lowercase_ = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f, open(UpperCAmelCase__ , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} lowercase_ = compressed_file_paths[protocol] lowercase_ = """dataset.jsonl""" lowercase_ = F'''{protocol}://{member_file_path}::{compressed_file_path}''' lowercase_ , *lowercase_ = fsspec.get_fs_token_paths(UpperCAmelCase__ ) assert fs.isfile(UpperCAmelCase__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = hf_api.dataset_info(UpperCAmelCase__ , token=UpperCAmelCase__ ) lowercase_ = HfFileSystem(repo_info=UpperCAmelCase__ , token=UpperCAmelCase__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(UpperCAmelCase__ ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def UpperCAmelCase_ ( ): lowercase_ = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(UpperCAmelCase__ , UpperCAmelCase__ , clobber=UpperCAmelCase__ ) with pytest.warns(UpperCAmelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(UpperCAmelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : int = 'biogpt' def __init__( self : Union[str, Any] , UpperCamelCase__ : Any=42_384 , UpperCamelCase__ : Optional[Any]=1_024 , UpperCamelCase__ : List[Any]=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Optional[int]=4_096 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=1_024 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Union[str, Any]=1e-12 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Any=2 , **UpperCamelCase__ : List[str] , ): '''simple docstring''' lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = scale_embedding lowercase_ = use_cache lowercase_ = layerdrop lowercase_ = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
a = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 1_2, 'Pm': 1_5, 'Em': 1_8, 'Zm': 2_1, 'Ym': 2_4, } def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = from_type.lower().strip("""s""" ) lowercase_ = to_type.lower().strip("""s""" ) lowercase_ = UNIT_SYMBOL.get(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = UNIT_SYMBOL.get(UpperCAmelCase__ , UpperCAmelCase__ ) if from_sanitized not in METRIC_CONVERSION: lowercase_ = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(UpperCAmelCase__ )}''' ) raise ValueError(UpperCAmelCase__ ) if to_sanitized not in METRIC_CONVERSION: lowercase_ = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(UpperCAmelCase__ )}''' ) raise ValueError(UpperCAmelCase__ ) lowercase_ = METRIC_CONVERSION[from_sanitized] lowercase_ = METRIC_CONVERSION[to_sanitized] lowercase_ = 1 if from_exponent > to_exponent: lowercase_ = from_exponent - to_exponent else: lowercase_ = -(to_exponent - from_exponent) return value * pow(1_0 , UpperCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a = 1_0 def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for i in range(UpperCAmelCase__ , UpperCAmelCase__ ): if array[i] == target: return i return -1 def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = 0 lowercase_ = len(UpperCAmelCase__ ) while left <= right: if right - left < precision: return lin_search(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase_ = one_third - 1 elif array[two_third] < target: lowercase_ = two_third + 1 else: lowercase_ = one_third + 1 lowercase_ = two_third - 1 else: return -1 def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if left < right: if right - left < precision: return lin_search(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCAmelCase__ , one_third - 1 , UpperCAmelCase__ , UpperCAmelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCAmelCase__ , UpperCAmelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a = input('Enter numbers separated by comma:\n').strip() a = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a = int(input('Enter the number to be found in the list:\n').strip()) a = ite_ternary_search(collection, target) a = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print('Not found')
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Optional[int] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowercase_ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """sgugger/tiny-distilbert-classification""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """patrickvonplaten/t5-tiny-random""" lowercase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ , configs=[config] ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(UpperCamelCase__ , """env.csv""" ) , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCamelCase__ : str ): self.assertTrue(hasattr(UpperCamelCase__ , """sequential""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """cumulative""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """current""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , """log.txt""" ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowercase_ = TensorFlowBenchmark(UpperCamelCase__ ) lowercase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """log.txt""" ) ).exists() )
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowercase_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowercase_ = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowercase_ = tf_top_k_top_p_filtering(UpperCamelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowercase_ = output[output != -float("""inf""" )] lowercase_ = tf.cast( tf.where(tf.not_equal(UpperCamelCase__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-12 ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @require_tf class UpperCamelCase__ ( unittest.TestCase , __magic_name__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __SCREAMING_SNAKE_CASE : int = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = 2 lowercase_ = 2 class UpperCamelCase__ ( tf.Module ): def __init__( self : List[Any] , UpperCamelCase__ : List[Any] ): '''simple docstring''' super(UpperCamelCase__ , self ).__init__() lowercase_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.model.generate( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , max_new_tokens=UpperCamelCase__ , return_dict_in_generate=UpperCamelCase__ , ) return {"sequences": outputs["sequences"]} lowercase_ = [[2, 0], [102, 103]] lowercase_ = [[1, 0], [1, 1]] lowercase_ = DummyModel(model=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={"""serving_default""": dummy_model.serving} ) lowercase_ = tf.saved_model.load(UpperCamelCase__ ).signatures["""serving_default"""] for batch_size in range(1 , len(UpperCamelCase__ ) + 1 ): lowercase_ = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } lowercase_ = serving_func(**UpperCamelCase__ )["""sequences"""] lowercase_ = test_model.generate(**UpperCamelCase__ , max_new_tokens=UpperCamelCase__ ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = 1 lowercase_ = 2 class UpperCamelCase__ ( tf.Module ): def __init__( self : Tuple , UpperCamelCase__ : Any ): '''simple docstring''' super(UpperCamelCase__ , self ).__init__() lowercase_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = self.model.generate( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , max_new_tokens=UpperCamelCase__ , return_dict_in_generate=UpperCamelCase__ , ) return {"sequences": outputs["sequences"]} lowercase_ = [[2], [102, 103]] lowercase_ = [[1], [1, 1]] lowercase_ = DummyModel(model=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={"""serving_default""": dummy_model.serving} ) lowercase_ = tf.saved_model.load(UpperCamelCase__ ).signatures["""serving_default"""] for input_row in range(len(UpperCamelCase__ ) ): lowercase_ = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } lowercase_ = serving_func(**UpperCamelCase__ )["""sequences"""] lowercase_ = test_model.generate(**UpperCamelCase__ , max_new_tokens=UpperCamelCase__ ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @slow @require_tensorflow_text def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCamelCase__ ) class UpperCamelCase__ ( tf.keras.layers.Layer ): def __init__( self : int ): '''simple docstring''' super().__init__() lowercase_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase__ , """spiece.model""" ) , """rb""" ).read() ) lowercase_ = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Tuple , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = self.tokenizer.tokenize(UpperCamelCase__ ) lowercase_ , lowercase_ = text.pad_model_inputs( UpperCamelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowercase_ = self.model.generate(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) return self.tokenizer.detokenize(UpperCamelCase__ ) lowercase_ = CompleteSentenceTransformer() lowercase_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) lowercase_ = complete_model(UpperCamelCase__ ) lowercase_ = tf.keras.Model(UpperCamelCase__ , UpperCamelCase__ ) keras_model.save(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } lowercase_ = 14 lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = """Hello, my dog is cute and""" lowercase_ = tokenizer(UpperCamelCase__ , return_tensors="""tf""" ) lowercase_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ = model.generate(**UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowercase_ = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ = model.generate(**UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ = """Hugging Face is a technology company based in New York and Paris.""" lowercase_ = bart_tokenizer(UpperCamelCase__ , return_tensors="""tf""" ).input_ids lowercase_ = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ = bart_model.generate(UpperCamelCase__ ).numpy() class UpperCamelCase__ ( __magic_name__ ): def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Dict ): '''simple docstring''' return super().call(UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ = bart_model.generate(UpperCamelCase__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(UpperCamelCase__ , UpperCamelCase__ ) ) class UpperCamelCase__ ( bart_model.model.encoder.__class__ ): def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[Any] , **UpperCamelCase__ : int ): '''simple docstring''' return super().call(UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = FakeEncoder(bart_model.config , bart_model.model.shared ) lowercase_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowercase_ = bart_model.generate(UpperCamelCase__ ).numpy() with self.assertRaises(UpperCamelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase__ , foo="""bar""" )
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
from string import ascii_uppercase a = {char: i for i, char in enumerate(ascii_uppercase)} a = dict(enumerate(ascii_uppercase)) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = len(UpperCAmelCase__ ) lowercase_ = 0 while True: if x == i: lowercase_ = 0 if len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ): break key += key[i] i += 1 return key def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = """""" lowercase_ = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase_ = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = """""" lowercase_ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase_ = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def UpperCAmelCase_ ( ): lowercase_ = """THE GERMAN ATTACK""" lowercase_ = """SECRET""" lowercase_ = generate_key(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = cipher_text(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Encrypted Text = {s}''' ) print(F'''Original Text = {original_text(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Optional[Any] = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) lowercase_ = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableDiffusionInpaintPipeline(**UpperCamelCase__ ) lowercase_ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = sd_pipe(**UpperCamelCase__ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowercase_ = """stabilityai/stable-diffusion-2-inpainting""" lowercase_ = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase__ , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() lowercase_ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="""np""" , ) lowercase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowercase_ = """stabilityai/stable-diffusion-2-inpainting""" lowercase_ = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() lowercase_ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="""np""" , ) lowercase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowercase_ = """stabilityai/stable-diffusion-2-inpainting""" lowercase_ = PNDMScheduler.from_pretrained(UpperCamelCase__ , subfolder="""scheduler""" ) lowercase_ = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , scheduler=UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase_ = """Face of a yellow cat, high resolution, sitting on a park bench""" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="""np""" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=1_0_2_4 , UpperCAmelCase__=1_0_2_4 , UpperCAmelCase__=False , **UpperCAmelCase__ ): lowercase_ = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowercase_ = SeqaSeqDataset(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , type_path="""train""" , **UpperCAmelCase__ ) lowercase_ = tok.pad_token_id def get_lens(UpperCAmelCase__ ): lowercase_ = tqdm( DataLoader(UpperCAmelCase__ , batch_size=5_1_2 , num_workers=8 , shuffle=UpperCAmelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowercase_ = [] for batch in dl: lowercase_ = batch["""input_ids"""].ne(UpperCAmelCase__ ).sum(1 ).tolist() lowercase_ = batch["""labels"""].ne(UpperCAmelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCAmelCase__ , UpperCAmelCase__ ): max_lens.append(max(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: max_lens.extend(UpperCAmelCase__ ) return max_lens lowercase_ = get_lens(UpperCAmelCase__ ) lowercase_ = SeqaSeqDataset(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , type_path="""val""" , **UpperCAmelCase__ ) lowercase_ = get_lens(UpperCAmelCase__ ) pickle_save(UpperCAmelCase__ , train_ds.len_file ) pickle_save(UpperCAmelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] lowercase_ = [] lowercase_ = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator lowercase_ = len(UpperCAmelCase__ ) if (len(UpperCAmelCase__ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(UpperCAmelCase__ ) , """Postfix""".center(UpperCAmelCase__ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCAmelCase__ ) == 0: stack.append(UpperCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCAmelCase__ ) # push x to stack print( x.center(8 ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format while len(UpperCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format return "".join(UpperCAmelCase__ ) # return Postfix as str def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCAmelCase__ ) ): if infix[i] == "(": lowercase_ = """)""" # change "(" to ")" elif infix[i] == ")": lowercase_ = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(UpperCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a = input('\nEnter an Infix Equation = ') # Input an Infix equation a = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin a = False @skip_mps class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = StableDiffusionAttendAndExcitePipeline __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Any = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCAmelCase__ ( cls : List[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = lowercase_ = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ ).images lowercase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowercase_ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = torch.manual_seed(51 ) lowercase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowercase_ = """a painting of an elephant with glasses""" lowercase_ = [5, 7] lowercase_ = pipe( prompt=UpperCamelCase__ , token_indices=UpperCamelCase__ , guidance_scale=7.5 , generator=UpperCamelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = TransfoXLTokenizer __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() lowercase_ = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCAmelCase__ ( self : Tuple , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = """<unk> UNwanted , running""" lowercase_ = """<unk> unwanted, running""" return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(UpperCamelCase__ , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [0, 4, 8, 7] ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = TransfoXLTokenizer(lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = TransfoXLTokenizer(lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = TransfoXLTokenizer(lower_case=UpperCamelCase__ ) lowercase_ = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" lowercase_ = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.get_tokenizer() lowercase_ = len(UpperCamelCase__ ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCamelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) a = 2_9_9_7_9_2_4_5_8 # Symbols a , a , a , a = symbols('ct x y z') def UpperCAmelCase_ ( UpperCAmelCase__ ): if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def UpperCAmelCase_ ( UpperCAmelCase__ ): return 1 / sqrt(1 - beta(UpperCAmelCase__ ) ** 2 ) def UpperCAmelCase_ ( UpperCAmelCase__ ): return np.array( [ [gamma(UpperCAmelCase__ ), -gamma(UpperCAmelCase__ ) * beta(UpperCAmelCase__ ), 0, 0], [-gamma(UpperCAmelCase__ ) * beta(UpperCAmelCase__ ), gamma(UpperCAmelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = None ): # Ensure event is not empty if event is None: lowercase_ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCAmelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: a = transform(2_9_9_7_9_2_4_5) print('Example of four vector: ') print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values a = {ct: c, x: 1, y: 1, z: 1} a = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCamelCase__ : def __init__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int]=13 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : List[Any]=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : int=512 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : List[str]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = self.vocab_size - 1 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowercase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , *UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = OpenAIGPTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , *UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = OpenAIGPTLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = OpenAIGPTDoubleHeadsModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , *UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = OpenAIGPTForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : int ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) lowercase_ = inputs_dict["""labels"""] lowercase_ = inputs_dict["""labels"""] lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase__ , ) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = OpenAIGPTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = OpenAIGPTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(UpperCamelCase__ ) lowercase_ = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=UpperCamelCase__ ) # the president is lowercase_ = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowercase_ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase__ )
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
import socket def UpperCAmelCase_ ( ): lowercase_ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase_ = socket.gethostname() lowercase_ = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowercase_ = sock.recv(1_0_2_4 ) if not data: break out_file.write(UpperCAmelCase__ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : def __init__( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : str=30 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : str=32 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Optional[Any]=37 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Optional[int]=10 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Optional[int]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 1 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = TFViTModel(config=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowercase_ = self.image_size // 2 lowercase_ = pixel_values[:, :, :image_size, :image_size] lowercase_ = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) lowercase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = TFViTForImageClassification(UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowercase_ = self.image_size // 2 lowercase_ = pixel_values[:, :, :image_size, :image_size] lowercase_ = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = TFViTForImageClassification(UpperCamelCase__ ) lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Dict = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = TFViTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # forward pass lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 )
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a = logging.get_logger(__name__) a = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'bloom' __SCREAMING_SNAKE_CASE : Any = ['past_key_values'] __SCREAMING_SNAKE_CASE : List[Any] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Any , UpperCamelCase__ : Dict=250_880 , UpperCamelCase__ : str=64 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Optional[int]=1e-5 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : str=2 , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : str=False , **UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = vocab_size # Backward compatibility with n_embed kwarg lowercase_ = kwargs.pop("""n_embed""" , UpperCamelCase__ ) lowercase_ = hidden_size if n_embed is None else n_embed lowercase_ = n_layer lowercase_ = n_head lowercase_ = layer_norm_epsilon lowercase_ = initializer_range lowercase_ = use_cache lowercase_ = pretraining_tp lowercase_ = apply_residual_connection_post_layernorm lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = bos_token_id lowercase_ = eos_token_id lowercase_ = slow_but_exact super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Optional[int] = version.parse('1.12' ) def __init__( self : List[Any] , UpperCamelCase__ : PretrainedConfig , UpperCamelCase__ : str = "default" , UpperCamelCase__ : List[PatchingSpec] = None , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , """pad_token_id""" , UpperCamelCase__ ): # TODO: how to do that better? lowercase_ = 0 @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" , inverted_values_shape=UpperCamelCase__ ) lowercase_ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self._config.n_head @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return 1e-3 def UpperCAmelCase__ ( self : int , UpperCamelCase__ : "PreTrainedTokenizer" , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional["TensorType"] = None , ): '''simple docstring''' lowercase_ = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() lowercase_ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase_ , lowercase_ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase_ = seqlen + 2 lowercase_ = self._config.hidden_size // self.num_attention_heads lowercase_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase_ = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] lowercase_ = common_inputs["""attention_mask"""] if self.use_past: lowercase_ = ordered_inputs["""attention_mask"""].dtype lowercase_ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 13
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
from __future__ import annotations def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 0.00 lowercase_ = 0 for resistor in resistors: if resistor <= 0: lowercase_ = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(UpperCAmelCase__ ) first_sum += 1 / float(UpperCAmelCase__ ) index += 1 return 1 / first_sum def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 0.00 lowercase_ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase_ = F'''Resistor at index {index} has a negative value!''' raise ValueError(UpperCAmelCase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): raise RuntimeError("""CUDA out of memory.""" ) class UpperCamelCase__ ( nn.Module ): def __init__( self : str ): '''simple docstring''' super().__init__() lowercase_ = nn.Linear(3 , 4 ) lowercase_ = nn.BatchNormad(4 ) lowercase_ = nn.Linear(4 , 5 ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCamelCase__ ) ) ) class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(UpperCamelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCamelCase__ , [128, 64, 32, 16, 8] ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): nonlocal batch_sizes batch_sizes.append(UpperCamelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase_ , lowercase_ = mock_training_loop_function("""hello""" ) self.assertListEqual(UpperCamelCase__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCamelCase__ : List[str] ): pass with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase__ : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase__ : Any ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(UpperCamelCase__ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = torch.cuda.memory_allocated() lowercase_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCamelCase__ ) lowercase_ = release_memory(UpperCamelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , UpperCamelCase__ )
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
from typing import Any import numpy as np def UpperCAmelCase_ ( UpperCAmelCase__ ): return np.array_equal(UpperCAmelCase__ , matrix.conjugate().T ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = v.conjugate().T lowercase_ = v_star.dot(UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , np.ndarray ) return (v_star_dot.dot(UpperCAmelCase__ )) / (v_star.dot(UpperCAmelCase__ )) def UpperCAmelCase_ ( ): lowercase_ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase_ = np.array([[1], [2], [3]] ) assert is_hermitian(UpperCAmelCase__ ), F'''{a} is not hermitian.''' print(rayleigh_quotient(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(UpperCAmelCase__ ), F'''{a} is not hermitian.''' assert rayleigh_quotient(UpperCAmelCase__ , UpperCAmelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowercase_ = hex_num[0] == """-""" if is_negative: lowercase_ = hex_num[1:] try: lowercase_ = int(UpperCAmelCase__ , 1_6 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowercase_ = """""" while int_num > 0: lowercase_ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def UpperCAmelCase_ ( UpperCAmelCase__ ): # Make sure the supplied data is a bytes-like object if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(UpperCAmelCase__ ) lowercase_ = """""".join(bin(UpperCAmelCase__ )[2:].zfill(8 ) for byte in data ) lowercase_ = len(UpperCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase_ = B"""=""" * ((6 - len(UpperCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCAmelCase__ ) % 6) else: lowercase_ = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCAmelCase__ ) , 6 ) ).encode() + padding ) def UpperCAmelCase_ ( UpperCAmelCase__ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = ( """argument should be a bytes-like object or ASCII string, """ F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(UpperCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): try: lowercase_ = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowercase_ = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase_ = encoded_data[:-padding] lowercase_ = """""".join( bin(B64_CHARSET.index(UpperCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase_ = """""".join( bin(B64_CHARSET.index(UpperCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase_ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCAmelCase__ ) , 8 ) ] return bytes(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
def UpperCAmelCase_ ( ): lowercase_ = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] lowercase_ = 6 lowercase_ = 1 lowercase_ = 1_9_0_1 lowercase_ = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase_ = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 lowercase_ = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 lowercase_ = day - days_per_month[month - 2] if month > 1_2: year += 1 lowercase_ = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
import math import unittest def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ , __magic_name__ ): __SCREAMING_SNAKE_CASE : Dict = 'maskformer-swin' __SCREAMING_SNAKE_CASE : List[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , UpperCamelCase__ : List[str]=224 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Tuple=96 , UpperCamelCase__ : Dict=[2, 2, 6, 2] , UpperCamelCase__ : Dict=[3, 6, 12, 24] , UpperCamelCase__ : Any=7 , UpperCamelCase__ : Dict=4.0 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Any=False , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : List[str]=1e-5 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = len(UpperCamelCase__ ) lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = layer_norm_eps lowercase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) ) lowercase_ = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(UpperCamelCase__ ) + 1 )] lowercase_ , lowercase_ = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names )
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import argparse import os import re a = 'src/diffusers' # Pattern that looks at the indentation in a line. a = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. a = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. a = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a = re.compile(R'\[([^\]]+)\]') def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = _re_indent.search(UpperCAmelCase__ ) return "" if search is None else search.groups()[0] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__="" , UpperCAmelCase__=None , UpperCAmelCase__=None ): lowercase_ = 0 lowercase_ = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase__ ): index += 1 lowercase_ = ["""\n""".join(lines[:index] )] else: lowercase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase_ = [lines[index]] index += 1 while index < len(UpperCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(UpperCAmelCase__ ) ) if index < len(UpperCAmelCase__ ) - 1: lowercase_ = [lines[index + 1]] index += 1 else: lowercase_ = [] else: blocks.append("""\n""".join(UpperCAmelCase__ ) ) lowercase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase__ ) > 0: blocks.append("""\n""".join(UpperCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase__ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCAmelCase_ ( UpperCAmelCase__ ): def _inner(UpperCAmelCase__ ): return key(UpperCAmelCase__ ).lower().replace("""_""" , """""" ) return _inner def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=None ): # If no key is provided, we use a noop. def noop(UpperCAmelCase__ ): return x if key is None: lowercase_ = noop # Constants are all uppercase, they go first. lowercase_ = [obj for obj in objects if key(UpperCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase_ = [obj for obj in objects if key(UpperCAmelCase__ )[0].isupper() and not key(UpperCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. lowercase_ = [obj for obj in objects if not key(UpperCAmelCase__ )[0].isupper()] lowercase_ = ignore_underscore(UpperCAmelCase__ ) return sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) + sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) + sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): # This inner function sort imports between [ ]. def _replace(UpperCAmelCase__ ): lowercase_ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' lowercase_ = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase__ )] ) + "]" lowercase_ = import_statement.split("""\n""" ) if len(UpperCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase_ = 2 if lines[1].strip() == """[""" else 1 lowercase_ = [(i, _re_strip_line.search(UpperCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase_ = sort_objects(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x[1] ) lowercase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase_ = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ = keys[:-1] lowercase_ = get_indent(lines[1] ) + """, """.join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase__ )] ) return "\n".join(UpperCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line lowercase_ = _re_bracket_content.sub(_replace , UpperCAmelCase__ ) return import_statement def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=True ): with open(UpperCAmelCase__ , """r""" ) as f: lowercase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase_ = split_code_in_indented_blocks( UpperCAmelCase__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase_ = main_blocks[block_idx] lowercase_ = block.split("""\n""" ) # Get to the start of the imports. lowercase_ = 0 while line_idx < len(UpperCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase_ = len(UpperCAmelCase__ ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. lowercase_ = """\n""".join(block_lines[line_idx:-1] ) lowercase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase_ = split_code_in_indented_blocks(UpperCAmelCase__ , indent_level=UpperCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase_ = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase_ = [(pattern.search(UpperCAmelCase__ ).groups()[0] if pattern.search(UpperCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase_ = [(i, key) for i, key in enumerate(UpperCAmelCase__ ) if key is not None] lowercase_ = [x[0] for x in sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase_ = 0 lowercase_ = [] for i in range(len(UpperCAmelCase__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowercase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. lowercase_ = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCAmelCase__ , """w""" ) as f: f.write("""\n""".join(UpperCAmelCase__ ) ) def UpperCAmelCase_ ( UpperCAmelCase__=True ): lowercase_ = [] for root, _, files in os.walk(UpperCAmelCase__ ): if "__init__.py" in files: lowercase_ = sort_imports(os.path.join(UpperCAmelCase__ , """__init__.py""" ) , check_only=UpperCAmelCase__ ) if result: lowercase_ = [os.path.join(UpperCAmelCase__ , """__init__.py""" )] if len(UpperCAmelCase__ ) > 0: raise ValueError(F'''Would overwrite {len(UpperCAmelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
from __future__ import annotations a = '#' class UpperCamelCase__ : def __init__( self : List[str] ): '''simple docstring''' lowercase_ = {} def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self._trie for char in text: if char not in trie: lowercase_ = {} lowercase_ = trie[char] lowercase_ = True def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self._trie for char in prefix: if char in trie: lowercase_ = trie[char] else: return [] return self._elements(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : dict ): '''simple docstring''' lowercase_ = [] for c, v in d.items(): lowercase_ = [""" """] if c == END else [(c + s) for s in self._elements(UpperCamelCase__ )] result.extend(UpperCamelCase__ ) return tuple(UpperCamelCase__ ) a = Trie() a = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = trie.find_word(UpperCAmelCase__ ) return tuple(string + word for word in suffixes ) def UpperCAmelCase_ ( ): print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
from __future__ import annotations def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if nth_term == "": return [""] lowercase_ = int(UpperCAmelCase__ ) lowercase_ = int(UpperCAmelCase__ ) lowercase_ = [] for temp in range(int(UpperCAmelCase__ ) ): series.append(F'''1 / {pow(temp + 1 , int(UpperCAmelCase__ ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() a = int(input('Enter the last number (nth term) of the P-Series')) a = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig a = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring a = 'UperNetConfig' class UpperCamelCase__ ( nn.Module ): def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Union[int, Tuple[int, int]] , UpperCamelCase__ : Union[int, Tuple[int, int], str] = 0 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Union[int, Tuple[int, int]] = 1 , ): '''simple docstring''' super().__init__() lowercase_ = nn.Convad( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , bias=UpperCamelCase__ , dilation=UpperCamelCase__ , ) lowercase_ = nn.BatchNormad(UpperCamelCase__ ) lowercase_ = nn.ReLU() def UpperCAmelCase__ ( self : int , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' lowercase_ = self.conv(UpperCamelCase__ ) lowercase_ = self.batch_norm(UpperCamelCase__ ) lowercase_ = self.activation(UpperCamelCase__ ) return output class UpperCamelCase__ ( nn.Module ): def __init__( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' super().__init__() lowercase_ = [ nn.AdaptiveAvgPoolad(UpperCamelCase__ ), UperNetConvModule(UpperCamelCase__ , UpperCamelCase__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' lowercase_ = input for layer in self.layers: lowercase_ = layer(UpperCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): def __init__( self : str , UpperCamelCase__ : Tuple[int, ...] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool ): '''simple docstring''' super().__init__() lowercase_ = pool_scales lowercase_ = align_corners lowercase_ = in_channels lowercase_ = channels lowercase_ = [] for i, pool_scale in enumerate(UpperCamelCase__ ): lowercase_ = UperNetPyramidPoolingBlock(pool_scale=UpperCamelCase__ , in_channels=UpperCamelCase__ , channels=UpperCamelCase__ ) self.blocks.append(UpperCamelCase__ ) self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' lowercase_ = [] for ppm in self.blocks: lowercase_ = ppm(UpperCamelCase__ ) lowercase_ = nn.functional.interpolate( UpperCamelCase__ , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(UpperCamelCase__ ) return ppm_outs class UpperCamelCase__ ( nn.Module ): def __init__( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' super().__init__() lowercase_ = config lowercase_ = config.pool_scales # e.g. (1, 2, 3, 6) lowercase_ = in_channels lowercase_ = config.hidden_size lowercase_ = False lowercase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase_ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase_ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase_ = nn.ModuleList() lowercase_ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase_ = UperNetConvModule(UpperCamelCase__ , self.channels , kernel_size=1 ) lowercase_ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCamelCase__ ) self.fpn_convs.append(UpperCamelCase__ ) lowercase_ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = inputs[-1] lowercase_ = [x] psp_outs.extend(self.psp_modules(UpperCamelCase__ ) ) lowercase_ = torch.cat(UpperCamelCase__ , dim=1 ) lowercase_ = self.bottleneck(UpperCamelCase__ ) return output def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' lowercase_ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCamelCase__ ) ) # build top-down path lowercase_ = len(UpperCamelCase__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase_ = laterals[i - 1].shape[2:] lowercase_ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCamelCase__ , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs lowercase_ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase_ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) lowercase_ = torch.cat(UpperCamelCase__ , dim=1 ) lowercase_ = self.fpn_bottleneck(UpperCamelCase__ ) lowercase_ = self.classifier(UpperCamelCase__ ) return output class UpperCamelCase__ ( nn.Module ): def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 3 , UpperCamelCase__ : Union[int, Tuple[int, int]] = 1 ): '''simple docstring''' super().__init__() lowercase_ = config lowercase_ = config.auxiliary_in_channels lowercase_ = config.auxiliary_channels lowercase_ = config.auxiliary_num_convs lowercase_ = config.auxiliary_concat_input lowercase_ = in_index lowercase_ = (kernel_size // 2) * dilation lowercase_ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) if self.num_convs == 0: lowercase_ = nn.Identity() else: lowercase_ = nn.Sequential(*UpperCamelCase__ ) if self.concat_input: lowercase_ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=kernel_size // 2 ) lowercase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : str , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' lowercase_ = encoder_hidden_states[self.in_index] lowercase_ = self.convs(UpperCamelCase__ ) if self.concat_input: lowercase_ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase_ = self.classifier(UpperCamelCase__ ) return output class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetConfig __SCREAMING_SNAKE_CASE : Any = 'pixel_values' __SCREAMING_SNAKE_CASE : str = True def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : str ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Any ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=False ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = value a = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' a = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , __magic_name__ , ) class UpperCamelCase__ ( __magic_name__ ): def __init__( self : List[str] , UpperCamelCase__ : List[Any] ): '''simple docstring''' super().__init__(UpperCamelCase__ ) lowercase_ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase_ = UperNetHead(UpperCamelCase__ , in_channels=self.backbone.channels ) lowercase_ = UperNetFCNHead(UpperCamelCase__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=UpperCamelCase__ , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[bool] = None , ): '''simple docstring''' lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = output_attentions if output_attentions is not None else self.config.output_attentions lowercase_ = self.backbone.forward_with_filtered_kwargs( UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , output_attentions=UpperCamelCase__ ) lowercase_ = outputs.feature_maps lowercase_ = self.decode_head(UpperCamelCase__ ) lowercase_ = nn.functional.interpolate(UpperCamelCase__ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=UpperCamelCase__ ) lowercase_ = None if self.auxiliary_head is not None: lowercase_ = self.auxiliary_head(UpperCamelCase__ ) lowercase_ = nn.functional.interpolate( UpperCamelCase__ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=UpperCamelCase__ ) lowercase_ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss lowercase_ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase_ = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase_ = (logits,) + outputs[1:] else: lowercase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCamelCase__ , logits=UpperCamelCase__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase_ = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase_ = features.copy() if features else default_expected_features lowercase_ = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase_ = JsonDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} lowercase_ = features.copy() if features else default_expected_features lowercase_ = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase_ = JsonDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase_ = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} lowercase_ = features.copy() lowercase_ = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase_ = tmp_path / """cache""" lowercase_ = JsonDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase_ = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , split=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = jsonl_path elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [jsonl_path] lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase_ = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=("train",) ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for split in splits: lowercase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase_ = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_json_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase_ = features.copy() if features else default_expected_features lowercase_ = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase_ = JsonDatasetReader({"""train""": jsonl_path} , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if split: lowercase_ = {split: jsonl_path} else: lowercase_ = """train""" lowercase_ = {"""train""": jsonl_path, """test""": jsonl_path} lowercase_ = tmp_path / """cache""" lowercase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase_ = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): return json.load(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): return [json.loads(UpperCAmelCase__ ) for line in buffer] class UpperCamelCase__ : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ ).write() buffer.seek(0 ) lowercase_ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ ).write() buffer.seek(0 ) lowercase_ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Dict ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) lowercase_ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) lowercase_ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Tuple ): '''simple docstring''' with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = tmp_path_factory.mktemp("""data""" ) / F'''test.json.{extension}''' lowercase_ = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__ , """rb""" , compression="""infer""" ) as f: lowercase_ = f.read() with fsspec.open(UpperCamelCase__ , """rb""" , compression="""infer""" ) as f: lowercase_ = f.read() assert exported_content == original_content
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging a = logging.get_logger(__name__) a = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Any = 'perceiver' def __init__( self : int , UpperCamelCase__ : Dict=256 , UpperCamelCase__ : int=1_280 , UpperCamelCase__ : Dict=768 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Any=26 , UpperCamelCase__ : List[Any]=8 , UpperCamelCase__ : int=8 , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[Any]="kv" , UpperCamelCase__ : Union[str, Any]=1 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Tuple=1e-12 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Any=262 , UpperCamelCase__ : Optional[int]=2_048 , UpperCamelCase__ : Optional[int]=56 , UpperCamelCase__ : Union[str, Any]=[368, 496] , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Tuple=1_920 , UpperCamelCase__ : List[Any]=16 , UpperCamelCase__ : List[str]=[1, 16, 224, 224] , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class UpperCamelCase__ ( __magic_name__ ): @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return 1e-4 def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 40 , UpperCamelCase__ : int = 40 , ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(UpperCamelCase__ ) lowercase_ = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""] ) * seq_length] * batch_size lowercase_ = dict(preprocessor(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) lowercase_ = inputs.pop("""input_ids""" ) return inputs elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase_ = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) lowercase_ = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(UpperCAmelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets a = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' a = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' a = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False , ): if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ = new_id # turn into Numpy arrays lowercase_ = np.array(UpperCAmelCase__ ) lowercase_ = np.array(UpperCAmelCase__ ) if reduce_labels: lowercase_ = 2_5_5 lowercase_ = label - 1 lowercase_ = 2_5_5 lowercase_ = label != ignore_index lowercase_ = np.not_equal(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = pred_label[mask] lowercase_ = np.array(UpperCAmelCase__ )[mask] lowercase_ = pred_label[pred_label == label] lowercase_ = np.histogram(UpperCAmelCase__ , bins=UpperCAmelCase__ , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(UpperCAmelCase__ , bins=UpperCAmelCase__ , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(UpperCAmelCase__ , bins=UpperCAmelCase__ , range=(0, num_labels - 1) )[0] lowercase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False , ): lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ , lowercase_ , lowercase_ , lowercase_ = intersect_and_union( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , ): lowercase_ , lowercase_ , lowercase_ , lowercase_ = total_intersect_and_union( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # compute metrics lowercase_ = {} lowercase_ = total_area_intersect.sum() / total_area_label.sum() lowercase_ = total_area_intersect / total_area_union lowercase_ = total_area_intersect / total_area_label lowercase_ = np.nanmean(UpperCAmelCase__ ) lowercase_ = np.nanmean(UpperCAmelCase__ ) lowercase_ = all_acc lowercase_ = iou lowercase_ = acc if nan_to_num is not None: lowercase_ = {metric: np.nan_to_num(UpperCAmelCase__ , nan=UpperCAmelCase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : bool , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[int, int]] = None , UpperCamelCase__ : bool = False , ): '''simple docstring''' lowercase_ = mean_iou( results=UpperCamelCase__ , gt_seg_maps=UpperCamelCase__ , num_labels=UpperCamelCase__ , ignore_index=UpperCamelCase__ , nan_to_num=UpperCamelCase__ , label_map=UpperCamelCase__ , reduce_labels=UpperCamelCase__ , ) return iou_result
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowercase_ = 4 lowercase_ = (1 << p) - 1 for _ in range(p - 2 ): lowercase_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowercase_ = 1 lowercase_ = 1 while repunit: lowercase_ = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0_0_0_0_0 ): lowercase_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(UpperCAmelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
716
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = 'esm' def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3_072 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=1_026 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Dict=1e-12 , UpperCamelCase__ : List[str]="absolute" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = EsmFoldConfig(**UpperCamelCase__ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : "TrunkConfig" = None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): lowercase_ = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 48 __SCREAMING_SNAKE_CASE : int = 1024 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : int = 384 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : float = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : int = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : float = 1e-8 __SCREAMING_SNAKE_CASE : float = 1e5 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return asdict(self ) def UpperCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
650
0
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): def __init__( self : Dict , UpperCamelCase__ : bool = True ): '''simple docstring''' lowercase_ = {} # dictionary of lists lowercase_ = directed def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : T , UpperCamelCase__ : T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase__ ) self.adj_list[destination_vertex].append(UpperCamelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase__ ) lowercase_ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(UpperCamelCase__ ) lowercase_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase_ = [destination_vertex] lowercase_ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase__ ) lowercase_ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase_ = [destination_vertex] lowercase_ = [] return self def __repr__( self : Optional[int] ): '''simple docstring''' return pformat(self.adj_list )
717
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( UpperCAmelCase__=None ): if subparsers is not None: lowercase_ = subparsers.add_parser("""env""" ) else: lowercase_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = is_xpu_available() lowercase_ = is_npu_available() lowercase_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): lowercase_ = load_config_from_file(args.config_file ).to_dict() lowercase_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(UpperCAmelCase__ ), """PyTorch NPU available""": str(UpperCAmelCase__ ), """System RAM""": F'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: lowercase_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else F'''\t{accelerate_config}''' ) print(UpperCAmelCase__ ) lowercase_ = accelerate_config return info def UpperCAmelCase_ ( ): lowercase_ = env_command_parser() lowercase_ = parser.parse_args() env_command(UpperCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
650
0
import math def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if ( not isinstance(UpperCAmelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): if ( not isinstance(UpperCAmelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
718
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=30 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): '''simple docstring''' lowercase_ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = DeiTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowercase_ = model(**UpperCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowercase_ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase_ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCamelCase__ )
650
0
import math import sys def UpperCAmelCase_ ( UpperCAmelCase__ ): if number != int(UpperCAmelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 lowercase_ = [-1] * (number + 1) lowercase_ = 0 for i in range(1 , number + 1 ): lowercase_ = sys.maxsize lowercase_ = int(math.sqrt(UpperCAmelCase__ ) ) for j in range(1 , root + 1 ): lowercase_ = 1 + answers[i - (j**2)] lowercase_ = min(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
719
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
0
def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0_0 ): lowercase_ = 3 lowercase_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' def UpperCAmelCase_ ( UpperCAmelCase__ ): if n == 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return 0 elif n == 2: return 1 else: lowercase_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 0 lowercase_ = 2 while digits < n: index += 1 lowercase_ = len(str(fibonacci(UpperCAmelCase__ ) ) ) return index def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0_0 ): return fibonacci_digits_index(UpperCAmelCase__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
from collections.abc import Iterable from typing import Generic, TypeVar a = TypeVar('_T') class UpperCamelCase__ ( Generic[_T] ): def __init__( self : int , UpperCamelCase__ : Iterable[_T] | None = None ): '''simple docstring''' lowercase_ = list(iterable or [] ) lowercase_ = [] def __len__( self : Any ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Dict ): '''simple docstring''' return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : _T ): '''simple docstring''' self._stacka.append(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = self._stacka.pop lowercase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
701
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure)
702
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
650
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) a = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) a = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) a = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) a = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) a = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) a = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def UpperCAmelCase_ ( ): lowercase_ , lowercase_ = randrange(len(UpperCAmelCase__ ) ), randrange(len(UpperCAmelCase__ ) ) lowercase_ = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] lowercase_ , lowercase_ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0 ): return (generate_random_hand() for _ in range(UpperCAmelCase__ )) @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = PokerHand(UpperCAmelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ ).compare_with(PokerHand(UpperCAmelCase__ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ ).compare_with(PokerHand(UpperCAmelCase__ ) ) == expected def UpperCAmelCase_ ( ): lowercase_ = [PokerHand(UpperCAmelCase__ ) for hand in SORTED_HANDS] lowercase_ = poker_hands.copy() shuffle(UpperCAmelCase__ ) lowercase_ = chain(sorted(UpperCAmelCase__ ) ) for index, hand in enumerate(UpperCAmelCase__ ): assert hand == poker_hands[index] def UpperCAmelCase_ ( ): # Test that five high straights are compared correctly. lowercase_ = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCAmelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCAmelCase_ ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowercase_ = PokerHand("""2C 4S AS 3D 5C""" ) lowercase_ = True lowercase_ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCAmelCase_ ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowercase_ = 0 lowercase_ = os.path.abspath(os.path.dirname(UpperCAmelCase__ ) ) lowercase_ = os.path.join(UpperCAmelCase__ , """poker_hands.txt""" ) with open(UpperCAmelCase__ ) as file_hand: for line in file_hand: lowercase_ = line[:1_4].strip() lowercase_ = line[1_5:].strip() lowercase_ , lowercase_ = PokerHand(UpperCAmelCase__ ), PokerHand(UpperCAmelCase__ ) lowercase_ = player.compare_with(UpperCAmelCase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
703
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
0
# Imports import numpy as np class UpperCamelCase__ : def __init__( self : Tuple , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : str=None ): '''simple docstring''' self.set_matricies(red=UpperCamelCase__ , green=UpperCamelCase__ , blue=UpperCamelCase__ , red_edge=UpperCamelCase__ , nir=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Dict=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : int=None ): '''simple docstring''' if red is not None: lowercase_ = red if green is not None: lowercase_ = green if blue is not None: lowercase_ = blue if red_edge is not None: lowercase_ = red_edge if nir is not None: lowercase_ = nir return True def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[Any]="" , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Any=None ): '''simple docstring''' self.set_matricies(red=UpperCamelCase__ , green=UpperCamelCase__ , blue=UpperCamelCase__ , red_edge=UpperCamelCase__ , nir=UpperCamelCase__ ) lowercase_ = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Union[str, Any]=0.08 , UpperCamelCase__ : Optional[int]=1.22 , UpperCamelCase__ : Union[str, Any]=0.03 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return self.nir - self.green def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[Any]=0.16 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Any=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : int=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self.nir / self.red def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowercase_ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.nir / self.red def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
704
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
0
import copy import random from transformers import CLIPTokenizer class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[str] ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = {} def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = super().add_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]=1 , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) else: lowercase_ = [] for i in range(UpperCamelCase__ ): lowercase_ = placeholder_token + F'''_{i}''' self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) lowercase_ = output def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Tuple=1.0 ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [] for i in range(len(UpperCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase_ = self.token_map[placeholder_token] lowercase_ = tokens[: 1 + int(len(UpperCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: lowercase_ = copy.copy(UpperCamelCase__ ) random.shuffle(UpperCamelCase__ ) lowercase_ = text.replace(UpperCamelCase__ , """ """.join(UpperCamelCase__ ) ) return text def __call__( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , *UpperCamelCase__ : Any , UpperCamelCase__ : int=False , UpperCamelCase__ : List[str]=1.0 , **UpperCamelCase__ : List[str] ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : Tuple , UpperCamelCase__ : Any=False , UpperCamelCase__ : int=1.0 , **UpperCamelCase__ : int ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , )
705
def UpperCAmelCase_ ( UpperCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
650
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] a = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] a = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) a = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) a = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): for tf_name, hf_name in patterns: lowercase_ = k.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return k def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = BigBirdPegasusConfig(**UpperCAmelCase__ ) lowercase_ = BigBirdPegasusForConditionalGeneration(UpperCAmelCase__ ) lowercase_ = torch_model.state_dict() lowercase_ = {} # separating decoder weights lowercase_ = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} lowercase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): lowercase_ = [k.endswith(UpperCAmelCase__ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase__ ): continue lowercase_ = DECODER_PATTERNS lowercase_ = rename_state_dict_key(UpperCAmelCase__ , UpperCAmelCase__ ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowercase_ = v.T lowercase_ = torch.from_numpy(UpperCAmelCase__ ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): lowercase_ = [k.endswith(UpperCAmelCase__ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase__ ): continue lowercase_ = REMAINING_PATTERNS lowercase_ = rename_state_dict_key(UpperCAmelCase__ , UpperCAmelCase__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowercase_ = v.T lowercase_ = torch.from_numpy(UpperCAmelCase__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' lowercase_ = mapping["""model.embed_positions.weight"""] lowercase_ = mapping.pop("""model.embed_positions.weight""" ) lowercase_ , lowercase_ = torch_model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) lowercase_ = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = tf.train.list_variables(UpperCAmelCase__ ) lowercase_ = {} lowercase_ = ["""global_step"""] for name, shape in tqdm(UpperCAmelCase__ , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = array return tf_weights def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = get_tf_weights_as_numpy(UpperCAmelCase__ ) lowercase_ = convert_bigbird_pegasus(UpperCAmelCase__ , UpperCAmelCase__ ) torch_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') a = parser.parse_args() a = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
706
def UpperCAmelCase_ ( UpperCAmelCase__=2_8_1_2_3 ): lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
650
0
from ...configuration_utils import PretrainedConfig class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'bert-generation' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=50_358 , UpperCamelCase__ : Any=1_024 , UpperCamelCase__ : Optional[int]=24 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : Optional[Any]=4_096 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : str=512 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Union[str, Any]=1e-12 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : Optional[int]="absolute" , UpperCamelCase__ : Optional[int]=True , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : def __init__( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=99 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Optional[int]=37 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=128 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : str=4 , UpperCamelCase__ : List[Any]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.prepare_config_and_inputs() lowercase_ = True lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = NezhaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = True lowercase_ = NezhaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = NezhaForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = NezhaForNextSentencePrediction(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = NezhaForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , next_sentence_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = NezhaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = NezhaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = NezhaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.num_choices lowercase_ = NezhaForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = True def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = NezhaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ = None self.model_tester.create_and_check_model_as_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = NezhaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase_ = True lowercase_ = model_class(config=UpperCamelCase__ ) lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = torch.jit.trace( UpperCamelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """bert.pt""" ) ) lowercase_ = torch.jit.load(os.path.join(UpperCamelCase__ , """bert.pt""" ) , map_location=UpperCamelCase__ ) loaded(inputs_dict["""input_ids"""].to(UpperCamelCase__ ) , inputs_dict["""attention_mask"""].to(UpperCamelCase__ ) ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowercase_ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowercase_ = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowercase_ = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
708
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a = False a = logging.get_logger(__name__) a = 'ybelkada/fonts' def UpperCAmelCase_ ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , ["""torch"""] ) _check_torch_version() lowercase_ = image_tensor.unsqueeze(0 ) lowercase_ = torch.nn.functional.unfold(UpperCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase__ , UpperCAmelCase__ , -1 ) lowercase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 3_6 , UpperCAmelCase__ = "black" , UpperCAmelCase__ = "white" , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = 5 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , ): requires_backends(UpperCAmelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowercase_ = textwrap.TextWrapper(width=8_0 ) lowercase_ = wrapper.wrap(text=UpperCAmelCase__ ) lowercase_ = """\n""".join(UpperCAmelCase__ ) if font_bytes is not None and font_path is None: lowercase_ = io.BytesIO(UpperCAmelCase__ ) elif font_path is not None: lowercase_ = font_path else: lowercase_ = hf_hub_download(UpperCAmelCase__ , """Arial.TTF""" ) lowercase_ = ImageFont.truetype(UpperCAmelCase__ , encoding="""UTF-8""" , size=UpperCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCAmelCase__ ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = temp_draw.textbbox((0, 0) , UpperCAmelCase__ , UpperCAmelCase__ ) # Create the actual image with a bit of padding around the text. lowercase_ = text_width + left_padding + right_padding lowercase_ = text_height + top_padding + bottom_padding lowercase_ = Image.new("""RGB""" , (image_width, image_height) , UpperCAmelCase__ ) lowercase_ = ImageDraw.Draw(UpperCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase__ , fill=UpperCAmelCase__ , font=UpperCAmelCase__ ) return image def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): requires_backends(UpperCAmelCase__ , """vision""" ) # Convert to PIL image if necessary lowercase_ = to_pil_image(UpperCAmelCase__ ) lowercase_ = render_text(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = max(header_image.width , image.width ) lowercase_ = int(image.height * (new_width / image.width) ) lowercase_ = int(header_image.height * (new_width / header_image.width) ) lowercase_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase_ = to_numpy_array(UpperCAmelCase__ ) if infer_channel_dimension_format(UpperCAmelCase__ ) == ChannelDimension.LAST: lowercase_ = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Tuple = ['flattened_patches'] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : int = 2_048 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowercase_ = do_normalize lowercase_ = do_convert_rgb lowercase_ = max_patches lowercase_ = is_vqa def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : dict , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowercase_ = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.FIRST ) lowercase_ = torch.from_numpy(UpperCamelCase__ ) lowercase_ , lowercase_ = patch_size["""height"""], patch_size["""width"""] lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) # maximize scale s.t. lowercase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCamelCase__ ) , 1 ) lowercase_ = max(num_feasible_rows * patch_height , 1 ) lowercase_ = max(num_feasible_cols * patch_width , 1 ) lowercase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCamelCase__ , antialias=UpperCamelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase_ = torch_extract_patches(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = patches.shape lowercase_ = patches_shape[1] lowercase_ = patches_shape[2] lowercase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase_ = torch.arange(UpperCamelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCamelCase__ ).reshape([rows * columns, 1] ) lowercase_ = torch.arange(UpperCamelCase__ ).reshape([1, columns] ).repeat(UpperCamelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase_ = row_ids.to(torch.floataa ) lowercase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase_ = torch.nn.functional.pad(UpperCamelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase_ = to_numpy_array(UpperCamelCase__ ) return result def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' if image.dtype == np.uinta: lowercase_ = image.astype(np.floataa ) # take mean across the whole `image` lowercase_ = np.mean(UpperCamelCase__ ) lowercase_ = np.std(UpperCamelCase__ ) lowercase_ = max(UpperCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ = patch_size if patch_size is not None else self.patch_size lowercase_ = max_patches if max_patches is not None else self.max_patches lowercase_ = self.is_vqa if kwargs.get("""data_format""" , UpperCamelCase__ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowercase_ = kwargs.pop("""font_bytes""" , UpperCamelCase__ ) lowercase_ = kwargs.pop("""font_path""" , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = [header_text] * len(UpperCamelCase__ ) lowercase_ = [ render_header(UpperCamelCase__ , header_text[i] , font_bytes=UpperCamelCase__ , font_path=UpperCamelCase__ ) for i, image in enumerate(UpperCamelCase__ ) ] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ ) for image in images] # convert to torch tensor and permute lowercase_ = [ self.extract_flattened_patches(image=UpperCamelCase__ , max_patches=UpperCamelCase__ , patch_size=UpperCamelCase__ ) for image in images ] # create attention mask in numpy lowercase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase_ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCamelCase__ ) return encoded_outputs
650
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = 'segformer' def __init__( self : int , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Optional[Any]=[2, 2, 2, 2] , UpperCamelCase__ : Optional[Any]=[8, 4, 2, 1] , UpperCamelCase__ : Any=[32, 64, 160, 256] , UpperCamelCase__ : Optional[Any]=[7, 3, 3, 3] , UpperCamelCase__ : Optional[int]=[4, 2, 2, 2] , UpperCamelCase__ : Optional[int]=[1, 2, 5, 8] , UpperCamelCase__ : Any=[4, 4, 4, 4] , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Any=1e-6 , UpperCamelCase__ : Tuple=256 , UpperCamelCase__ : Optional[Any]=255 , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase__ , ) lowercase_ = num_channels lowercase_ = num_encoder_blocks lowercase_ = depths lowercase_ = sr_ratios lowercase_ = hidden_sizes lowercase_ = patch_sizes lowercase_ = strides lowercase_ = mlp_ratios lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = classifier_dropout_prob lowercase_ = initializer_range lowercase_ = drop_path_rate lowercase_ = layer_norm_eps lowercase_ = decoder_hidden_size lowercase_ = kwargs.get("""reshape_last_stage""" , UpperCamelCase__ ) lowercase_ = semantic_loss_ignore_index class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return 1e-4 @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return 12
709
import cva import numpy as np class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : float , UpperCamelCase__ : int ): '''simple docstring''' if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ): '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = cva.imread(UpperCamelCase__ , 0 ) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB ) lowercase_ , lowercase_ = np.gradient(UpperCamelCase__ ) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset ): for x in range(UpperCamelCase__ , w - offset ): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a = HarrisCorner(0.04, 3) a , a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
650
0
from collections.abc import Callable class UpperCamelCase__ : def __init__( self : List[Any] , UpperCamelCase__ : Callable | None = None ): '''simple docstring''' lowercase_ = [] # Stores indexes of each item for supporting updates and deletion. lowercase_ = {} # Stores current size of heap. lowercase_ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase_ = key or (lambda UpperCamelCase__ : x) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ , lowercase_ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase_ , lowercase_ = self.arr[j], self.arr[i] def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self._left(UpperCamelCase__ ) lowercase_ = self._right(UpperCamelCase__ ) lowercase_ = i if left is not None and not self._cmp(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = left if right is not None and not self._cmp(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = right return valid_parent def UpperCAmelCase__ ( self : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self._parent(UpperCamelCase__ ) while parent is not None and not self._cmp(UpperCamelCase__ , UpperCamelCase__ ): self._swap(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ , lowercase_ = parent, self._parent(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self._get_valid_parent(UpperCamelCase__ ) while valid_parent != index: self._swap(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ , lowercase_ = valid_parent, self._get_valid_parent(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' if item not in self.pos_map: return lowercase_ = self.pos_map[item] lowercase_ = [item, self.key(UpperCamelCase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(UpperCamelCase__ ) self._heapify_down(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : int ): '''simple docstring''' if item not in self.pos_map: return lowercase_ = self.pos_map[item] del self.pos_map[item] lowercase_ = self.arr[self.size - 1] lowercase_ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(UpperCamelCase__ ) self._heapify_down(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(UpperCamelCase__ )] ) else: lowercase_ = [item, self.key(UpperCamelCase__ )] lowercase_ = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.arr[0] if self.size else None def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
710
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): a = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: a = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = numpy_to_pil(UpperCAmelCase__ ) return images def UpperCAmelCase_ ( UpperCAmelCase__ ): if images.ndim == 3: lowercase_ = images[None, ...] lowercase_ = (images * 2_5_5).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase_ = [Image.fromarray(UpperCAmelCase__ ) for image in images] return pil_images
650
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a = get_logger() a = None class UpperCamelCase__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Optional[int] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Any ): '''simple docstring''' super().__init__(features=UpperCamelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCamelCase__ )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) lowercase_ = device if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) lowercase_ = str(jax.devices()[0] ) lowercase_ = jnp_array_kwargs @staticmethod def UpperCAmelCase__ ( ): '''simple docstring''' import jax return {str(UpperCamelCase__ ): device for device in jax.devices()} def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and column: if all( isinstance(UpperCamelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase__ , axis=0 ) return column def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , (str, bytes, type(UpperCamelCase__ )) ): return value elif isinstance(UpperCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ = {} if isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase_ = {"""dtype""": jnp.intaa} else: lowercase_ = {"""dtype""": jnp.intaa} elif isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase__ , PIL.Image.Image ): lowercase_ = np.asarray(UpperCamelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase__ , """__array__""" ) and not isinstance(UpperCamelCase__ , jax.Array ): lowercase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase__ , map_list=UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_row(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_row(UpperCamelCase__ ) return self.recursive_tensorize(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_column(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_column(UpperCamelCase__ , pa_table.column_names[0] ) lowercase_ = self.recursive_tensorize(UpperCamelCase__ ) lowercase_ = self._consolidate(UpperCamelCase__ ) return column def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_batch(UpperCamelCase__ ) lowercase_ = self.recursive_tensorize(UpperCamelCase__ ) for column_name in batch: lowercase_ = self._consolidate(batch[column_name] ) return batch
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a = logging.get_logger(__name__) a = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = 'dpt' def __init__( self : int , UpperCamelCase__ : int=768 , UpperCamelCase__ : List[Any]=12 , UpperCamelCase__ : Tuple=12 , UpperCamelCase__ : str=3_072 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : List[str]=1e-12 , UpperCamelCase__ : Union[str, Any]=384 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[Any]=[2, 5, 8, 11] , UpperCamelCase__ : Dict="project" , UpperCamelCase__ : Tuple=[4, 2, 1, 0.5] , UpperCamelCase__ : str=[96, 192, 384, 768] , UpperCamelCase__ : int=256 , UpperCamelCase__ : Optional[int]=-1 , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : int=0.4 , UpperCamelCase__ : Tuple=255 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Tuple=[1, 1_024, 24, 24] , UpperCamelCase__ : Optional[Any]=[0, 1] , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = hidden_size lowercase_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowercase_ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowercase_ = BitConfig(**UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowercase_ = BitConfig(**UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowercase_ = backbone_featmap_shape lowercase_ = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: lowercase_ = None lowercase_ = None lowercase_ = [] lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = qkv_bias lowercase_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) lowercase_ = readout_type lowercase_ = reassemble_factors lowercase_ = neck_hidden_sizes lowercase_ = fusion_hidden_size lowercase_ = head_in_index lowercase_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowercase_ = use_auxiliary_head lowercase_ = auxiliary_loss_weight lowercase_ = semantic_loss_ignore_index lowercase_ = semantic_classifier_dropout def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
712
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = {} if self.train_dir is not None: lowercase_ = self.train_dir if self.validation_dir is not None: lowercase_ = self.validation_dir lowercase_ = data_files if data_files else None @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : str = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCamelCase__ : def __init__( self : Dict , UpperCamelCase__ : List[Any]=192 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : str=0.6 ): '''simple docstring''' lowercase_ = input_size lowercase_ = mask_patch_size lowercase_ = model_patch_size lowercase_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase_ = self.input_size // self.mask_patch_size lowercase_ = self.mask_patch_size // self.model_patch_size lowercase_ = self.rand_size**2 lowercase_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): '''simple docstring''' lowercase_ = np.random.permutation(self.token_count )[: self.mask_count] lowercase_ = np.zeros(self.token_count , dtype=UpperCamelCase__ ) lowercase_ = 1 lowercase_ = mask.reshape((self.rand_size, self.rand_size) ) lowercase_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase__ , """decoder_type""" ): lowercase_ = """simmim""" # adapt config lowercase_ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase__ ) if training_args.do_train: lowercase_ = ds["""train"""].column_names else: lowercase_ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ = data_args.image_column_name elif "image" in column_names: lowercase_ = """image""" elif "img" in column_names: lowercase_ = """img""" else: lowercase_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase_ = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase__ ): lowercase_ = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] lowercase_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Initialize our trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
650
0
class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : list ): '''simple docstring''' lowercase_ = set_counts lowercase_ = max(UpperCamelCase__ ) lowercase_ = len(UpperCamelCase__ ) lowercase_ = [1] * num_sets lowercase_ = list(range(UpperCamelCase__ ) ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self.get_parent(UpperCamelCase__ ) lowercase_ = self.get_parent(UpperCamelCase__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ = 0 lowercase_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ = 0 lowercase_ = src_parent lowercase_ = self.set_counts[src_parent] lowercase_ = max(self.max_set , UpperCamelCase__ ) return True def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : List[str] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCamelCase__ : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {"""shortest_edge""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ = int((256 / 224) * size["""shortest_edge"""] ) lowercase_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[Union[float, Iterable[float]]] = None , UpperCamelCase__ : Optional[TensorType] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
0
'''simple docstring''' from math import sqrt def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase_ = True # 0 and 1 are none primes. if number <= 1: lowercase_ = False for divisor in range(2 , int(round(sqrt(UpperCAmelCase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase_ = False break # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'status' must been from type bool" return status def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase_ = list(range(2 , n + 1 ) ) lowercase_ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(UpperCAmelCase__ ) ): for j in range(i + 1 , len(UpperCAmelCase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase_ = 0 # filters actual prime numbers. lowercase_ = [x for x in begin_list if x != 0] # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" lowercase_ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(UpperCAmelCase__ ): ans.append(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and number >= 0, "'number' must been an int and >= 0" lowercase_ = [] # this list will be returns of the function. # potential prime number factors. lowercase_ = 2 lowercase_ = number if number == 0 or number == 1: ans.append(UpperCAmelCase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(UpperCAmelCase__ ): while quotient != 1: if is_prime(UpperCAmelCase__ ) and (quotient % factor == 0): ans.append(UpperCAmelCase__ ) quotient /= factor else: factor += 1 else: ans.append(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase_ = 0 # prime factorization of 'number' lowercase_ = prime_factorization(UpperCAmelCase__ ) lowercase_ = max(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type int" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase_ = 0 # prime factorization of 'number' lowercase_ = prime_factorization(UpperCAmelCase__ ) lowercase_ = min(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type int" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , UpperCAmelCase__ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , UpperCAmelCase__ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase_ ( UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (number > 2) and is_even(UpperCAmelCase__ ) ), "'number' must been an int, even and > 2" lowercase_ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase_ = get_prime_numbers(UpperCAmelCase__ ) lowercase_ = len(UpperCAmelCase__ ) # run variable for while-loops. lowercase_ = 0 lowercase_ = None # exit variable. for break up the loops lowercase_ = True while i < len_pn and loop: lowercase_ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase_ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (len(UpperCAmelCase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase_ = 0 while numbera != 0: lowercase_ = numbera % numbera lowercase_ = numbera lowercase_ = rest # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase_ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase_ = prime_factorization(UpperCAmelCase__ ) lowercase_ = prime_factorization(UpperCAmelCase__ ) elif numbera == 1 or numbera == 1: lowercase_ = [] lowercase_ = [] lowercase_ = max(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = 0 lowercase_ = 0 lowercase_ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) for _ in range(max(UpperCAmelCase__ , UpperCAmelCase__ ) ): ans *= n else: lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ): ans *= n done.append(UpperCAmelCase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ): ans *= n done.append(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 0), "'number' must been a positive int" lowercase_ = 0 lowercase_ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(UpperCAmelCase__ ): ans += 1 # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and is_prime( UpperCAmelCase__ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( is_prime(UpperCAmelCase__ ) and is_prime(UpperCAmelCase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase_ = p_number_a + 1 # jump to the next number lowercase_ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(UpperCAmelCase__ ): number += 1 while number < p_number_a: ans.append(UpperCAmelCase__ ) number += 1 # fetch the next prime number. while not is_prime(UpperCAmelCase__ ): number += 1 # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ans[0] != p_number_a and ans[len(UpperCAmelCase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 1), "'n' must been int and >= 1" lowercase_ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(UpperCAmelCase__ ) # precondition assert ans[0] == 1 and ans[len(UpperCAmelCase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase_ = get_divisors(UpperCAmelCase__ ) # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (divisors[0] == 1) and (divisors[len(UpperCAmelCase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase_ = gcd(abs(UpperCAmelCase__ ) , abs(UpperCAmelCase__ ) ) # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase_ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase_ = 0 lowercase_ = 1 lowercase_ = 1 # this will be return for _ in range(n - 1 ): lowercase_ = ans ans += fiba lowercase_ = tmp return ans
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean a = 0 a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right a = tuple[int, int] class UpperCamelCase__ : def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Node | None , ): '''simple docstring''' lowercase_ = pos_x lowercase_ = pos_y lowercase_ = (pos_y, pos_x) lowercase_ = goal_x lowercase_ = goal_y lowercase_ = g_cost lowercase_ = parent lowercase_ = self.calculate_heuristic() lowercase_ = self.g_cost + self.h_cost def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = self.pos_x - self.goal_x lowercase_ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(UpperCamelCase__ ) + abs(UpperCamelCase__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[str] , UpperCamelCase__ : Node ): '''simple docstring''' return self.f_cost < other.f_cost class UpperCamelCase__ : def __init__( self : Optional[Any] , UpperCamelCase__ : TPosition , UpperCamelCase__ : TPosition ): '''simple docstring''' lowercase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase__ ) lowercase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , UpperCamelCase__ ) lowercase_ = [self.start] lowercase_ = [] lowercase_ = False def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase_ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(UpperCamelCase__ ) self.closed_nodes.append(UpperCamelCase__ ) lowercase_ = self.get_successors(UpperCamelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase__ ) else: # retrieve the best current path lowercase_ = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase__ ) else: self.open_nodes.append(UpperCamelCase__ ) return [self.start.pos] def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Node ): '''simple docstring''' lowercase_ = [] for action in delta: lowercase_ = parent.pos_x + action[1] lowercase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase__ , UpperCamelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase__ , ) ) return successors def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Node | None ): '''simple docstring''' lowercase_ = node lowercase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase_ = current_node.parent path.reverse() return path class UpperCamelCase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : TPosition , UpperCamelCase__ : TPosition ): '''simple docstring''' lowercase_ = AStar(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = AStar(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase_ = self.fwd_astar.open_nodes.pop(0 ) lowercase_ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( UpperCamelCase__ , UpperCamelCase__ ) self.fwd_astar.closed_nodes.append(UpperCamelCase__ ) self.bwd_astar.closed_nodes.append(UpperCamelCase__ ) lowercase_ = current_bwd_node lowercase_ = current_fwd_node lowercase_ = { self.fwd_astar: self.fwd_astar.get_successors(UpperCamelCase__ ), self.bwd_astar: self.bwd_astar.get_successors(UpperCamelCase__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(UpperCamelCase__ ) else: # retrieve the best current path lowercase_ = astar.open_nodes.pop( astar.open_nodes.index(UpperCamelCase__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(UpperCamelCase__ ) else: astar.open_nodes.append(UpperCamelCase__ ) return [self.fwd_astar.start.pos] def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Node , UpperCamelCase__ : Node ): '''simple docstring''' lowercase_ = self.fwd_astar.retrace_path(UpperCamelCase__ ) lowercase_ = self.bwd_astar.retrace_path(UpperCamelCase__ ) bwd_path.pop() bwd_path.reverse() lowercase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] a = (0, 0) a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a = time.time() a = AStar(init, goal) a = a_star.search() a = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') a = time.time() a = BidirectionalAStar(init, goal) a = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
715
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): for attribute in key.split(""".""" ): lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: lowercase_ = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True elif name.split(""".""" )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , UpperCAmelCase__ ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "bias" in name: lowercase_ = """bias""" elif "weight" in name: lowercase_ = """weight""" else: lowercase_ = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ = emb.weight.data return lin_layer def UpperCAmelCase_ ( UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(""" """ )[0] for line in lines] lowercase_ = len(UpperCAmelCase__ ) lowercase_ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): lowercase_ = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(UpperCAmelCase__ ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) lowercase_ = SpeechaTextaForCausalLM(UpperCAmelCase__ ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = """speech_to_text_2""" lowercase_ = """wav2vec2""" lowercase_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
650
0